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ABSTRACT

Spatially and temporally homogeneous measurements of ocean temperature variability at high resolution

on the continental shelf are scarce. Daily estimates of large-scale ocean properties are readily available from

global ocean reanalysis products. However, the oceanmodels that underpin these reanalysis products tend not

to have been designed for the simulation of complex coastal ocean variability. Hence, across-shelf values are

often poorly represented. This study involved developing a statistical approach to more accurately and ro-

bustly represent SST on the continental shelf informed by large-scale satellite observations and reanalysis

data or model output. Using the southeasternAustralian shelf region as a case study, this paper demonstrates

that this statistical model approach generates more accurate estimates of the inshore SST using (i) offshore

SST from Bluelink Reanalysis (BRAN) and (ii) the statistical relationship between inshore and offshore SST

in observations from the Advanced Very High Resolution Radiometer. SST is separated into the mean,

seasonal cycle, and residual variability, and separate models are developed for each component. The offshore

locations used to inform the model are determined by taking into account (i) the quality of BRAN at each

location, (ii) the strength between the inshore and offshore variability, and (iii) the proximity of the inshore

and offshore locations. Model predictions are made for the continental shelf around southeastern Australia.

The role of the mean circulation in providing connectivity between the shelf and the offshore regions is

discussed, and how this information can be used to better inform the choice of model predictor locations,

leading to a hybrid statistical–connectivity model.

1. Introduction

Ocean climate observations (e.g., temperature, salinity,

nutrients, flow speeds, and directions) are typically sparse

in space and time across the globe. Long-term moored

observing stations and/or repeat observational transects

tend to be costly and are not easily resourced. This is not

only true for the deep ocean but also in nearshore regions

across the continental shelf. Satellite-observing instruments

such as the Advanced Very High Resolution Radiometer

(AVHRR) mounted on orbiting satellites provide high-

resolution repeatmeasurements of sea surface temperature

(SST) along track. Unfortunately, these instruments lack

a temporal sample rate high enough to consistently

capture high-resolution SST variability on daily to

weekly time scales, for example, variability resulting

from mesoscale eddies or synoptic weather forcing.

Fixed measurement stations and moorings can provide

location-specific observations with high sample rates

but, unless there are many such instruments as part of

a large network, lack the spatial coverage or homoge-

neity in both space and time. Global ocean models and

reanalysis data can also be valuable tools and products

to help synthesize our understanding but are typically

insufficient on their own to capture the physical pro-

cesses that govern SST variability on the continental

shelf, since they tend to be conditioned to represent the

large-scale ocean circulation.

One method for synthesizing irregularly spaced ob-

servations is objective mapping, which takes account of

relevant space and time signal and noise scales. For
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example, Holbrook and Bindoff (2000) generated a da-

taset of uniformly gridded upper-ocean temperatures

using an objective mapping technique that takes advan-

tage of the strong vertical correlations in ocean temper-

ature data to minimize the cost. Ridgway et al. (2002)

interpolated irregularly spaced ocean temperature and

salinity observations onto a regular grid using a loess filter

that takes into account data at neighboring vertical levels

as well as the influence of bathymetry and land barriers.

Here, however, rather than interpolating existing

data, we wish to improve global ocean model estimates

of the marine climate across the shelf. Downscaling is

an approach often used to perform such a task. It

provides the link between the large-scale state of some

variable, for which there is typically coarsely gridded

information, and the smaller-scale state of that or an-

other variable, for which there is no accurate scale-

relevant information (von Storch et al. 1993; Benestad

et al. 2008). For example, global climate models pro-

vide reasonably accurate predictions of global surface

air temperature at coarse spatial resolutions (e.g., 18–28
in latitude and longitude) but cannot reliably predict

smaller-scale variations due to the presence of un-

resolved features such as clouds or steep orography.

There are two approaches to downscaling: dynamical

downscaling and statistical downscaling (e.g., Murphy

1999).

Dynamical downscaling nests one or more fine-

resolution general circulation model(s) within the do-

main of a coarse-resolution circulationmodel. Dynamical

downscaling allows for important physical processes to

be resolved at high resolution in the part of the domain

of interest, while the remainder of the domain is repre-

sented using the coarse-resolution large-scale model.

