The Madden-Julian Oscillation: It's predictability and a 100-year reconstruction

Eric C. J. Oliver, Keith R. Thompson

Department of Oceanography Dalhousie University

CMOS 7 June 2011

Objectives

HISTORICAL RECONSTRUCTION OF THE MJO INDEX

- The most widely accepted characterization of the Madden-Julian Oscillation (MJO) is the index developed by Wheeler and Hendon (2004)
- Index based on satellite outgoing longwave radiation and reanalysis zonal wind (200 and 850 hPa heights) ... so not defined prior to 1974
- Would be of great interest to be able to extend this index over the pre-satellite era!

Wheeler, M. and H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Monthly Weather Review, 132 (8), 1917-1932.

Reconstructing the MJO

- The MJO has a strong signature in surface pressure and daily measurements of surface pressure are available for 100+ years.
- We reconstruct the Wheeler and Hendon MJO index from 1905 to 2008 based on a mulitple linear regression of tropical surface pressure from the 20th Century Reanalysis Project.

proportion of MJO standard deviation accounted for by surface pressure

• Use time series of pressure at a number of locations ... but we need to **limit the number of locations** so that we don't overfit the model!

* Donald, A. et al., 2006: Near-global impact of the Madden-Julian Oscillation on rainfall. Geophysical Research Letters. 33, L09704 * Compo et al., Review Article: The Twentieth Century Reanalysis Project, Q. J. R. Meteorol. Soc. 137: 1–28, 2011

^{*} Madden, R. and P. Julian, 1971: Detection of a 40-50 Day Oscillation in the Zonal Wind in the Tropical Pacific. Journal of the Atmospheric Sciences, 28 (5), 702-708.

Observation Density

• One problem with doing such a reconstruction is the heterogeneous nature of the **observing system** ... in time AND space

- Reanalysis is performed using a Kalman smoother with 56-member ensembles: for each variable we have time series of mean and variance
- It turns out that the ensemble variance is related to observation density. i.e., as the observations become more sparse, the variance (uncertainty within the ensemble) increases

Restricting Predictor Locations

 We use the ensemble spread to reject regions that: [i] have too strong a trend in ensemble spread (the observation system changed too much over the last century) and [ii] have a large mean spread (the observations are too sparse over the full record)

Final Selection of Predictors

• Reject regions if they fail to meet the following restrictions:

- Chose **12 locations**. Took pressure time series at these locations and filtered out seasonal, interannual, and high freq. (>10 days) variability
- These time series of pressure, along with Hilbert transforms, were regressed onto the MJO index and then hindcast over the 1905 to 2008 period to give a reconstruction of the MJO.

The Reconstructed Index

 The reconstructed index (IOT) explains 67% of the variance of the Wheeler and Hendon index (IWH). Corresponds to a correlation of ~0.82.

Low Frequency Behaviour

- 3-year running variance and power spectra match over the common period
- In general, the reconstruction behaves well over the common period.... but can we trust the hindcast over the **pre-satellite era**?

Validation

- We will perform a **second reconstruction** using the following selected **environmental variables**:
 - Air temperature at Darwin, Australia
 - Precipitation at Booby Island, Australia
 - Sea level at San Diego, Californa
 - Surface pressure at/near Jakarta, Indonesia

all variables have a connection with the MJO

• The regression is not as good (explains only 39% of the variance) but we can see that it **lends credence** to the low frequency variability in IOT

• Also validated the reconstructed index by examined the stability of the connection between the MJO and the environmental variables.

Loss of MJO Predictability

- Ensembles of MJO events which pass through the same point show behaviour reminiscient of a damped harmonic oscillator.
- Model as a stochastically forced, damped, harmonic oscillator using an autoregressive process:

$$oldsymbol{x}_t = oldsymbol{A} oldsymbol{x}_t + oldsymbol{\epsilon}_t$$

with three parameters:

- 1. rotation period P
- 2. damping timescale au_1
- 3. autoregressive forcing timescale au_2

Predictability Timescales

- Estimated timescales for **loss of predictability** for ensembles of MJO events initialized in different phases
- Timescales are different for the **different statistics**. Also, there is some dependence on phase, not reproduced by the reconstruction.
- Capture the relationship amongst the timescales using a simple stochastically forced, damped harmonic oscillator model with a single set of parameters.

Predictability Timescales

- Estimated timescales for **loss of predictability** for ensembles of MJO events initialized in different phases
- Timescales are different for the **different statistics**. Also, there is some dependence on phase, not reproduced by the reconstruction.
- Capture the relationship amongst the timescales using a simple stochastically forced, damped harmonic oscillator model with $P = 50 \text{ d}, \tau_1 = 15 \text{ d}, \tau_2 = 2.5 \text{ d}$

Summary

- Using long records of pressure from a reanalysis we have **reconstructed** the MJO index over the period **1905 to 2008**.
- The number of pressure predictors was limited by taking into account

 (i) the relationship with the MJO, (ii) decorrelation lengthscales, and (iii) the quality of the reanalysis.
- The reconstructed index accounts for **69% of the variance** of the Wheeler and Hendon index and its **temporal and spectral properties match well** over the shared period and are validated over the historical period.
- Predictability time scales of the MJO, as described by three measures, give a rich and complex view of MJO predictability.
- Behaviour can be modeled by a simple coupled AR(1) process inspired by a damped harmonic oscillator. One parameter set describes the MJO well.
- Reconstructed MJO index will be made available online in the near future.