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Abstract

This thesis presents the theory of the driven optical ring cavity containing a non-

linear material. First, an overview of the history of bistability and spatial solitons

in driven nonlinear cavities is outlined. Then, the basic theory of the optical Kerr

effect is presented and two of its consequences are outlined: optical bistability and

spatial solitons. Within this background, the mirror feedback model is derived from

the Maxwell-Bloch equations and considerations of the classical optics of the cav-

ity. This model is analytically shown to exhibit bistability in the plane wave case.

The mean-field model is subsequently derived by applying the mean-field limit to the

Maxwell-Bloch equations and the cavity optics. In addition, the mean-field model is

analytically shown to exhibit bistability in the plane wave case. Numerical simula-

tions are performed on the mean-field model demonstrating the existence of: (i) plane

wave bistability, (ii) transverse modulational bistability, (iii) the ability to “switch”

between bistable states in both the plane wave and modulated case, (iv) instabili-

ties in the modulated case and (v) the possibility for optimization of the switching

process. Finally, an application of bistable driven cavities is explored: an all-optical

digital information processor and storage device.

viii



Chapter 1

Introduction to Nonlinear Optics

and the Ring Cavity

Nonlinear optics is a field of physics that is rich with interesting phenomena. For

many years the optical properties of materials were thought to be very well under-

stood using the principles of classical optics. However, with the invention of the laser,

the opportunity to probe matter with high intensity light has been made possible.

Experiments with laser light and theories treating high intensity light-matter interac-

tions has shown that the theories of classical optics do not give a complete description

of such processes. Two examples of phenomena that occur because of the interaction

of high intensity light with matter are optical bistability and spatial solitons.

Optical bistability occurs when an optical system exhibits two stable states for a

single input value. Over the past two to three decades, bistability has been predicted

for several optical systems including the optical ring and Fabry-Perot cavities and has

recently been observed experimentally [1, 2, 3]. Optical spatial solitons are the spatial

analogue to temporal solitons that are most commonly used in optical fibres and

optical solitons in cavities have the potential to be used as optical bits for information
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processing and storage. Experiments on driven optical cavities containing nonlinear

materials have revealed the coexistence of bistability and spatial solitons where one

of the two stable states of the system consists of solitons. In one such observation,

the experimenters were able to switch the solitons on and off by shining a focussed

beam of high intensity light into the nonlinear material [1].

In this thesis, the basic nonlinear processes that govern the mechanisms of optical

bistability and spatial solitons will be outlined. The Maxwell-Bloch equations, the

semi-classical dynamical equations that govern the interaction of light and matter,

will be presented and applied to an optical ring cavity. From this starting point, two

models for the optical ring cavity will be derived: the mirror feedback model and the

mean-field model.

According to W. J. Firth and G. K. Harkness, the history of spatial solitons in

optical cavities can be thought of as divided into three periods [4]. In the first period,

there was little work being done on spatial structures in optical cavities except by a

select few who have now become experts in the field. It was during this time period

that the mirror feedback model was first developed by Maloney and his coworkers [5],

which predicted the existence of bistability and spatial solitons. The second period

began in the 1990s and was dominated by two areas of research: mean-field models

and numerical simulations. The mean-field model of nonlinear optical cavities was

a mathematical reduction of the mirror feedback model that predicted the existence

of cavity solitons. The reduced nature of this model made it much more convenient

to work with than the mirror feedback model. By the early 1990s, the power of

computing facilities had reached a level such that numerical simulations of complex

nonlinear problems could be performed with relative ease. Simulations performed

on both the mirror feedback and mean-field models allowed scientists to probe the

dynamical behaviour of such systems. The third period, which has been referred to

as the “Information Age” [4], has just begun and holds much promise for future work
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in this field. Experiments that demonstrate the existence of much that was predicted

theoretically, including cavity solitons, are beginning to increase in numbers. In this

ongoing period most theoretical work is being done on Fabry-Perot cavities containing

semiconducting nonlinear materials [6, 7, 8]. Future work will highlight a movement

from the theory of solitons in optical cavities to practical applications.

1.1 The Optical Kerr Effect

In the realm of nonlinear optics, there are many phenomena that arise due to a high

intensity optical field (i.e.: laser light) being applied to a material. The optical Kerr

effect occurs when a material’s index of refraction is dependent on the intensity of this

applied field and in principle, this effect can occur in all materials. There are several

mechanisms that can give rise to the Kerr effect. An applied optical field can change

the density of a material. In turn, this will change the electric susceptibility and the

index of refraction. Another possibility is that the nonlinear terms in the electric

susceptibility or refractive index are amplified by the applied field thus making their

contribution significant with respect to the linear terms. In any case, the index of

refraction, n, obeys the equation

n = n0 + n′2I (1.1)

where I is the optical field intensity, n0 is the linear refraction index and n′2 is a form

of the optical Kerr coefficient (in units of m2/W) which is typically on the order of

10−20 to 10−18 m2/W in glasses, 10−18 to 10−11 m2/W in doped glasses and 10−14 to

10−6 m2/W in semiconductors [9]. An actual material will have higher order terms

and so the Kerr effect is in fact a first order approximation. An optical material that

exhibits this property is known as a Kerr medium. For our purposes, we will rewrite

Eq. 1.1 as

n = n0 + n2|E|2 (1.2)

3



since I is proportional to |E|2. Here, the Kerr coefficient is in units of m2/V2 and

since n2 is small, the electric field, E, must be very intense for the Kerr effect to

be significant. The Kerr effect is in fact an approximation for a general medium.

The specific media that we will be considering is a two-level saturable absorber. The

derivation of the electric susceptibility for such a material will be done in Sec. 2.1.2,

however, for now it will be assumed to be of the form

χ =
ω12 − ω + iγ12

γ2
12 + (ω12 − ω)2 + 4p2

~2
γ12

γ11
|E|2

p2n1

ε0~
=

a + ib

c + d|E|2
(1.3)

where a = (ω12 − ω)p2n1

ε0~ , b = γ12
p2n1

ε0~ , c = γ2
12 + (ω12 − ω)2, d = 4p2

~2
γ12

γ11
. Presently,

the important characteristic is the nonlinear dependence of the susceptibility on the

electric field. For a nonmagnetic material, we can relate the refractive index of a

material to the relative permittivity, εr, by

n = <{
√

εr} , (1.4)

where < denotes the real part, and the permittivity is related to the electric suscep-

tibility by [10]

εr = 1 + χ. (1.5)

By substituting in the susceptibility, taking the real part and Taylor expanding with

respect to |E|2, we get

n =

(
1 +

a

c
− ad

c2
|E|2 + · · ·

) 1
2

(1.6)

where · · · represents higher order terms. We can now perform a binomial expansion

and also make the approximation that the higher order terms are small with respect
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to the first two terms to get

n '
(
1 +

a

c

) 1
2 − 1

2

(
1 +

a

c

)− 1
2 ad

c2
|E|2. (1.7)

If we compare this approximation of the two-level saturable absorber index of refrac-

tion to the index of refraction from the Kerr effect, we can deduce the linear refractive

index and the Kerr coefficient to be

n0 =
(
1 +

a

c

) 1
2

=

(
1 +

ω12 − ω

γ2
12 + (ω12 − ω)2

p2n1

ε0~

) 1
2

(1.8)

n2 = −1

2

(
1 +

a

c

)− 1
2 ad

c2

= −1

2

(
1 +

ω12 − ω

γ2
12 + (ω12 − ω)2

p2n1

ε0~

)− 1
2 ω12 − ω

(γ2
12 + (ω12 − ω)2)

2

4p4n1

ε0~3

γ12

γ11

. (1.9)

It has been shown that the nonlinear effects of a saturable absorber lead to the

Kerr effect, at least as a first-order approximation, and thus it is relevant to discuss the

implications of the Kerr effect. Some of the phenomena that arise include: self-phase

modulation, self-focussing, optical bistability and phase conjugate reflection [11]. The

first two can lead to the existence of optical solitons if the optical field propagates in

the presence of dispersion and diffraction, respectively. In the following sections, the

properties of the Kerr effect that are relevant to this thesis will be discussed.

1.1.1 Optical Bistability

Optical bistability occurs when a cavity is filled with a Kerr medium and is pumped

by a high intensity laser. Bistable operations have been predicted and observed in

several optical systems since the 1960s [12] and other systems that exhibit optical

bistability include pumped Pabry-Perot cavities and hybrid electro-optical bistable

systems.
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Figure 1.1: General Input-Output Bistability

Consider an physical system in which the output electric field versus the input

electrical field can be described theoretically by the plot shown in Fig. 1.1. Imagine

the system being driven by an input field below I− so that the output field is below A.

Now, the input is increased to I+, and the output increases smoothly to B. Once the

input is increased beyond I+, the output suddenly jumps to D (in reality, “suddenly”

is a finite time, dependent on the relaxation rates of the material [13]) and continues

to increase above D. The point at which this jump occurs is known as the switch-up

point and the level of high intensity output (from C to D and above) is called the

upper branch of the bistability curve. If the state of the system lies on the upper

branch beyond D and the input is decreased to I−, the output decreases smoothly to

C. As the input is decreased below I−, the output “suddenly” jumps down to A and

continues to decrease smoothly with the input. Similar to the switch-up point, this is

known as the switch-down point and the level of low intensity output (from zero to

B) is the lower branch of the bistability curve. It is known that the region of output

lying between B and C is unstable [5] so this type of system has two stable output

states lying between input fields of I− and I+ and its behaviour is labelled bistability.
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The region between I− and I+ is called the bistability region. If the system is optical,

as in the case of the ring cavity, then the system exhibits behaviour called optical

bistability.