Dynamical downscaling is commonly applied to global

climatemodel output (e.g., Giorgi 1990; Christensen et al.

1998; Murphy 1999; Corney et al. 2010), but it has also

been used in an ocean-only context using nested grids

(e.g., Oey and Chen 1992; Guo et al. 2003; Oliver 2011).

Alternatively, a heterogeneous grid spacing can allow for

specific regions to be resolved more finely than others,

within the same grid [e.g., the Australian marine region

(Oke et al. 2008), or the tropical Pacific Ocean (Zhang

et al. 2010)]. An extension of dynamical downscaling is

telescoping, in which multiple nested models are used

to focus in on a particular region of interest (e.g.,

Christensen et al. 1998;Guo et al. 2003; Trapp et al. 2007).

For example, Trapp et al. (2007) used global 2.58 3 2.58–
resolution National Center for Atmospheric Research

(NCAR) atmospheric reanalysis data as the coarse-scale

information and nested a higher-resolution (;55km) re-

gional climate model within a domain covering the conti-

nentalUnited States.A convection-permittingmodel, with

a horizontal resolution of less than 4km, was further nes-

ted within the regional climate model to allow for con-

vective storm behavior to be resolved over small-scale

local domains. Themost significant downside to dynamical

downscaling is that the required circulation models are

costly to develop, implement, and validate.

Statistical downscaling is an alternative approach

that takes the observed statistical relationship between

the large-scale variability (e.g., large-scale general

circulation features) and local variability (e.g., station

measurements)—a relationship that depends on processes

not resolved by coarse climate models—and uses it to

‘‘downscale’’ climate model output and provide predic-

tions of local variability at some point location. One of the

simplest approaches is a multivariate linear regression

model in which the local variability is regressed onto a set

of predictors taken from the large-scale dataset (e.g.,

Hellstrom et al. 2001;Huth 2002).More complexmethods

include the use of principal components or canonical

correlations analysis (e.g., von Storch and Zwiers 2002;

Huth 2002), stochastic weather generators (e.g., Wilks

1999; Palutikof et al. 2002; Qian et al. 2002), and neural

networks (e.g., Zorita and von Storch 1999), among

others. Statistical downscaling has primarily been used to

downscale climate for the terrestrial environment (e.g.,

Wilby et al. 1998) and has not been used as extensively

for the marine environment; existing downscaling studies

for oceanic variables have primarily focused on ocean

wave climate (e.g., Wang et al. 2010). In general, sta-

tistical downscaling is more computationally efficient

than dynamical downscaling, but it lacks the dynamical

consistency between variables provided by the latter

approach.

Our focus here, however, is not strictly about statis-

tical downscaling per se, but rather about what we would

call ‘‘statistical boundary scaling.’’ Given the nature of

the oceanographic climate problem, the approach pre-

sented in this paper does not scale coarse predictions to

a finer resolution over the same domain. Instead, we use

accurate and robust ocean data from the larger-scale

geographic domain—specifically, deeper ocean points

proximal to our shelf region of interest—to provide es-

timates in the domain where the ocean model performs

poorly (here, the coastal ocean) based on the observed

relationship between those two domains. Unlike statis-

tical downscaling, the statistical boundary-scaling ap-

proach presented in this paper does not relate the local

finescale variability to the local coarse-scale variability;

rather, it relates the local coastal ocean variability to the

nonlocal open-ocean variability. We are careful here to

detail our approach thoroughly, and contend that this

approach is likely to have utility for application more

generally to coastal scaling problems outside of the
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Australian context, which we use here as a case study

example of its potential.

Australia has over 35 000 km of coastline and nearly

85% of the population lives within 50 km of the sea

(ABS 2001). These marine-related and coastal climate

issues are particularly important for Australia, given

their proximity to people, its biodiversity and resources

(ecosystem services), and amenity. The Ocean Fore-

casting Australia Model (OFAM) provides the highest-

resolution model information available for short-term

(7 days) ocean forecasts at an approximate 10-km scale

for the ocean environment surrounding Australia. Fur-

ther, the Bluelink Reanalysis (BRAN) product provides

ocean-reanalyzed daily estimates of ocean variability

over the 1992–2008 satellite-observing period using the

data-assimilative eddy-resolving OFAM, used primarily

for ocean and climate diagnostic studies. BRAN repro-

duces well the large-scale circulation around Australia.

