Estimating extremes from global ocean and climate models:
A Bayesian hierarchical model approach

UlA> E. C. J. Oliver", Simon J. Wotherspoon', and Neil. J Holbrook '
IVIAS &

" Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia i conmmt or xceonceon | T
S A — 2 Australian Research Council Centre of Excellence for Climate System Science p-IMATE SYSTEM SCIENCE

Introduction 2, Data

Australian Government

Climate statistics were calculated including the mean
(M), variance (0?), third central moment (ms), and eddy

* Global climate and ocean models are indispensible

Ocean model

tools for understanding of the ocean-atmosphere- , _ kinetic energy (K) over a domain consisting of |
climate system The Ocean Forecasting Australia Model (OFAM) was |ocations. Various combinations are assembled into the
| | | used to model the marine climate. The horizontal covariate matrices X, e.qg, )

« Models usgally. simulate well the baS.IC oceanic and resolution is 1/10° in latitude and longitude (eddy- X = [1 u | o” | K]
atmospheric climate state (mean, variance, etc.) but resolving) around Australia and coarser elsewhere.
often fail to properly represent extreme events We used two OFAM model runs (Chamberlain et al, _

2012): Observations

It has been shown that extreme events can be well ' o
predicted given On|y know|edge of the central CTRL: Forced by normal—year ERA-Interim surface DaIIy fields of remote-sensed observed sea surface
statistics (mean, variance, etc.) fluxes, representing the 1990s temperatures (SSTs) from the AVHRR were obtained

A1B: Dynamically downscaled CSIRO Mk3.5 GCM for the period 1/1/1982 to 31/12/2009 (28 years) and
projections under the A1B emissions scenario, are defined on a 4 km grid. Data were taken at the

representing the 2060s same J locations as in the ocean model.

« On this principle we have developed a Bayesian
hierarchical model which improves the estimates of
extremes from global climate and ocean models

Extreme Value Theory 4, Bayesian Hierarchical Extremes Model

Extreme events are those producing climate anomalies Define annual maxima at all J locations as a list of p(0|Y,X) < p(Y|02) p(820:1, X) p(6-)
which are rare and whose magnitudes vectors: Y ={y;|j =1,2,... J} — 7 ’
deviate significantly from the expected value We model the extremes using a bayesian hierarchical posterior distribution / climate process layer \
model (BHM): a model with several nested layers data layer prior distribution

Consider the sequence {z:|t = 1,2,...} (e.g., SST time series)

Define y to be the maximum over a block of length n =1 b e VR ii. Climate process layer

year (a "block maxima" approach; Coles, 2001) Model the annual maxima Y using the Gumbel dist.: The parameters of the Gumbel dist. are modeled as a
function of the ocean model marine climate X:

Y|62 Hp y]‘aj7¢] HHf y]7’|a»77¢3) a,:X,Ba - €4 p(a'/BaaTaax):NJ(X/Ba7Ta_l:[)

y = max(xy,To,...,Tn)

The annual maxima (y) can be modeled using an Extreme j=1i=1 > .
Value Distribution (EVD), and we will use the Type I, or | » =XPBy + €4 p(®|Bgs Tay X) = Nj(X By, 7, 1)
the Gumbel, distribution: where ¢ = log(b)' 0> =(a, @), a=1a5j=1,2,...,J},
' and ¢ ={¢,]j=1,2,...,J}. where N;(X 3,7 !I)is a J-dim Normal distribution with
F(y\a, b) — exp [_ exp (_wga)] mean XB and covariance 7'l and 61 = (B4, B¢, Ta, Ts).

iii. Priors

Since the models for a and b are independent, we
The return period for a specified extreme value represents the expected : -
frequency with which that extreme value will repeat. For example, if the Assume that the parameters 0, are independent can factor the climate process layer as
return period for a 30°C extreme value, denoted T3, is 50 years then there is L L
a 1 in 50 chance of a 30°C event occurring in any given year. Conversely, the p(gl) — p(IBCL) (/BCb) ( ) ( ¢) p(HQ |917 X) — p(a‘/@aa Ta, X) p(qb‘/@gb) T, X)
return level is the extreme value associated with a particular return period. In : :
the previous example, the 50-year return level, denoted z:,, is 30°C. and with no prior knOWIedge regardmg hOV_V the
Gumbel parameters are related to the climate Model parameters are estimated numerically using Marlov
Return levels z; and return periods 7T, are defined as: variables we choose diffuse non-informative priors. chain Monte Carlo, Metropolis rule and Gibbs sampling methods
27(y) = a—blog[—log Fi(y|a,b)]
_ | | Estim f me SS
T.(y) = [1-Fi(yla,b) 5, Model Estimates of Extreme SSTs
Given a vector of annual maxima (y), the parameters CTRL 50-yr g;?treme SSTs__ .~ _Difference with observed _, -
0=(a,b) can be estimated by minimizing the likelihood i , ‘\ - ’ 4 »The best combination of climate variables (X) was
(maximum likelihood estimation): S5og | | : determined (using the Deviance Information Criteria) to be
159 , the mean, variance, third moment and EKE
L(Oly) = p(y|0) = H f(y:|0) 30°S |- N « Samples from the posterior are used to estimate a, b, z-...
or by Bayesian estimation: } bel odf ssoc| (i {0« Estimates from the BHM improve on those from OFAM
umbet p t 123 . : .
p(H\y) ~ p(y\H)p(H) * Assuming stationarity of the BHM parameters (0,), we
-0 b _> construct a marine climate matrix from the 2060s (X')
R / _ ,/ \ S | ocean simulation, then we can sample from p(8|Y, X")
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Gumbel theoretical quantiles

Probability of A1B-CTRL increase of annual maxima by specified amount

\1 100 By drawing independent samples of Y from the posterior for

Conclusions l ll | > the 1990s we can test if the projected change in the 2060s is
CZ °  statistically significant, when compared to the change possible

. Zzteml?:tl\ellseﬁreer?frgﬁedselffgc;r\]/lcéelgbaalteg?:;iuzr’ig ng;ipr;c;\;: 30°5 i ;2 in an unchanged 1990s climate (due to random variations)
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The basic approach is to model observed extremes as a rosh - 0 N —

. . . . s gm s | [ - | U\ 1 . . — 1990s O
function of the historical climate stalistics, assume | | 120 We can specify a particular TOf | T st e meansst |
stationarity, and then use climate projections or specified . lo climate (X...). such as the R R A el fhitiiilh
climates to estimate extremes for other climate scenarios A 60f

ima at specified confidence level _OO 19905 Cllmate plUS d ZOC
N R IC warming of the mean SST

The method allows for an estimation of statistical
significance (by comparing against randomness in an
unchanged climate) and can also be used as a toy model
to test the response of the extremes to prescribed climate 30°S |-
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