1.1.2 Self-Focussing and Self-Defocussing

Consider laser light with a Gaussian transverse intensity distribution propagating in

a Kerr medium along the z-direction. For an increasing radius away from the beam

centre, the index of refraction will change according to the intensity. If the Kerr

coefficient n2 is positive, the index of refraction decreases with the distance from

the beam centre and effectively the medium acts like a focussing lens where the light

beam is “compressed” towards its centre. Because the focussing is caused the by light

itself, this phenomena is called self-focussing [9]. In the absence of diffraction, the

light will continue to focus towards the centre of the material, increasing in intensity

until damage to the material results. However, if the light is strongly diffracted, the

focussing is countered by the diffractive spreading and if diffraction exactly counter-

balances the self-focussing, then light is self-trapping and can be used as a simple

explanation for the existence of optical spatial solitons. When n2 is negative, the in-

dex of refraction increases with the distance from the beam centre and medium acts

like a defocussing lens. This is called self-defocussing and under certain conditions

the medium can support dark spatial optical solitons.

1.1.3 Spatial Optical Solitons

From a physical point of view, a soliton can be adequately described as a stable,

localized state.1 In optics, the state is an excitation of the optical field. The name

“soliton” is derived from its defining properties. Solitons are localized, therefore can

exist by themselves, and the first part of their name (“sol”) refers to this solitary

1A more rigorous definition is used in mathematics, but this definition will be satisfactory
for our purposes.
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nature. Also, the stability of solitons is often analogous to that of a physical particle

hence the “on” used in the second part of the name (i.e.: electron, proton, photon,

etc.). Optical solitons are states of localized, stable, high intensity electric fields.

Since intensity-dependent nonlinearities are necessary for optical solitons to form,

these solitons are always of high intensity so that these nonlinearities play a significant

role in the dynamics of the system. It will be shown in Sec. 4.4 that the upper branch

of the bistability curve for the ring cavity consists of solitonic states.

Solitons occur in many different situations and in different forms. Mathematically,

they appear as solutions to several equations including the nonlinear Korteweg-de

Vries equation, the sine-Gordon equation and the nonlinear Schrödinger equation (a

form of which we will be working with here). Solitons are particularly common among

physical systems and have been predicted or observed in systems as diverse as water

waves, optical fibres, quantum field theory and Bose-Einstein condensates.

As was described above, a simple explanation for the formation of solitons is

that they are a balance of two forces: an outward force that works to expand the

wave and an inward force that compresses the wave. For solitons in optical fibres, the

compression is due to self-phase modulation (the temporal analogue of self-focussing)

and the expansion is due to dispersion. These forces balance and can create a soliton

that is localized in the time dimension as well as in the direction of propagation.

As was mentioned above, diffraction can balance self-focussing and create a soliton

that is localized in the space dimension that is transverse to the direction of light

propagation.

1.1.4 Spatial Optical Solitons in Kerr Media

The existence of spatial optical solitons in Kerr media will be shown in the following

section and this analysis is inspired by a similar undertaking presented in Ref. [14].

In that article, the derivation was performed by making an analogy to a mechanical

8



system and arguing that the solution for that system can be applied to the elec-

tromagnetic system. However, in the following analysis, only arguments using the

principles of classical electromagnetism will be considered. The result will give us

information on the properties of solitons that may exist in our system. As a starting

point, we will use the wave equation for the electric field in a dielectric, nonmagnetic

material:

∇2E =
1

v2

∂2E

∂t2
(1.10)

where v is the velocity of an electromagnetic wave in the material and can be expressed

in the form:

v =
c

n
=

c
√

εr

. (1.11)

From Sec. 1.1, we saw that we can can expand the nonlinear form of εr as

εr = ε1 + ε2|E|2 (1.12)

where, using the notation from Sec.1.1, ε1 = 1 + a
c

and ε2 = −ad
c2

. Here we have

dropped terms of higher order than |E|2, effectively making this a Kerr medium. We

will consider a wave propagating in the z-direction with a transverse profile in the

x-direction allowing us to reduce the Laplacian to ∇2 = ∂2

∂x2 + ∂2

∂z2 . We can substitute

Eqs. 1.11 and 1.12 into Eq. 1.10 to get

∂2E

∂x2
+

∂2E

∂z2
=

ε1

c2

∂2E

∂t2
+

ε2

c2
|E|2∂2E

∂t2
. (1.13)

For the type of wave described above, we can make the following ansatz:

E(x, z, t) = E(x)ei(ωt−kz), (1.14)
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where taking the real part is implied. Substituting into Eq. 1.13 reduces the PDE

wave equation to an ODE

d2E(x)

dx2
− κ2E(x) + ε2k

2
0E

3(x) = 0 (1.15)

where k0 = w/c and κ2 = k2 − ε1k
2
0. If we integrate this equation over x once and

rearrange the terms we obtain

(
dE(x)

dx

)2

= κ2E2(x)− 1

2
ε2k

2
0E

4(x). (1.16)

The above expression can be rearranged with dx on the right-hand side and integrated

from 0 to x ∫ E(x)

E(0)

dE(x)√
κ2E2(x)− 1

2
ε2k2

0E
4(x)

=

∫ x

0

dx (1.17)

which can be rewritten as

1

κ

∫ E(x)

E(0)

d

[
arcsech

(√
ε2

2

k0

κ
E(x)

)]
=

∫ x

0

dx (1.18)

and the integrals evaluated, yielding

1

κ

[
arcsech

(√
ε2

2

k0

κ
E(x)

)
− arcsech

(√
ε2

2

k0

κ
E(0)

)]
= x. (1.19)

Now, in order to proceed, we need to find the value of E(0). We are looking for

soliton solutions so we will make the assumption that the solution is localized in

space about x = 0 and if we also assume that it is even, we can make the condition

that dE(x)
dx

∣∣∣
x=0

= 0. By evaluating Eq. 1.16 at x = 0 and using this condition we get

E(0) =

√
2

ε2

κ

k0

. (1.20)
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Figure 1.2: The Kerr Spatial Soliton

Substituting Eq. 1.20 into Eq. 1.19 and noting that arcsech(1) = 0, we can rearrange

the equation and obtain the final solution:

E(x) =

√
2

ε2

κ

k0

sech
(x

κ

)
. (1.21)

Eq. 1.21 represents the transverse profile of one-dimensional electromagnetic soliton

waves in Kerr media. As can be seen in Fig. 1.2, this solution is very localized in the

x-direction. In order to preserve the generality of this argument x is scaled to κ−1

and E is scaled to E(0) on the plot.

1.1.5 Soliton Solutions to the Nonlinear Schrödinger Equa-
tion

The differential equations that will become part of the mirror feedback and mean-

field models of the ring cavity are forms of the nonlinear Schrödinger equation (NLS).

The general mathematical form of this equation is

∂u

∂t
− i∇2u = if(|u|2)u (1.22)
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where u is complex and f(|u|2) is a function of |u|2. The case where f(|u|2) =

−1 + 2|u|2, also known as the cubic case, can be related to the Kerr nonlinearity

and the case where f(|u|2) = −1
1+2|u|2 can be related to the saturable nonlinearity. An

analytic mathematical technique known as Inverse Scattering can be used to solve

this equation [9]. For the the cubic case there is a family of solutions in the form

u(x, t) = u0e
itsech(x− x0). (1.23)

This soliton solution to the NLS has much in common with the Kerr spatial soliton

profile given in Eq. 1.21 and is localized in space around x = x0. In Sec. 4.4.1, this

type of solution will be used in the input field of the ring cavity system to try and

force the cavity field it into a soliton state.

1.2 The Physical System: The Optical Ring Cav-

ity

The physical system that will be analyzed for investigating optical bistability and

soliton behaviour will be an optical ring cavity. Consider the system depicted in

Fig. 1.3. A laser beam enters a cavity through a semipermeable mirror, M1, with

reflectance, R, and transmittance, T , where the transmittance and reflectance are

related through the identity R + T = 1. Any effects due to absorption in the mirrors

have been neglected. The cavity is partly filled with an optically nonlinear medium

of length l1 and the origin of the coordinate system is defined as the point where

the light first enters the nonlinear medium. The light passes through the nonlinear

medium and is redirected back to the entry point by a system of mirrors. The total

length of the cavity is L, and the distance the light travels outside the nonlinear

medium is l2, where l1 + l2 = L. Two of the redirecting mirrors, M3 and M4, are

assumed to be perfectly reflecting and the remaining mirror, M2, has a reflectance

and transmittance identical to M1. By using this geometry, the state of the system

12



Figure 1.3: The Optical Ring Cavity

can be analyzed by measuring the light transmitted through M2. The light in the

cavity loses intensity with each reflection at M1 and M2 but this loss is compensated

by continuous reinforcement provided by the input laser Ein at M1. The aspect

of the system that we would like to study is the behaviour of the electric field in

the nonlinear medium after many cavity transits, or its steady state, and can be

experimentally observed from the long term behaviour of Eout.