For example, the volume transport of the Indonesian

Throughflow, the Leeuwin Current, the South Australian

Current, and the eddy-rich East Australian Current

(EAC) are all well captured (Oke et al. 2008; Schiller et al.

2008). However, since OFAM is designed for the primary

purpose of modeling features of the open-ocean circula-

tion rather than the bounding coastal and shelf regions,

the BRAN output in space and time tends to evaluate

poorly against available across-shelf observations in con-

trast to the open ocean, where BRAN performs very well.

For example, nearshore daily SSTs have been shown to be

poorly represented by BRAN, especially along the coast

of southeast Australia (Hobday et al. 2011).

To summarize our approach tested here in the Austra-

lian context, separate model components are developed

for themean SST, the SST seasonal cycle, and the residual

SST variability across southeast and southern Australian

marine waters (domain shown in Fig. 1). The model pa-

rameters for each component are determined from the

observed relationships between AVHRR SSTs on the

continental shelf and offshore. For example, the residual

component is simply a linear regression of nonseasonal

shelf SST variability onto nonseasonal offshore SST var-

iability. The model components are then informed by

estimates of offshore SST from BRAN to provide daily

estimates of inshore SST on a 1/108 horizontal grid. The
statistical SST predictions are then evaluated against ob-

served SSTs. For each location on the continental shelf,

the offshore predictor location is determined systemati-

cally by jointly taking into account issues related to

data quality, the relationship between shelf and offshore

SST, and proximity. Our physical understanding of the

oceanography along with the results indicates that ocean

circulation (connectivity) plays an expected role in con-

necting the shelf and offshore SST. We use this informa-

tion, based on Lagrangian trajectories of passive particles,

to further refine our predictor selection producing a hy-

brid statistical–connectivity boundary-scaling model.

This paper is organized as follows. The data sources

and a preliminary statistical analysis are presented in

section 2. The statistical model is described in section 3.

In section 4, the model SST estimates are initially eval-

uated at a point location in Bass Strait and then ex-

tended to the entire continental shelf in three regions:

(i) Tasmania and Victoria, (ii) the Great Australian Bight,

and (iii) New South Wales and southern Queensland.

Model refinements, based on a Lagrangian connectivity

analysis utilizing the mean circulation information, are

FIG. 1. The domain and bathymetry of southern and southeastern Australia waters used for

the statistical boundary-scaling model along with named locations mentioned in this study.

Bathymetric contours were calculated from the OFAM grid. The black line is the 200-m-depth

contour.
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presented in section 5. Conclusions and further work are

discussed in section 6.

2. A basic quality assessment of BRAN SSTs

Daily fields of reanalyzed SSTs were obtained from

BRAN, version 2.1, for the period 14 October 1992–

30 December 2006 and from BRAN, version 2.2, for the

period 29 November 2006–13 May 2008. The two datasets

were merged by a linearly weighted average over the 30

days of overlap between them, and the combined dataset is

referred to hereafter simply as BRAN. Daily BRAN SST

fields are denoted T
^

t and are analyzed on its 1/108-resolution
horizontal grid; T

^

t is an m 3 n matrix, where m and n are

the number of grid points in the latitudinal and longitudinal

directions, respectively, and t is a time index.

Daily fields of observed SSTs were obtained from

AVHRR for the period 14 October –13 May 2008 and

are defined on a 4-km-resolution grid. Only the nearest

AVHRR grid point to each BRAN location is retained,

and these fields are denoted Tt (also an m 3 n matrix).

We would like to note that while the AVHRR SST

observations have been assimilated into BRAN, there is

still a large degree of independence between BRAN and

AVHRRover the continental shelf because (i) only SST

data in water depth greater than 200m are assimilated

(P. Oke 2013, personal communication), and (ii) only 1

day out of every 7 days of SST data is assimilated and

therefore, to the extent that we can ignore serial corre-

lation in time, 6 out of every 7 days of SST data are in-

dependent (Oke and Schiller 2007).

We now compare Tt and T
^

t. Assume the time series of

observed temperature Tijt at each location (i, j) can be

written as

Tijt5Tij1TS
ijt1T 0

ijt , (1)

where Tij is the time mean, TS
ijt is the seasonal cycle, and

T 0
ijt is the residual (nonseasonal) variability. The seasonal

cycle is calculated by harmonic regression (see appendix

A). The residual is defined to be the variability remaining

after removing the mean and seasonal cycle (interannual

variability, subseasonal variability, etc.). The same linear

decomposition is assumed to hold for T
^

t.

The quality of T
^

t is measured in terms of how similar

its mean, seasonal cycle, and residual components are to

those derived from Tt. Separate quality functions—Q, QS,

and Q 0—are defined for each component:

Qij512

�����T
^

ij2Tij

Tij2T0

����� (mean), (2)

QS
ij5 r(TS

ijt, T
^
S
ijt) (seasonal cycle) , (3)

and

Q0
ij5r(T 0

ijt,T
^0
ijt) (residual) , (4)

respectively, where jxj denotes the absolute value of x,

r(xt, yt) denotes the temporal correlation (e.g., Priestley

1981) between xt and yt, and T0 is a reference tempera-

ture (taken to be the freezing point of water, i.e., 08C).
These equations are invariant under a linear trans-

formation of variables (e.g., a change of units). In each

case, a quality of one is perfect correspondence between

that component of T
^

t and Tt; values less than one in-

dicate a discrepancy between T
^

t and Tt.

In general, the quality of the mean, seasonal cycle,

and residual variability of T
^

t is poor over much of the

continental shelf (Fig. 2). The valueQ is low in Bass Strait,

coastal Tasmania, the gulfs of coastal South Australia,

and parts of New South Wales; QS is low in the same

regions, except coastal New South Wales; and Q 0 is low

FIG. 2. Comparison of observed and BRAN SST, Tt and T
^

t, re-

spectively. Colors represent the quality of (top) Q, (middle) QS,

and (bottom) Q 0. Definitions of the quality matrices are given by

Eqs. (2)–(4). The black line is the 200-m-depth contour.
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over nearly the entire continental shelf, including the

regions mentioned above, as well as the coasts of New

South Wales and Queensland up to the Coral Sea. Note

that the quality functions are generally high in deep

water (except in regions of strong eddy variability, e.g.,

the EAC separation and retroflection region and the

Antarctic Circumpolar Current). The next section de-

scribes the statistical model we developed to predict

inshore SST from offshore SST based on optimization

criteria.

3. Statistical model

Consider time series of observed SST at an offshore

location (iX, jX) and an inshore location (iY, jY):

Xt5Ti
X
j
X
t (5)

and

Yt5Ti
Y
j
Y
t (6)

with offshore and inshore SST from BRAN, X
^

t and Y
^

t,

respectively, defined analogously. These time series are

linearly decomposed intomean SST, SST seasonal cycle,

and residual SST variability components [see Eq. (1)].

Separate statistical models have been developed to

predict each of these components (submodels) and are

explained in sections 3a–c below. The parameters of

each submodel are calculated from Xt and Yt (i.e., the

submodels are trained on observed SST). Then a pre-

dictor time series X
^

t (i.e., offshore SST from BRAN)

informs the model, providing an estimate of the inshore

SST denoted Ŷt.

The choices of the offshore and inshore locations—

(iX, jX) and (iY, jY), respectively—are in general free.

The choice of the inshore location is given by the loca-

tion at which a prediction of SST is desired. The choice

of the offshore location (i.e., the predictor location) is

also free, although in section 3d we outline a relatively

simple but systematic method of optimally choosing the

offshore predictor location, based on jointly maximizing

the fundamental relationships between Xt and Yt.

a. Mean

The time-mean values ofXt and Yt are scalars and are

related linearly by

Y5aX , (7)

which leads to a simple expression for the parameter

a5Y/X . Given a predictor variable X
^

t, the model for

the mean of Yt is

bY5aX
^

(8)

5
Y

X
X
^

. (9)

b. Seasonal cycle

Assume the seasonal cycle ofXt and Yt can be written

as a sum of K harmonics of the annual cycle:

XS
t 5 �

K

k51

AX
k cos(vkt2fX

k ) (10)

and

YS
t 5 �

K

k51

AY
k cos(vkt2fY

k ) , (11)

respectively,whereAk,fk, andvk are the amplitude, phase,

and frequency of the kth harmonic, respectively. These

amplitudes and phases are estimated from Xt and Yt by

harmonic regression (see appendix A for more details).