1.3 The Mathematical System: The Maxwell-Bloch

Equations

The Maxwell-Bloch equations are a system of equations which govern the interaction

of an electromagnetic wave with matter at the atomic level. They arise by combining

the Maxwell equations for an electromagnetic wave with the Bloch equations for the

dynamics of excited atoms in matter. The Bloch equations are derived from quantum

mechanics, the Maxwell equations are from the classical theory of electromagnetism,

thus the Maxwell-Bloch equations form a semi-classical approximation to the prob-

lem. In order to treat the interaction of electromagnetic waves and matter without

approximation, the electric and magnetic fields would need to be quantized and we

would analyze the relevant equations using quantum electrodynamics (QED). Since
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the Maxwell-Bloch equations are a well established theoretical accomplishment, they

will not be derived here.2 Following the notation of Ref. [13] and assuming the non-

linear medium to be a gas of two-level atoms, the Maxwell-Bloch equations can be

expressed as

∂A

∂z
+

1

c

∂A

∂t
− i

c

2ω
∇2
⊥A +

κ

c
A = i

ω

2ε0c
Λ (1.24)

∂Λ

∂t
+ (γ12 + i(ω12 − ω)) Λ = i

p2

~
AN (1.25)

∂N

∂t
+ γ11(N −N0) = i

2

~
(A∗Λ− AΛ∗) . (1.26)

where ∇2
⊥ = ∂2

∂x2 + ∂2

∂y2 . A is defined as the complex envelope of the electric field

carrier wave, E, and Λ is the complex envelope of the polarization, P , (an asterisk

denotes complex conjugates):

E(x, y, z, t) = A(x, y, z, t)e−i(ωt−kz) + A∗(x, y, z, t)ei(ωt−kz) (1.27)

P (x, y, z, t) = Λ(x, y, z, t)e−i(ωt−kz) + Λ∗(x, y, z, t)ei(ωt−kz), (1.28)

where ω is the carrier wave (cw) frequency and k is the cw wavenumber. N is a

real number giving the total difference in occupation probabilities between the two

energy levels of the medium and a negative value for N quantifies the population

inversion. The remaining terms are the speed of light, c, optical attenuation factor,

κ, including properties of the material such as conductivity, free space permittivity,

ε0, and Plank’s constant, ~. The electromagnetic field can induce dipole transitions

in the nonlinear material and the strength of the transition is defined by p. The

frequency difference between the ground (1) and excited (2) states, ω12, is defined

as ω2 − ω1, where ωi = εi/~ and εi is the energy of state i. The material decay and

relaxation rates, γij, are phenomenological terms for including quantum the effect of

2A thorough derivation of the Maxwell-Bloch equations used in this paper can be found in
Ref. [13].
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homogeneous broadening specifying the time taken for an energy state to decay due to

irreversible losses that tend to push the system towards thermodynamic equilibrium.

Such losses include effects from: particle collisons, phonon scattering and the fact

that not all of the energy levels in the medium will be of exactly the same energy

[5, 11, 13].
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Chapter 2

The Mirror Feedback Model

The mirror feedback model of the optical ring cavity is the most straightforward of

the two models that will be discussed. This model involves a reduction of the three

Maxwell-Bloch equations to a single nonlinear partial differential equation for each

pass through the cavity. This equation describes the time evolution of the electric

field envelope in the nonlinear material and is coupled to a boundary condition that

describes the free-space path of the light around the cavity. The derivation of this

model is instructive in order to achieve some understanding of the dynamics of the

optical ring cavity.

2.1 Derivation

The mirror feedback model has been previously derived in the literature [5, 13], how-

ever, the importance of re-deriving the model is to provide a consistent nomenclature

and attempt to present it in a manner that follows the conventional notation of

physics. First, classical optics will be used to account for electric field losses in the

cavity. Second, the slowly varying envelope approximation will be made and allow

the Maxwell-Bloch equations to be reduced to a single differential equation for the
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electric field envelope. This final equation will hold for each individual pass of the

ring cavity and the passes will be linked through the equation that describes the field

losses.

2.1.1 Field Losses in the Ring Cavity

The boundary condition for the ring cavity will be derived considering the losses the

electric field will undergo within the cavity and outside the nonlinear material. It

will be quantified using classical optics. In order to formulate a simple boundary

condition for the ring cavity, we will make the assumption that the diffraction of the

electromagnetic wave in free space is negligible. Normally, this is not the case but the

effect could be accomplished experimentally using a system of lenses to counteract

the effects of diffraction. We will ignore the implications of such lenses in this model.

Using the following optical definitions [15]:

Ereflected =
√

REincident (2.1)

Etransmitted =
√

TEincident (2.2)

we can determine the change in electric field strength as the light travels around the

free space portion of the cavity. During one complete transit of the ring cavity, the

light is combined with the transmitted laser light at M1. Therefore, the electric field

strength will be increased by a value of
√

T times the pumping electric field at that

point, in accordance with Eq. 2.2. In addition, the electric field will be reduced by

two identical partial reflections at M2 and M1 causing the field strength at the end

of the nonlinear medium (z = l1) to be reduced by a factor of
√

R twice. However, in

order for the state of the electric field to correspond to that of the previous pass, the

time coordinate for this loss must be retarded by the time it took the light to travel

the distance l2. At a constant speed c, this time is l2/c. If E is the electric field, the
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losses in the cavity can be written mathematically as

E(x, y, 0, t) =
√

TEin(x, y, 0, t) + RE(x, y, l1, t− l2/c) (2.3)

Now, if we use Eq. 1.27 and assume the input beam is continuous (no z or t depen-

dence), we can reduce Eq. 2.3 to

A(x, y, 0, t) =
√

TAin(x, y) + ReikLA(x, y, l1, t− l2/c) (2.4)

where k = ω/c is the wavenumber. From a physical point of view, it would make

more sense to express exp(ikL) in terms of the cavity detuning angle, δ, where

δ =
ωc − ω

c
L. (2.5)

This represents how far the incident frequency, ω, is detuned from the resonant

cavity frequency, ωc, and is useful since the characteristics of the electric field can be

controlled by its frequency. From Appendix A, we can write exp(ikL) as exp(−iδ)

and the boundary condition becomes

A(x, y, 0, t) =
√

TAin(x, y) + Re−iδA(x, y, l1, t− l2/c). (2.6)

2.1.2 The Evolution Equation for the Electric Field Envelope

We would like to reduce the complex, coupled Maxwell-Bloch equations to a single

equation that will describe the behaviour of the electric field in the nonlinear medium.

If attenuation of the optical wave is negligible, the fourth term in Eq. 1.24 can be

ignored. Furthermore, if we make the slowly evolving envelope assumption that the

field and atomic variables change slowly in the time over which the field envelope

traverses the cavity (L/c), we can treat A, Λ and N as slowly varying functions

of t within the confines of the nonlinear medium. However, once the field passes
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through the medium and is redirected back to the beginning by the system of mirrors,

it has undergone some losses so the slowly varying envelope approximation is no

longer valid. This difficulty can be overcome by observing within each transit of the

nonlinear medium, the fields are independent of t but require the boundary condition

to supply their value for the next transit. This will allow us to make A, Λ and

N time independent for each individual transit of the ring cavity, increasing the

Maxwell-Bloch system from 3 equations to 3n equations:

∂An

∂z
− i

c

2ω
∇2
⊥An = i

ω

2ε0c
Λn (2.7)

(γ12 + i(ω12 − ω)) Λn = i
p2

~
AnNn (2.8)

γ11(Nn −N0) = i
2

~
(A∗

nΛn − AnΛ∗
n) (2.9)

where the subscript n corresponds to the nth transit of the cavity. However, this

system can be simplified as follows. Solving Eq. 2.8 for Λn gives

Λn =
1

γ12 + i(ω12 − ω)

ip2

~
AnNn. (2.10)

Substituting this into Eq. 2.9 and leaving Nn implicit gives

Nn =
−1

γ12 + i(ω12 − ω)

2p2

γ11~2
AnA

∗
nNn − (γ12 + i(ω12 + ω))

2

γ11p2

ΛnΛ∗
n

Nn

+ N0. (2.11)

For a complex quantity z = x + iy, we know that zz∗ = |z|2 = x2 + y2 and along

with |z1/z2|2 = |z1|2/|z2|2 and |z1z2|2 = |z1|2|z2|2, the value of ΛnΛ∗
n can be computed

using Eq. 2.10

ΛnΛ∗
n = |Λn|2 =

∣∣∣∣p2

~
AnNn

(
i

γ12 + i(ω12 − ω)

)∣∣∣∣2
=

p4

~2
|An|2N2

n

|i|2

|γ12 + i(ω12 − ω)|2
=

p4

~2
|An|2N2

n

1

γ2
12 + (ω12 − ω)2

. (2.12)
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Substituting this into Eq. 2.11 we obtain

Nn =
−1

γ12 + i(ω12 − ω)

2p2

γ11~2
|An|2Nn −

γ12 + i(ω12 + ω)

γ2
12 + (ω12 − ω)2

2p2

γ11~2
|An|2Nn + N0

= − 2p2

γ11~2
|An|2Nn

(
1

γ12 + i(ω12 − ω)
+

γ12 + i(ω12 + ω)

γ2
12 + (ω12 − ω)2

)
+ N0

= − 2p2

γ11~2
|An|2Nn

(
2γ12

γ2
12 + (ω12 − ω)2

)
+ N0 (2.13)

and solving for Nn we get

Nn =
N0

1 + 4p2

~2
γ12

γ11
|An|2 1

γ2
12+(ω12−ω)2

. (2.14)

It will be assumed that all of the atoms in the nonlinear medium are initially in the

ground state so that N0 = n1. This is an excellent approximation at low temperatures.