The amplitude and phase of XS
t and YS

t are related

linearly by

AY
k 5gkA

X
k

fY
k 5fX

k 1Dk

)
for k51, . . . ,K , (12)

which leads to simple expressions for the parameters gk
and Dk:

gk5AY
k /A

X
k

Dk5fY
k 2fX

k

)
for k51, . . . ,K . (13)

Given a predictor variable X
^

t, the seasonal cycle of Yt

can be predicted by the model

ŶS
t 5 �

K

k51

gkA
X
^

k cos[vkt2(fX
^

k 1Dk)] (14)

5 �
K

k51

AY
k

AX
k

AX
^

k cos[vkt2(fX
^

k 1fY
k 2fX

k )] . (15)

c. Residual

We plan the residual variability Y 0
t using a linear re-

gression model:

Y 0
t5bX 0

t1�t , (16)

where b is the regression coefficient and �t is an error

term representing effects not included in the model.
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However, we note that the predictors are imperfect

observations of SST and are subject to some measure-

ment error X 0
t 5X

0(tr)
t 1ht, where X

0(tr)
t is the true (un-

observed) residual variability and ht is a noise term

representing measurement error. This is known as an

‘‘error in variables’’ regression model and, as an estima-

tor of the regression coefficient, the ordinary least squares

estimate b̂OLS is biased toward zero (Fuller 1987). An

unbiased estimator of the regression coefficient is given

by b̂5 l21b̂OLS, where l is known as the ‘‘reliability ra-

tio.’’ The reliability ratio accounts for the attenuation of

the regression coefficient due to measurement error and

is given by l5s22
X (s2

X 2s2
h), where s2

X and s2
h are the

variances of X 0
t and ht, respectively. We take a value of

sh 5 0.258C for the measurement error on the SST ob-

servations (e.g., Oke et al. 2008; Schiller et al. 2008).

Then, given a predictor variable X
^

t, the residual var-

iability of Yt can be predicted by the simple model

Ŷ 0
t5 b̂X

^0
t (17)

and the total inshore SST can be estimated as Ŷt, if de-

sired, from the sum of the submodels

Ŷt5
bY1ŶS

t 1Ŷ 0
t . (18)

d. Choice of the predictor location

It is possible to use different predictor locations for

each of the individual submodels outlined above. This is

desirable, as the mean, seasonal cycle, and residual SST

at the same inshore location may be best estimated sep-

arately by offshore SST predictors at different locations.

For example, the best location from which to predict the

mean may not be the best from which to predict the re-

sidual variability. There may be good physical reasons

why this might be observed, for example, different phys-

ical processes operate on different time scales and may

lead to differing spatial relationships. We show later that

mean circulation (connectivity) can be considered one

such physical process.

We note three quantities that may influence the like-

lihood of a given offshore location providing an accurate

prediction of inshore SST. First, the quality matrix Q

measures the extent to which the variability (or mean,

seasonal cycle, etc.) of BRAN is similar to that observed

at each point (i, j). The quality matrices were defined for

the mean, the seasonal cycle, and the residual compo-

nents [see Eqs. (2)–(4)]. Second, the strength matrix S

measures the extent to which the observed variability

(or mean, seasonal cycle, etc) is similar between location

(iY, jY) and each location (i, j). The strength matrices for

the mean, seasonal cycle, and residual components are

defined in a similar way as the quality matrices:

Sij512

������
Tij2Ti

Y
j
Y

Ti
Y
j
Y
2T0

������ (mean), (19)

SSij5r(TS
ijt,T

S
i
Y
j
Y
t) (seasonal cycle) , (20)

and

S0ij5r(T 0
ijt,T

0
i
Y
j
Y
t) (residual) , (21)

where, as above, T0 is a reference temperature (08C).
The strength matrices are equal to 1 at (iY, jY) and de-

crease away from that location. Finally, the localization

matrix R is an isotropic two-dimensional Gaussian cen-

tered on the inshore location (iY, jY) with a decay scale s,

Rij5expf2[(i2 iY)
21( j2 jY)

2]/2s2g . (22)

We postulate that the likelihood of a given offshore

location providing an accurate prediction of inshore SST

increases with Q, S, and R. A cost matrix J has been

defined that jointly takes into account the variations of

Q, S, and R,

Jij5
1

QijSijRij

, (23)

the minimum of which defines the optimal offshore pre-

dictor location. TheQ, S, and Rmatrices have maximum

possible values of 1 and thus the cost matrix J has

a minimum possible value of 1; J decreases with (i) the

data quality at the possible predictor location, (ii) the

strength of the connection between the predictand and

the possible predictor location, and (iii) the proximity of

the predictand location and the possible predictor loca-

tion. Equation (23) gives equal weight to the Q, S, and R

matrices. Sensitivity tests were performed with relative

weighting of the three terms (see appendix B), and it was

determined that the results are not strongly sensitive to

changes in relative weighting and so we elected to use the

simplest model (i.e., equally weighted).

4. Application of the statistical model in
southeastern Australia

The statistical model was used to estimate SSTs on

the continental shelf in southeastern Australia. First, the

model was tested at a point location in Bass Strait (section

4a). Then, the method was applied to the entire south-

east Australian continental shelf including Victoria and
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Tasmania, the Great Australian Bight, New SouthWales,

and southern Queensland (section 4b).

a. Estimating SST at a point location in Bass Strait

Time series of observed SST (Yt) and BRANSST (Y
^

t)

at a location (408S, 1478E) in Bass Strait are shown in

Fig. 3 (top panel, black and gray lines, respectively; see

white dot in Fig. 4 for location). This location was chosen

as representative of the interior Bass Strait, a region for

which BRAN performs poorly (e.g., see Fig. 2). It is clear

that Y
^

t is not a perfect predictor of Yt. The mean SST is

underpredicted by 0.48C (Y5 15:18C and
^

Y5 14:78C).
The seasonal cycle is reasonably well represented, al-

though the trough-to-peak amplitude is low by 0.378C
and the minimum SST occurs approximately 17 days

too early [correlation of r 5 0.972 and root-mean-

square error (RMSE) of 0.5038C, middle panel of Fig. 3].

The residual variability also compares poorly with the

observations (r 5 0.488) with an RMSE of 1.018C (bot-

tom panel of Fig. 3).

The linear statistical model described in section 3 was

used to predict SST at 408S, 1478E. The locations of X
^

t

(the offshore predictor variables containing reliable ocean-

ographic data to inform the inshore location boundary

scaling) were chosen by finding the minima of the cost

matrices defined in section 3. A different cost matrix is

defined for the mean, the seasonal cycle, and the residual

components. The details of the calculation of the cost

matrices are shown here. The quality matrices are rep-

resented by point-by-point comparisons of T
^

ijt and Tijt at

each location (i, j) given by Eqs. (2)–(4). The Q metrics

compare SST at the same point location and show the

degree to which offshore locations can be trusted to pro-

vide accurate predictions of inshore mean SST (Fig. 4a),

SST seasonal cycle (Fig. 4d), and SST residual variability

(Fig. 4g). Accurate values of T
^

ijt are crucial to providing

predictors of inshore SST variability.

The strength matrices are represented by a compari-

son between Yt and Tijt across the domain given by Eqs.

(19)–(21). The S metrics show the degree to which off-

shore locations have a similar mean SST (Fig. 4b), SST

seasonal cycle (Fig. 4e), and SST residual variability

(Fig. 4h) as compared with the inshore location. A strong

relationship between inshore and offshore SST is also

crucial to providing a good predictor location. The prox-

imity of the inshore andoffshore locations is representedby

R, an isotropic two-dimensional Gaussian function with

a 208 length scale in both latitude and longitude [see Eq.

(22), figure not shown]. This ensures that predictors are not

chosen too far from the inshore location. An anisotropic

Gaussian function could equally well be considered based

on important length scales, but we use an isotropic form

for simplicity and for concept demonstration.