Substituting this expression for Nn into Eq. 2.10 and then into Eq. 2.7 yields

∂An

∂z
− i

c

2ω
∇2
⊥An = i

ω

2ε0c

1

γ12 + i(ω12 − ω)

ip2

~
An

n1

1 + 4p2

~2
γ12

γ11
|An|2 1

γ2
12+(ω12−ω)2

= i
ω

2c

p2n1

ε0~
An

i
(

γ2
12+(ω12−ω)2

γ12+i(ω12−ω)

)
γ2

12 + (ω12 − ω)2 + 4p2

~2
γ12

γ11
|An|2

. (2.15)

The complex numerator on the right hand side can be reduced by applying the

algebraic rules of complex numbers. If we let z = γ12 + i(ω12 − ω), the numerator

becomes

i

(
γ2

12 + (ω12 − ω)2

γ12 + i(ω12 − ω)

)
= i

|z|2

z
= i

zz∗

z

= iz∗ = i(γ12 − i(ω12 − ω))

= ω12 − ω + iγ12. (2.16)
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Now, if we define the complex electric susceptibility to be

χ(ω, |An|2) = χR + iχI =
ω12 − ω + iγ12

γ2
12 + (ω12 − ω)2 + 4p2

~2
γ12

γ11
|An|2

p2n1

ε0~
(2.17)

then Λn is simply ε0χ(ω, |An|2)An and the evolution equation for the electric field

envelope An(x, y, z, t) is

∂An

∂z
− i

c

2ω
∇2
⊥An = i

ω

2c
χ(ω, |An|2)An. (2.18)

Thus, the original coupled Maxwell-Bloch equations have been reduced to n time

independent differential equations for A that will describe the evolution of the electric

field for each pass through the nonlinear medium along the longitudinal axis z and

transverse axes x and y.

Now, all that is needed to solve this equation is to remove time from the boundary

condition Eq. 2.6 and incorporate the idea of discrete cavity passes. The left hand

side of the boundary condition corresponds to the initial data of the current (nth)

pass and the field in the second term on the right hand side corresponds to the z = l1

(i.e.: end of the material) data on the previous ((n − 1)th) pass. Thus, we can

dispense with the time variable as follows:

An(x, y, 0) =
√

TAin(x, y) + Re−iδAn−1(x, y, l1). (2.19)

Using the transit number, n, instead of time, t, is preferable since it allows us

to change the field equations to a set of n differential equations, each with its own

boundary condition. The field equation system can now be solved by an iterative

process. Given the initial data A1(x, y, 0), one can determine A1(x, y, l1) from the

differential evolution equation (Eq. 2.18). This value is substituted into the boundary

condition (Eq. 2.19) to find A2(x, y, 0) and the process is iterated to determine the
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behaviour of An(x, y, l1) for large n which corresponds to the steady state electric

field in the nonlinear medium.

2.2 Plane Wave Steady State Case

In this section, we will consider the case where the input laser beam Ain does not

depend on the transverse directions x and y (ie: it is a plane wave beam) and the

cavity field is in a steady state. A plane wave steady state analysis is instructive in

order to gain some knowledge about the general behaviour of the system and will be

used as a benchmark when the mean-field approximation to this model is studied.

2.2.1 Plane Wave Input and Field Envelope

Since the pumping field is plane wave, Ain is simply a constant changing the boundary

condition map given by Eq. 2.19 to

An(0) =
√

TAin + Re−iδAn−1(l1). (2.20)

Note that the electric field envelope is now only a function of z and not of x or y.

This is a direct consequence of the input being independent of x and y. If we consider

the situation where ω12 − ω is much greater than γ12, the evolution PDE, Eq. 2.18,

can be reduced to the ODE

dAn

dz
= i

ω

2c
χR(ω, |An|2)An. (2.21)

Physically, this approximation means that the atomic detuning is a larger source of

nonlinearity than homogeneous broadening. This in known as a purely dispersive

nonlinearity. In addition, |An|2 is constant in z as shown in Appendix B. This allows
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for an analytic solution to Eq. 2.21

An(z) = An(0) exp
(
i
ω

2c
χR(ω, |An|2)z

)
(2.22)

which can be substituted into Eq. 2.20 to yield

An(0) =
√

TAin + An−1(0)R exp i

(
−δ +

ωl1
2c

χR(ω, |An−1|2)
)

. (2.23)

2.2.2 Plane Wave Bistability

We desire solutions that are asymptotically stable. That is, for large n, the map

defined by Eq. 2.23 should leave An(0) unchanged. These solutions are called fixed

points of the map and can be found by taking the limit

lim
n→∞

An(0) = A(0), (2.24)

thus changing our map to the nonanalytic equation

A(0) =
√

TAin + A(0)Reiφ (2.25)

where

φ = −δ +
ωl1
2c

χR(ω, |A|2). (2.26)

By rearranging, we can get the following equation and its complex conjugate:

1−
√

TAin

A(0)
= Reiφ (2.27)

1−
√

TAin

A∗(0)
= Re−iφ. (2.28)
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By multiplying Eqs. 2.27 and 2.28 we get

(
1−

√
TAin

A(0)

)(
1−

√
TAin

A∗(0)

)
= R2 (2.29)

and by adding Eqs. 2.27 and 2.28 and using the identity eiφ = cos φ+i sin φ we obtain

2−
√

TAin(A(0) + A∗(0))

|A(0)|2
= 2R cos φ. (2.30)

Solving Eq. 2.29 for
√

TAin(A(0) + A∗(0)) (implicitly), substituting into Eq. 2.30,

noting that |A(0)|2 = |An|2 = |A|2 since |A|2 is constant, and substituting in the

value of φ, we derive the condition for the fixed points of the map given by Eq. 2.23

cos

(
ωl1
2c

χR(ω, |A|2)− δ

)
=

1

2

(
1

R
+ R− TA2

in

R|A|2

)
. (2.31)

Eq. 2.31 gives the relation between the plane wave input field Ain and the field in

the cavity. A plot of |A|2 versus A2
in from Eq. 2.31 is presented in Fig. 2.1 where

a change of variable has been made from A to F , the susceptibility is rewritten as

reduced linear absorption, α0, and material nonlinearity X.1 The parameters were

l1 = 2, R = 0.9, δ = 0.4, ω
c

p2n1

ε0~ω12−ω
= 1 and γ12

√
ω12 − ω = 0.03. One interesting

aspect of this curve is that it exhibits a three-to-one correspondence between |F |2

and F 2
in within a well defined region. It is known that the central region is unstable

[5] and in this region the system exhibits optical bistability as described in Sec. 1.1.1.

1Briefly and without explanation: F = p
~

√
2

γ11γ12
, χ = c

ωα0X, α0 = ωp2n1

ε0c~γ12
, X = i+∆

1+∆2+2|F |2

and ∆ = ω12−ω
γ12

. See Appendix C for a more detailed discussion.
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Figure 2.1: Bistability in the Mirror Feedback Model (Purely Dispersive Case)
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Chapter 3

The Mean-Field Model

The mean-field model of the optical ring cavity is a reduction of the mirror feedback

model. By taking mean-field limits and scaling the fields and coordinates, the mirror

feedback model is reduced to a single partial differential equation with a periodic

boundary condition.

3.1 Derivation

We begin the derivation of the mean-field model by considering the Maxwell-Bloch

equations presented earlier as Eqs. 1.24 - 1.26

∂A

∂z
+

1

c

∂A

∂t
− i

c

2ω
∇2
⊥A = i

ω

2ε0c
Λ (3.1)

∂Λ

∂t
+ (γ12 + i(ω12 − ω)) Λ = i

p2

~
AN (3.2)

∂N

∂t
+ γ11(N −N0) = i

2

~
(A∗Λ− AΛ∗) (3.3)

and with the ring cavity boundary condition also presented earlier as Eq. 2.6

A(x, y, 0, t) =
√

TAin(x, y) + Re−iδA(x, y, l1, t− l2/c). (3.4)
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It is possible to start the derivation of the mean-field model with the final equations of

the mirror feedback model, but for completeness, we will use the full Maxwell-Bloch

equations and the boundary condition above as our starting point.

3.1.1 The Mean-Field Limit

The mean-field approximation is an operation on the dynamical equations for the

ring cavity that makes the cavity high finesse. A high finesse cavity is one in which

there are very low losses and the mechanics of this approximation can be performed

by taking the following limits [12, 16, 17, 18, 19]

T → 0 (R → 1) , δ → 0 , α0l1 → 0 (3.5)

where

α0 =
ωp2n1

ε0c~γ12

(3.6)

is derived from the linear absorption coefficient of the material (see Appendix C).

These limits are performed so that the following quantities are kept constant:

δ

T
= θ ,

α0l1
2T

= C. (3.7)

This is “mean-field” because the limit makes the cavity field approximately constant

along the longitudinal cavity axis, z. The limit of transmittance to zero allows the

field to undergo no loss from mirrors M1 and M2 and the limit of absorption to

zero ensures that the field loses no intensity while travelling through the nonlinear

material; essentially making the nonlinear medium infinitesimally thin. Finally, the

limit of cavity detuning angle to zero guarantees that the field is tuned to perfect

resonance within the cavity (i.e.: ω = ωc). These limits are taken at certain rates so

that the ratios in Eq. 3.7 remain constant ensuring that the field is constant along

the cavity axis.
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3.1.2 A Change of Variables

The first step in deriving the mean-field model is to make a change of variables

motivated by the desire to simplify the boundary condition, Eq. 3.4. The independent

variable for the time t is changed as t → t′ where

t′ = t +
l2
c

z

l1
. (3.8)

If this transformation is applied to the boundary condition Eq. 3.4, the BC becomes

A(x, y, 0, t) =
√

TAin + Re−iδA(x, y, l1, t). (3.9)

Next, there is a scaling of the electric field and polarization envelope variables:

Ã(x, y, z, t′) = exp

(
z

l1
(ln R− iδ)

)
A(x, y, z, t′) (3.10)

Λ̃(x, y, z, t′) = exp

(
z

l1
(ln R− iδ)

)
Λ(x, y, z, t′). (3.11)

Note that under the mean-field limit, we get Ã = A and Λ̃ = Λ.