The inverse of the product of these three fields gives the

cost matrix [see Eq. (23) and Figs. 4c,f,i], the minimum of

which corresponds to the location of X
^

t identified for use

FIG. 3. SST variability at a location (408S, 1478E) in Bass Strait. Time series of (top) total SST,

(middle) seasonal cycle of SST, and (bottom) residual SST from observations (black lines),

BRAN (gray lines), and the statistical model prediction (dashed lines). The statistical model is

informed by offshore SST from BRAN (see Fig. 4 for locations of inshore and offshore points).
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in the statistical model. The offshore locations are in-

dicated by yellow circles in Fig. 4 (note the different

locations for the mean, seasonal cycle, and residual

submodels). This procedure ensures that the chosen

predictor is optimal based on our cost function criteria

for estimating SST at that location, maximizes the re-

lationship between the inshore and offshore locations,

and is proximal in space.

The linear statistical model provides a substantially

more accurate estimate of SST in Bass Strait (Ŷt) than

BRAN SST (Y
^

t). The mean is slightly overpredicted by

0.18C (Y5 15:18C and bY5 15:28C), which is a significant

improvement over the 0.48C underprediction given byY
^

.

The seasonal cycle is better correlated (r5 0.998, a slight

improvement of 0.026) and the RMSE has reduced by

about two-thirds to 0.1578C. The residual variability is

much better correlated (r 5 0.692, an improvement of

0.204) and the RMSE has reduced by about half to

0.5358C. Time series of Ŷt, Ŷt
S, and Ŷt

0 are shown in Fig. 3
(dashed lines). It is clear, from both the statistics quoted

above and a visual comparison of the time series, that the

statistical model provides better estimates of SST vari-

ability at this location in Bass Strait than are provided

directly from BRAN.

FIG. 4. (left) Quality, (center) strength, and (right) cost functions for (a)–(c) mean SST, (d)–(f) SST seasonal cycle, and (g)–(i) residual

SST variability. The inshore location is shown by the white circle. The offshore locations that minimize the cost functions (the SST

predictors) are shown by yellow circles.

JANUARY 2014 OL IVER AND HOLBROOK 223



b. Estimating SST across the continental shelf

The approach described in the previous section (sec-

tion 4a) was applied across the entire continental shelf.

The statistical model was systematically applied to each

location with water depths less than 200m off the coasts

of Victoria and Tasmania [section 4b(1)], the Great

Australian Bight [section 4b(2)], and New South Wales

and southern Queensland [section 4b(3)]. The cost

function was masked for all locations in water depth less

than 200m to exclude those locations as potential pre-

dictors. The combined field of all Ŷt over the continental

shelf is denoted T̂t. The analysis references the quality

matrices calculated over these domains, which are shown

in Figs. 5–7 as well as RMSEs, which are not shown.

1) TASMANIA AND VICTORIA

The model performs well at estimating SST on the con-

tinental shelf around Tasmania and Victoria. The quality

matrix for the mean is shown in Fig. 5a. The
^

T are largely

unrepresentative of SST in the interior of Bass Strait and

near the coast of Tasmania, especially off the northeast

coast. The quality function, recalculated using the esti-

mate bT from the statistical model, is shown in Fig. 5b. The

statistical model provides improved estimates over most

of the domain, especially where
^

T was a poor estimate,

that is, in the interior Bass Strait and off the northeast

coast of Tasmania (Fig. 5c). In these regions, the error

between the observed and predicted mean is reduced

by up to 18C. The only region where bT provides a worse

FIG. 5.A comparison of observed and predicted SST on the continental shelf aroundTasmania andVictoria. The quality of (left) BRAN