3.1.3 The Mean-Field Equations

In order to apply the field variable scaling to our equations and boundary conditions,

we need to solve Eqs. 3.10 for A and 3.11 for Λ

A(x, y, z, t′) = exp

(
− z

l1
(ln R− iδ)

)
Ã(x, y, z, t′) (3.12)

Λ(x, y, z, t′) = exp

(
− z

l1
(ln R− iδ)

)
Λ̃(x, y, z, t′) (3.13)
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as well as their complex conjugates

A∗(x, y, z, t′) = exp

(
− z

l1
(ln R + iδ)

)
Ã∗(x, y, z, t′) (3.14)

Λ∗(x, y, z, t′) = exp

(
− z

l1
(ln R + iδ)

)
Λ̃∗(x, y, z, t′). (3.15)

The boundary condition Eq. 3.9 can now be simplified by substituting in Eq. 3.12,

which yields

Ã(x, y, 0, t) =
√

TAin + R exp(−iδ) exp(− ln R + iδ)Ã(x, y, l1, t) (3.16)

and reduces to the periodic boundary condition

Ã(x, y, 0, t) =
√

TAin + Ã(x, y, l1, t). (3.17)

Furthermore, under the mean-field limit (Eqs. 3.5), Eq. 3.17 reduces to

A(x, y, 0, t) = A(x, y, l1, t), (3.18)

removing the need for an iterative process that was present in the mirror feedback

model.

The Maxwell-Bloch equations must now be applied to the scaled field variables.

First, the new polarization and population equations will be derived so that the

steady state solutions can be used to simplify the electric field envelope equation

before applying the mean-field limit. The polarization envelope equation can be

found by substituting Eqs. 3.12 and 3.13 into Eq. 3.2 and cancelling the common

exponential:

∂Λ̃

∂t′
+ (γ12 + i(ω12 − ω))Λ̃ = i

p2

~
ÃN. (3.19)
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Under the mean-field limit we get

∂Λ

∂t′
+ (γ12 + i(ω12 − ω))Λ = i

p2

~
AN (3.20)

which is identical to the original polarization equation (Eq. 3.2).

Obtaining the equation for the population N under the new variables is slightly

more involved and we need to use the complex conjugates Ã∗ and Λ̃∗. Substituting

Eqs. 3.12, 3.13, 3.14 and 3.15 into Eq. 3.3 and simplifying the exponentials gives

∂N

∂t′
+ γ11(N −N0) = i

2

~
exp

(
−2

z

l1
ln R

)(
Ã∗Λ̃− ÃΛ̃∗

)
. (3.21)

When the mean-field limit is applied to this equation, the exponential becomes unity

and the terms with T go to zero leaving, as it was with the polarization envelope, an

equation identical to the original

∂N

∂t′
+ γ11(N −N0) = i

2

~
(A∗Λ− AΛ∗). (3.22)

To solve for the variables relating to the material properties, Λ and N , we make

the following approximation. From the material relaxation relaxation rates, γ11 and

γ12, we can calculate relaxation times T11 = γ−1
11 and T12 = γ−1

12 . We will assume

that these times are much smaller than the time over which the electric field varies.

Therefore, the atomic variables respond very fast and quickly attain a steady state

value. On the other hand, the electric field will still be varying in time after the atomic

variables have reached equilibrium. We will only be considering the behaviour of the

system over time scales that are much larger than T11 and T12 so we can ignore

the time derivatives of Λ and N within the Maxwell-Bloch system and retain only

the time derivative of the electric field envelope. This is known as the good cavity

approximation [12]. It should be noted, should we want to consider the behaviour of
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the Maxwell-Bloch equations over time scales on the order of, or smaller than, T11

and T12, this approximation would not hold. Since Eqs. 3.20 and 3.22 are the same

as the equations used in Sec. 2.1.2, they will yield the same steady state solutions.

Therefore, we can simply quote the results derived earlier:

Λ = ε0χ(ω, |A|2)A =
ω12 − ω + iγ12

γ2
12 + (ω12 − ω)2 + 4p2

~2
γ12

γ11
|A|2

p2n1

~
A. (3.23)

We will now express χ in a simpler form by following the procedure outlined in

Appendix C. This will introduce the material nonlinearity X as a function of the

scaled field variable F . Performing this transformation will allow us to extract the

reduced linear absorption coefficient α0 for the mean-field limit:

Λ = ε0χ(∆, |F |2)A =
p2n1

~γ12

i + ∆

1 + ∆2 + 2|F |2
A =

p2n1

~γ12

X(∆, |F |2)A. (3.24)

The new electric field equation is found by substituting Eqs. 3.12, 3.13 and 3.24

into Eq. 3.1 and cancelling the common exponential, yielding

∂Ã

∂z
+

1

c

∂Ã

∂t′
− i

c

2ω
∇2
⊥Ã =

1

l1
(ln R− iδ)Ã + i

ω

2ε0c

p2n1

~γ12

X(∆, |F |2)Ã (3.25)

and we multiply this equation by c and factor cT
l1

from the right side

c
∂Ã

∂z
+

∂Ã

∂t′
− i

c2

2ω
∇2
⊥Ã =

cT

l1

(
ln R

T
Ã− i

δ

T
Ã + i

α0l1
T

X(∆, |F |2)Ã
)

. (3.26)

Now, we can apply the mean-field limit. The limit of the term ln(R)
T

is −1, which can

be proven using L’Hopital’s rule and R = 1− T . We have assumed, from the mean-

field limit, that the electric field envelope is uniform along the cavity axis, therefore

we can now ignore the z derivative of the electric field. Also, in this step we will

make the change of variables from A to F as defined in Appendix C. If we note that
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the cavity linewidth is κ = cT/l1, then the electric field envelope equation is

∂F

∂t′
− i

c2

2ω
∇2
⊥F = κ

(
−F − iθF + i2CX(∆, |F |2)F

)
. (3.27)

This equation has no source of pumping for the cavity. In order to facilitate such

pumping we will add a pumping term ad hoc. This source will be analogous to Ain

in the mirror feedback model. The new term is of the form κFin and the final model

equation is

∂F

∂t′
− i

c2

2ω
∇2
⊥F = κ

(
Fin − F − iθF + i2CX(∆, |F |2)F

)
. (3.28)

with the nonlinearity

X(∆, |F |2) =
i + ∆

1 + ∆2 + 2|F |2
. (3.29)

Eqs. 3.28 and 3.29 are known as the mean-field model for the optical ring cavity

with a two-level atomic nonlinearity. This model is more desirable than the mirror

feedback model from a mathematical analysis point of view as it reduces the complex-

ity of the problem considerably. In the mirror feedback model, there was an identical

differential equation for each complete circulation of the ring cavity by the electric

field. In addition, there was also a boundary condition for each of these equations

in the form of a single infinite dimensional map. Thus, the mirror feedback model

had to be solved using an iterative process between the boundary conditions and

the differential equations whereas the mean-field model reduces this complexity to a

single differential equation and is much easier to analyze mathematically. However,

this simplicity is achieved at the cost of many approximations and scaling of the elec-

tric field. There has been an analysis done in Ref. [20] comparing the two models,

specifically the validity of the mean-field model. The conclusion of this paper was

that the mean-field model can adequately describe the ring cavity provided there is

only weak diffraction present.
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Figure 3.1: Bistability in the Mean-field Model (Resonant Case)

3.2 Plane Wave Steady State Case

In a similar manner to the mirror feedback model, we can investigate the plane wave

case of the mean-field model at steady state. These steady state solutions are time-

independent and spatially homogeneous in the transverse directions. If we make these

two assumptions, the derivatives disappear in Eq. 3.28 and we get

Fin =

(
1 + iθ + 2C

1− i∆

1 + ∆2 + 2|F |2

)
F. (3.30)

If the square of the modulus of Eq. 3.30 is taken

F 2
in = |F |2

[(
θ − 2C∆

1 + ∆2 + 2|F |2

)2

+

(
1 +

2C

1 + ∆2 + 2|F |2

)2
]

. (3.31)

Eq. 3.31 represents the relationship between input field, Fin, and field in the medium,

F , and is the analog of Eq. 2.31 from the mirror feedback model. Three cases can

be considered. First, the frequency of the pumping beam is the same as the two-

level transition frequency, ω12, or ∆ = 0, and it is called the resonant case. Second,
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Figure 3.2: Bistability in the Mean-field Model (Focussing Case)

Figure 3.3: Bistability in the Mean-field Model (Defocussing Case)
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the frequency is greater than the transition frequency. In this case, ∆ < 0 and

the medium is said to be focussing. Third, the frequency is less than the transition

frequency. In this case, ∆ > 0 and the medium is said to be defocussing. The

last two cases refer to the focussing properties of a Kerr medium as described in

Sec. 1.1.2. A plot of |F |2 versus F 2
in from Eq. 3.31 for each of these cases can be

seen in Figs. 3.1 - 3.3 with parameters of C = 10 and θ = −1. Analogous to the

mirror feedback model, the mean-field model exhibits optical bistability as discussed

in Sec. 1.1.1. The fact that bistability occurs in both models and for similar values

of electric field is encouraging. This would lead one to believe that, at least as a very

rough approximation, the mean-field model is an appropriate reduction of the mirror

feedback model.

35



Chapter 4

Numerical Solutions

4.1 Numerical Methods

In order to examine the evolution of the electric field in the cavity after many cavity

transits, we will move from analytic techniques to numerical methods. The computer

software used to solve the system is called XMDS: eXtensible Multi-Dimensional

Simulator [21]. The main benefit of XMDS is that it allows one to efficiently solve a

physical problem that is described by a partial differential equation without needing

to code complex programs and spending large amounts of time optimizing and de-

bugging the algorithm. XMDS is a program that creates another program; it allows

the user to specify a mathematical problem in XML (eXtensible Markup Language)

code, a high-level language, and in turn writes a C program, a low-level language.

An example of the XML code for the mean-field equation can be found in Ap-

pendix D. The code specifies “RK4IP” as the integration algorithm which means

that the differential equation is to be solved using the fourth-order Runge-Kutta

method in the interaction picture. The fourth-order Runge-Kutta method has been

a very successful method of solving both ordinary. The interaction picture is part of
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a split-step method that evolves the field in both normal space and Fourier space in

alternating steps [21].

4.2 Simulating the Mean-Field Equation

In order to facilitate numerical simulations several variables are rescaled. We will

scale the time, transverse position and input field in Eq. 3.28 as follows [22]:

τ = κt′ , (x′, y′) =
(x, y)
c2

2ω
κ−1

=
(x, y)

λl1
4πT

. (4.1)

Noting that c
ω

= 1
k

= 2π
λ

and κ = cT
l1

, simplifies the mean-field equation to give

∂F

∂τ
− i∇′2

⊥F = Fin − F − iθF + i2CX(∆, |F |2)F, (4.2)

where ∇′2
⊥ = ∂2

∂x′2 + ∂2

∂y′2 . It should be noted than on the axes of the plots on the

following pages, τ appears as t and x′ appears as x.

For the purposes of the numerical simulation, we have used a periodic boundary

condition in x′. This is satisfactory providing the system is homogeneous in x′ or

that any localized structures are far from the boundary.

4.3 Switching Between Bistable States: Plane Wave

Case

The bistability curve calculated in Sec. 3.2 assumed a solution that was independent

of time and transverse spatial coordinates. Here we will attempt to reach plane wave

steady states through a time evolved numerical simulation.

We will work with the scaled mean-field model as given by Eq. 4.2 and the plane

wave case allows us to neglect the transverse Laplacian. We are looking for the steady

state solutions and would like to try to reach these states through a time-dependent
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pumping field. The bistability curves give the steady state solutions, but do not

contain any information about reaching these states or about moving from one state

to another in a time-dependent manner. Fin will be a function of time where its

time-dependence is localized and the steady state solution determined to occur away

from that point. Presently, we will only consider the case where the pumping field

is tuned to atomic resonance. That is to say, ∆ = 0 in the nonlinearity X(∆, |F |2)

term:

X(0, |F |2) =
i

1 + 2|F |2
. (4.3)

Thus, the mean-field equation is now an ODE describing the time evolution of the

system:

dF

dτ
= Fin − F − iθF − 2C

1 + 2|F |2
F. (4.4)

With respect to the control of the system, the parameter that is of interest is the

input or pumping field, Fin. We would like to control the system so that the initial

field is at a steady state on the upper or lower branch of the bistability curve and

at some later time, t0, it is “pushed” onto the other branch. This behaviour can be

simulated by choosing the input field as:

|Fin(τ)|2 = H0 + He−s(τ−τ0)2 (4.5)

Fin(τ) =
√

H0 + He−s(τ−τ0)2 (4.6)

where H, H0, s and τ0 are real constants. The second equation follows by assuming

that the pumping field must be real, a reasonable assumption since F does not

represent the field itself but rather the amplitude of the field envelope. For a time

far from τ0, we can make the approximation that |Fin(τ)|2 ' H0 and H0 is chosen

such that the cavity field is at a steady state within the bistability region of the

bistability curve. At τ = τ0, the input field can be simplified to |Fin(τ)|2 = H0 + H.

The parameter H is chosen so that at t = t0 the steady state cavity field is at a
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Figure 4.1: Plane Wave Switching On

point outside the bistability region either on the upper branch, if H is positive, or

the lower branch, if H is negative. The time over which the bump of amplitude H is

superimposed on H0 is determined by the the time-width, s.

Consider the case where H is positive and the initial state of the system is on the

lower branch of the bistability curve. For τ far below τ0, the cavity is being driven

at H0 and the system reaches a steady state on the lower branch within the bistable

region. As τ approaches τ0, the pumping field approaches H0 + H which will drive

the cavity field to the upper branch beyond the bistability region. For τ beyond τ0,

the pumping field relaxes back to H0 and the system remains on the upper branch

within the bistability region.

This creates a switching process. By applying the proper pumping field, the

cavity field can be switched from a stable state of low intensity to a stable state

of high intensity. In a similar fashion, if H is negative and the initial state of the

system is on the upper branch, then the system can be switched down to a state of

low intensity from a state of high intensity.
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Figure 4.2: Plane Wave Switching Off

Figure 4.3: Plane Wave Switching On and Off
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Examples of switching simulations performed using XMDS can be seen in Figs. 4.1

- 4.3. In all cases, the parameters are C = 10, θ = −1 and ∆ = 0. In Fig. 4.1, the

system is initially at F = 0 and is held on the lower branch with a pumping field

of H0 = 50 until τ0 = 5 where a bump of amplitude, H = 25, and time-width,

s = 1, is superimposed. This bump switches the system onto the upper branch

state where it remains after the bump has subsided. An example of switching off

can be seen in Fig. 4.2 where the initial condition of the system is such that an

input field of H0 = 50 holds the system on the upper branch. At τ0 = 5, a bump

of negative amplitude, H = −25, and time-width, s = 1, is superimposed on the

pumping field and the system is switched to the lower branch. It is observed that

the system requires a finite amount of time to settle in its steady state on the upper

branch. This is because the initial condition for F is chosen with the both real and

imaginary parts set equal. These values are chosen using the bistability curve such

that the proper initial value of |F |2 is obtained for the given H0. However, the model

equation is for F and the steady state may not have real and imaginary parts equal,

yet still giving the same |F |2. The short settling time is the system changing from

the initial condition to its actual steady state field. The final plot in Fig. 4.3 shows

the switching on and switching off mechanisms in sequence.

Thus, a method of switching the system between the upper and lower branches

has been developed forming the basis of a one-bit logic system. The state represented

by the upper branch state is the “on”, or bit 1, and the lower branch is the “off”, or

bit 0. If we string multiple switch-on and switch-off methods together in a series we

can create a series (in time) of on and off states or 0’s and 1’s.
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4.4 Switching Between Bistable States: Modulated

Case

If we could modulate the switching bump in the transverse dimension, it would

be possible to create stable structures exhibiting localized properties that can be

switched individually. The ability to switch multiple co-existing states on and off is

more interesting and useful than the plane wave case since producing multiple states

that can be switched creates a multi-bit system. We will make the claim that in

the following modulated case, the upper branch of the bistability curve consists of

solitonic states and this claim will be investigated by numerical simulation.

4.4.1 Switching a Single Soliton

Before attempting to create an array of solitonic states, the existence of a single state

will the demonstrated. For now, we will consider the one-dimensional case where the

only transverse dimension is x′. This means that the transverse Laplacian is simply

∇′2
⊥ = ∂2

∂x′2 and the model equation is

∂F

∂τ
− i

∂2F

∂x′2
= Fin − F − iθF + i2CX(∆, |F |2)F. (4.7)

As in the plane wave case, our controlling parameter is the pumping field, Fin, and

taking the same form as Eq. 4.6 except that the time-dependent bump will be modu-

lated by a localized function in the transverse dimension. Therefore, the form of the

pumping field is chosen as

|Fin(τ)|2 = H0 + Hsech2 (w(x′ − x′0)) e−s(τ−τ0)2 (4.8)

Fin(τ) =

√
H0 + Hsech2 (w(x′ − x′0)) e−s(τ−τ0)2 . (4.9)

In a similar manner to the plane wave case, we have a bump that is temporally

localized and superimposed upon a constant background field. In addition, the bump
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Figure 4.4: Switching a Soliton On

is now localized in space by the square of a hyperbolic secant function at x′ = x′0

with a width determined by w, called the space-width. The purpose of using the

square of the hyperbolic secant is explained in Secs. 1.1.4 and 1.1.5. After conducting

numerical simulations, a steady state solution is produced but is now shaped like a

bump localized around x′ = x′0. We make the claim that these solutions are solitons.

In the modulated case, it is observed that these solitons form the upper branch of

the bistability curve.

If a bump of negative amplitude (a dent) is applied to a localized soliton state,

the state will switch off in the same manner as the plane wave case. The amplitude

of the applied dent must be large enough so that it forces the system down onto the

lower branch of the bistability curve. In the modulated case, the lower branch still

consists of plane wave states and so a switch down to the lower branch has the effect

of switching the soliton off with only the plane wave background remaining.

Examples of soliton switching can be seen in Figs. 4.4 and 4.5. In these simu-

lations, the PDE parameters were C = 10, θ = −1 and ∆ = 0. The switching was
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Figure 4.5: Switching a Soliton On and Off

Figure 4.6: Stability Region of Soliton Switching (Resonant Case)

44



Figure 4.7: Stability Region of Soliton Switching (Focussing Case)

Figure 4.8: Stability Region of Soliton Switching (Defocussing Case)
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performed with a bump of amplitude, H = 40, time-width, s = 1, and space-width,

w = 1, superimposed on a plane wave background of H0 = 50.

Unlike the regime of plane wave switching where all steady state solutions on the

upper branch of the bistability curve are stable, this is not the situation with soliton

switching. In the resonant case (∆ = 0), only part of the upper branch represents

a stable soliton solution with the remainder leading to unstable solutions. It can be

seen in Fig. 4.6 that the upper branch contains both stable and unstable solutions.

For a region starting from the beginning of the upper branch and increasing until

a point within the bistability region, the solitons are stable. Above this point up

to the end of the bistability region, the solitons are unstable. The nature of the

instability can be explained as follows. In the unstable region a switching process

will result in the creation of a soliton but the soliton quickly splits into two peaks that

travel outwards in the x-direction at a constant velocity while maintaining a region of

approximately constant, slightly lower intensity between the peaks. Once the peaks

reach the boundary they decay and the cavity field reaches a plane wave steady state

with an intensity the same as between the two unstable peaks. An example of this

behaviour is given in Fig. 4.9. The behaviour of the instability settling down to a

plane wave case may be a result of the periodic boundary condition. As can be seen

in the numerical plot, the system does not settle down until it reaches the boundary.

Nevertheless, this solution is an example of unstable soliton switching.

The same division of stable and unstable solitons exists in both the self-focussing

case (∆ = −1) and self-defocussing (∆ = 1) cases. The modulated bistability curve

for the focussing case is given in Fig. 4.7. The differences between this case and the

resonant case are that a larger portion of the upper branch is stable and the upper

branch begins at a larger F 2
in than does the upper branch for the plane wave solutions.

A qualitative explanation for the observation that the upper branch consists of more

stable solutions than for the resonant case is that the medium is now self-focussing.
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Figure 4.9: Unstable Soliton Switching (Resonant Case)

Since the nonlinearity of the medium is focussing and acting to support the existence

of solitons, it is plausible that the medium can support these solitons for a wider range

of parameters. In addition, for the self-focussing case the modulated upper branch

has a region of negative slope at its upper end and this behaviour has been observed

in other systems as well [4]. The self-defocussing case (∆ = 1) supports solitons over

a smaller portion of the upper branch than for the resonant and self-focussing cases

and its bistability curve is given in Fig. 4.8. While the unstable solutions for the

resonant and self-focussing cases possessed the same dynamics, the instability here is

of a different nature. Shortly after forming a soliton, a pair of new solitons will form,

one on each side of the first. After the formation of the new pair, another two will

form, one on one side of the existing three and the second on the other side. This

continues until the boundary is reached whereafter the multi-soliton solution becomes

a steady state. This instability is displayed in Fig. 4.10. In a similar manner to the

resonant and focussing instabilities, this steady state solution may be a product of

the boundary conditions but is nonetheless an unstable soliton switch.
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Figure 4.10: Unstable Soliton Switching (Defocussing Case)

4.4.2 Switching Multiple Solitons

Just as single solitons were switched on and off, we can also independently switch

multiple solitons that coexist laterally in the x′ dimension. The governing expression

is still given by Eq. 4.7, however, the pumping field must be modified to include

multiple soliton address pulses. For N solitons the pumping field is

|Fin(τ)|2 = H0 + H

N∑
i=0

sech2 (w(x′ − x′i)) e−s(τ−τi)
2

(4.10)

Fin(τ) =

√√√√H0 + H
N∑

i=0

sech2 (w(x′ − x′i)) e−s(τ−τi)2 , (4.11)

where x′i and τi are the address position and time for the ith soliton. There is no

reason to assume that the individual solitons do not interact with one another and

can be switched independently. However, the independent switching of three solitons

can be observed in Fig. 4.11. In this simulation i = 1, 2, 3 with positions x′1 = 0,

x′2 = 5, x′3 = −5 and times τ ′1 = 5, x′2 = 10, x′3 = 20. The switching bumps all have

amplitudes, H0 = 50, H = 40 as well as space-widths of w = 1 and a time-widths of
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Figure 4.11: Switching Multiple Solitons

s = 1. There is also a switching-off bump applied at x′1,off = 0 and τ ′1,off = 25 with

amplitude, H = −40.

It is observed that if two solitons are a sufficient distance from each other they

can be treated independently. However, at closer distances the solitons do interact

as can be seen in Fig. 4.12. In this simulation the distance between the switching

bumps is ∆x′ = 3.4 and after the solitons are created they interact and finally merge

a short time after. Since the cavity has a finite width in the x′ dimension, we can

only have a finite number of solitons existing before interactions with one another

and the boundary result.

4.5 Optimizing the Switching Bump

In the interest of creating a practical device it is important to optimize the parameters

that are relevant to the efficient operation of the device. It is apparent from the

numerical results of both the plane wave and soliton switching examples that there

is always a finite time for the switching between states to occur. This implies the
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Figure 4.12: Multiple Solitons Merging

existence of a switching time, τs, that is a measure of the time between the application

of the switching pump field and the time at which the cavity field stabilizes at a steady

state.

If the time-width of the switching bump is too large, the system will require an

excessive amount of time to switch states. An example of this behaviour can be

observed in Fig. 4.13. The slow dynamics occur because the amplitude of the bump

is varying so slowly that the relaxation rates of the material are fast enough to allow

the cavity field to follow the applied field. In this simulation, the background and

bump characteristics were the same as in Sec. 4.4.1 for the resonant case (H0 = 50,

H = 40, w = 1), however, here we have chosen s = 5 and it is apparent from the

plot that the system follows the bump for a short time before it can switch to the

upper state. On the other hand, if the bump is too narrow in time, the state will

not switch at all. In this case, the amplitude of the bump varies too quickly for the

material to react, and after the bump has subsided, the system has not had enough

time to switch states.
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Figure 4.13: Inefficient (Slow) Soliton Switching
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Chapter 5

Practical Applications

5.1 All-Optical Information Processor and Storage

Device

The ability to switch multiple solitons on and off in an independent manner offers

the possibility for use in an all-optical digital information processor. If we let the

presence of a cavity soliton indicate the “1-bit” state and the absence of a cavity

soliton the “0-bit” state, by proper control of the pumping field the operator can

turn bits on and off at will. If this system is extended in the x-direction, the cavity

could have sufficient space to create an N-bit system, thereby potentially creating

the technology for all-optical digital information storage and processing system.

In addition to being switchable, the solitons in a ring cavity can be controlled by

a suitable modulation of the pumping field. If the amplitude of the pumping field

background is no longer constant but is a function of the transverse coordinate(s), the

spatial distribution of the solitons can be controlled [23, 24]. Such an effect could also

be created by modulating the phase of the pumping field because interference within

the cavity field will translate the phase modulation into an amplitude modulation. In

the presence of a pumping beam with a nonconstant background, a potential energy
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field will be created that directly relates to this modulation. Under an amplitude

modulation condition as described above, the local potential energy minima lie at

local pumping field amplitude maxima. Therefore, solitons will be attracted to these

amplitude peaks. If this potential could be varied in time, the solitons could be

moved to a new position based on this controlled potential. This mechanism is not

present in electrical systems and could prove useful in an all optical device.
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Chapter 6

Conclusion

Optical spatial solitons in cavities have the possibility to revolutionize the way optical

digital information is processed. The theory outlined in this thesis has demonstrated

the features of an optical ring cavity containing a nonlinear material and driven by

a high intensity laser. The mirror feedback model for this system has been derived

and shown to exhibit optical bistability in a plane wave case, purely dispersive case.

The mirror feedback model was reduced and approximated to the mean-field model,

a more convenient form for evaluation, yet still exhibiting the same general charac-

teristics as the mirror feedback model.

Numerical simulations of the mean-field model in one transverse dimension and

time show that the mean-field model predicts both bistability and the existence of

solitons as well as the intrinsic connection between the two effects. Plane wave

bistability is present, as predicted from the theory. When the switching “bump” was

modulated in the transverse dimension, it was shown that spatial solitons can be

switched on and off. The connection between bistability and solitons is that these

solitons represent the upper bistable state of the system under modulated conditions.

In addition, the simulations were extended to show that multiple solitons can coexist
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laterally and be switched independently, properties critical to the creation of all-

optical switches. Lastly, factors affecting the the finite switching time between the

“on” and “off” states were investigated.

The analysis presented in this thesis provides a solid background for application

in two directions: the design of experiments and a theoretical analysis of similar

systems. The numerical results presented in Chapter 4 would be useful for creating

an experiment that would investigate the presence of solitons in a saturable nonlinear

material. Also, there are several other systems currently being studied that are similar

to the optical ring cavity, the most notable being a Fabry-Perot cavity containing a

semiconducting nonlinear material [6, 7, 8]. The analysis presented in Chapters 2

and 3 could be extended to the geometries of Fabry-Perot systems and a numerical

analysis similar to that presented in Chapter 4 could be performed. In conclusion,

the optical ring cavity studied in this work has predicted useful nonlinear effects of

optical bistability and switchable spatial solitons and has proven to be a very effective

introduction into this rich subfield of nonlinear optics.
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Appendices

A Cavity Detuning Angle δ

This appendix will define the cavity detuning angle δ. In the boundary condition

given by Eq. 2.3 there is a term containing the expression exp(ikL). This expression

can be expanded as exp(ikL) = cos(kL) + i sin(kL). Because of the periodic nature

of the sine and cosine functions, this is equivalent to writing exp(i(kL− 2nπ)) where

n is an integer.

The condition for resonance in an optical cavity is that the wavelength of the light

be such that there is constructive interference over the length of the cavity. For this

to occur, an integral number of wavelengths must exist within the length of the cavity,

or, mathematically, nλc = L where the subscript c denotes cavity resonance. This

may, at first, appear to be contradictory to the resonance condition for a Fabry-Perot

cavity which requires that nλc

2
= L for resonance to occur. However, in a Fabry-

Perot cavity, there are two parallel mirrors separated by a distance L so that the

light has to travel 2L in order to make a complete transit of the cavity. Therefore, if

an integral number of half-wavelengths fits in the length L, an integral number of full

wavelengths must fit in the entire cavity length 2L, which is the resonance condition.

By definition, λc = 2π/kc and since k = ω/c, this is equivalent to λc = 2πc/ωc.

Substituting into the resonance condition we get

n
2πc

ωc

= L, (A.1)

which can be rearranged as

2nπ =
ωc

c
L. (A.2)
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Now, if this expression for 2nπ is substituted into exp(ikL) = exp(i(kL− 2nπ)) and

using k = ω/c we get

exp(ikL) = exp
(
i
(ω

c
L− ωc

c
L
))

(A.3)

and defining the cavity detuning angle, δ, to be

δ =
ωc − ω

c
L (A.4)

then Eq. A.3 can be reduced to

exp(ikL) = exp(−iδ). (A.5)

By using the relation given by Eq. A.5 the boundary in Sec. 2.1.1 can be simplified.
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B Constant |A|2

This appendix provides the details of the proof that |A|2 is constant. Multiplying

Eq. 2.21 by A∗

A∗dA

dz
= i

ω

2c
χR(ω, |A|2)|A|2 (B.1)

where we have already noted the assumption for the plane wave case that χ ' χR.

Differentiate |A|2 with respect to z, which we want to be zero if |A|2 is constant,

d|A|2

dz
=

d(AA∗)

dz

= A∗dA

dz
+ A

dA∗

dz

= A∗dA

dz
+

(
A∗dA

dz

)∗
= 2<

{
A∗dA

dz

}
(B.2)

where < denotes the real part. If we substitute Eq. B.1 into the above expression we

have

d|A|2

dz
= 2<

(
i
ω

2c
χR(ω, |A|2)|A|2

)
(B.3)

Since ω, c, χR and |A| are all real, then this expression is zero thus |A|2 is constant

in z.
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C Reduced Linear Absorption Coefficient α0 and

Material Nonlinearity X

Absorption is the loss of power as an electromagnetic wave propagates through a

material. The absorption coefficient, α, is a measure of this loss in units of inverse

distance and is defined by the following equation

E(z) = E(0) exp
(
−α

2
z
)

, (C.1)

where E is the electric field strength.

For the ring cavity system, assuming a plane wave laser input, we have the fol-

lowing equation governing the behaviour of the electric field in the nonlinear medium

dA

dz
= i

ω

2c
χ(ω, |A|2)A (C.2)

which has the solution

A(z) = A(0) exp
(
i
ω

2c
χ(ω, |A|2)z

)
. (C.3)

If χ is expanded into its real and imaginary parts and Eqs. C.1 and C.3 are compared,

the absorption coefficient can be shown to be

α =
ω

c
χI(ω, |A|2) =

ω

c

p2n1

ε0~
γ12

γ2
12 + (ω12 − ω)2 + 4p2

~2
γ12

γ11
|A|2

(C.4)

where χI is the imaginary part of χ.

We would like to make the mathematics simpler for the derivation of the mirror

feedback and mean-field models. To do this, we will define the reduced linear absorp-

tion coefficient, α0, by altering the form of the complex electric susceptibility. First,
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we will define a scaled form of the electric field envelope F

F =
p

~

√
2

γ11γ12

A. (C.5)

This scaling can be applied both to the field in the cavity as well as the input beam.

If this new field variable is substituted into Eq. 2.17 for χ and both the numerator

and denominator are divided by γ2
12, χ can be reduced to

χ(∆, |F |2) =
i + ∆

1 + ∆2 + 2|F |2
p2n1

ε0~γ12

(C.6)

where ∆ = ω12−ω
γ12

. Now if this definition of χ is substituted into Eq. C.4 we get

α =
ωp2n1

ε0c~γ12

1

1 + ∆2 + 2|F |2
. (C.7)

We will now make two new definitions: the reduced linear absorption coefficient

α0 =
ωp2n1

ε0c~γ12

(C.8)

and the nonlinearity of the optical medium

X(∆, |F |2) =
i + ∆

1 + ∆2 + 2|F |2
(C.9)

such that

α = α0=
{
X(∆, |F |2)

}
, (C.10)

where = denotes the imaginary part.
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D XMDS Code

This appendix provides a sample of XML code used to create a C program from

XMDS that will time-evolve the mean-field model. The code resembles the format

of HTML for readers who are familiar with that format. I will briefly describe the

significant portions of the code and a more detailed explanation of the basic format

and notation can be found online at www.xmds.org under the documentation section.

The data within the <![CDATA[ ]]> braces is code that will be unchanged by

XMDS and directly placed in the C program. The first set of code within these braces

defines all of the constants (such as initial data, PDE parameters, etc.) to be used

in solving the problem. The second section of C data defines the initial condition of

the system. The third section of C data defines the transverse Laplacian in terms of

an operator L. This operator acts like a second derivative on a plane wave function

by replacing the derivitave by −i(kx)2/2. The last C data set defines the differential

equation. Note that F ′
in must been written explicitly since it is dependent on the

propagation dimension.

Under the <field> segment there are two specifications called lattice and

domains. The lattice denotes the number of sample points to take in the transverse

dimension and domains designates the range of values to sample over. Under the

<sequence> <integrate> segment there are three specifications called interval,

lattice and samples. The interval denotes the range of values in the propagation

dimension over which the integration is performed and the lattice is the number

of sample points that the range is divided into. The samples refer to the number

of “snapshots” of the solution that are written to a data file. The resolution of the

simulation will be greater with a larger lattice, however, the number of samples will

only effect the resolution of the data set but not the accuracy of the simulation.

The code:
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<?xml version=‘‘1.0’’?>

<simulation>

<prop dim>t</prop dim>
<error check>no</error check>
<stochastic>no</stochastic>

<globals>
<![CDATA[

const double bump dent 1 = 1;

const double t0 1 = 5;

const double x0 1 = 0;

const double s = 1;

// +1 is bump, -1 is dent,

// t0 i is time of bump/dent, x0 i is transverse position of bump/dent,

// s is time-width of bump/dent

const double w = 1;

const double H = 50;

const double A = 20; // H is height of plane wave,

// A is amplitude of bump/dent (both in units of |F|^2),

// w is space-width of bump/dent

const double IC = 0;

const double ic = sqrt(IC/2);

const double theta = -1;

const double Delta = 0;

const double C = 10;

// IC is initial state of system (in units of |F|^2),

// theta, Delta and C are PDE parameters

double sech(double);

double sech(double X)

{
return 1/cosh(X);

}
// defining the sech function

]]>

</globals>

<field>
<name>main</name>
<dimensions> x </dimensions>
<lattice> 2000 </lattice>
<domains> (-10,10) </domains>

62



<samples> 1 </samples>
<vector>

<name>main</name>
<type>complex</type>
<components>F</components>
<fourier space>no</fourier space>

<![CDATA[

F = complex(ic,ic);

// plane wave initial condition

]]>

</vector>
</field>

<sequence>
<integrate>

<algorithm>RK4IP</algorithm>
<interval> 150 </interval>
<lattice> 1500 </lattice>
<samples> 150 </samples>
<k operators>

<constant>yes</constant>
<operator names>L</operator names>

<![CDATA[

L = rcomplex(0,-kx*kx/2);

// this is the transverse laplacian in 1D

]]>

</k operators>
<vectors>main</vectors>

<![CDATA[

dF dt = L[F] + sqrt(H + bump dent 1*A*exp(-s*pow(t-t0 1,2)) *

pow(sech(w*(x-x0 1)),2)) - F - i*theta*F + i*2*C*(i + Delta) /

(1 + pow(Delta,2) + 2*∼F*F)*F;
// mean-field model. Fin is here explicitly: bump/dent localized

// in space and time with constant base height defined with H,

// bump/dent is initialized around t0,x0 with time-width s

// and space-width w. ∼F denotes complex conjugate.

]]>

</integrate>
</sequence>

<output>
<filename>mean-field 1D.xsil</filename>
<group>

<sampling>
<fourier space>no</fourier space>
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<lattice> 50 </lattice>
<moments>I</moments>

<![CDATA[

I=∼F*F;
// we are interested in is the intensity

// which is proportional to ∼F*F
]]>

</sampling>
</group>

</output>

</simulation>
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