(Q) and (center) predictions from the statistical model (Q̂) are shown for the (a)–(c) mean (Q and b
Q), (d)–(f) seasonal cycle (QS and Q̂S)

and (g)–(i) residual variability (Q 0 and Q̂0). (right) The improvement factors (the ratio of Q̂ and Q). The black contour shows an im-

provement factor of exactly 1.
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estimate than T
^

is to the east of Flinders Island. (It

should be noted that this is a region where
^

T provides

a very good estimate and so it may be difficult to im-

prove upon it.) Similarly, the model provides a much

improved estimate of the SST seasonal cycle, especially

in the interior Bass Strait and off the southern tip of

Tasmania (Figs. 5d–f), where the RMSE is reduced by

60%–80% (up to 18C). The residual SST variability is

also much better represented by T̂0
t than by T

^0
t, especially

in Bass Strait (Figs. 5g–i). In the southern portion of the

Bass Strait, the RMSE for the residual is reduced by up

to 50% (0.58C). However, the statistical model does not

provide substantially improved estimates of residual

SST immediately adjacent to most of the coastline,

particularly Victoria and southern Tasmania. The Q̂0

also exhibits significant jumps in quality between adja-

cent points, indicating a lack of spatial smoothness in T̂0
t.

2) THE GAB

The model also provides substantially improved esti-

mates of SST on the continental shelf around the Great

AustralianBight (GAB). The qualitymatrix for themean

is shown in Fig. 6a. The
^

T are largely unrepresentative

of SST in the upper part of theGAB and in SpencerGulf

and Gulf St. Vincent (the gulfs). The quality function,

calculated using bT, is shown in Fig. 6b. The statistical

model provides improved estimates over almost the

entire domain except near themouths of the gulfs but, as

before, this is a region where
^

T provides a very good

estimate with which to begin (Fig. 6c). The error in the

prediction of themean is reduced by up to 18C overmost

of the domain and over 1.58C in the gulfs. The model

provides a much improved estimate of the SST seasonal

cycle in the upper GAB and in the gulfs (Figs. 6d–f). The

RMSE decreases away from the shelf break, reaching

values up to 18C (nearly a 100% reduction). The quality

matrix for the residual variability Q0 shows that BRAN

performs poorly in the GAB away from the shelf break

(Fig. 6g). Residual SST variability is much better rep-

resented by T̂0
t in this region, except near the shelf break

(again, where T
^0

t is good to begin with) and immediately

adjacent to the coast and in the upper part of the gulfs

(Figs. 6h–i). The RMSE is reduced by 75%, up to 0.58C,
and higher in the gulfs (nearly 100%). As above, the Q̂0

also exhibits significant jumps in quality between adja-

cent points, indicating a lack of spatial smoothness in T̂0
t.

3) NEW SOUTH WALES AND SOUTHERN

QUEENSLAND

Model performance on the continental shelf off New

South Wales and Southern Queensland is more mixed

than in the previous two regions. The quality matrix

for the mean is shown in Fig. 7a. The statistical estimates

FIG. 6. A comparison of observed and predicted SST on the

continental shelf around the GAB. The figure is divided into three

sets with three panels each. Shown are (a),(d),(g) the quality of

BRAN (Q), (b),(e),(h) the quality of the predictions from the

statistical model (Q̂), and (c),(f),(i) the improvement factors (the

ratio of Q̂ and Q) for (top three panels) the mean SST, (middle

three panels) the seasonal cycle of SST, and (bottom three panels)

the residual SST variability. The black contour shows an im-

provement factor of exactly 1.
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bT are generally better than T
^

south of approximately

338S, but the results are mixed north of about 338S and

quite poor off of Fraser Island in theCoral Sea (Figs. 7b–c).

Similarly, the statistical model provides amuch improved

estimate of the SST seasonal cycle, except near the Coral

Sea and in a region around 34.58S, where the results are

very mixed (Figs. 7d–f). The RMSEs are up to 0.258C for

the seasonal cycle and up to 0.48C for the residual, and

they increase shoreward (away from the shelf break) in

both cases. The residual variability is much better rep-

resented by T̂0
t than by T

^0
t in the Coral Sea region (north

of;278S), is poorly represented between this region and

about 338S, and displays mixed results south of approxi-

mately 338S (Figs. 7g–i). These results indicate three

clearly defined domains: (i) near the Coral Sea (north of

;278S), (ii) between around 278 and 338S, and (iii) south

of approximately 338S. The differences between these

three domains are clearly visible in the statistical model

results for the residual variability submodel (Fig. 7, three

rightmost panels). It is interesting to note that around

338S is roughly the latitude at which the EAC separates

from the coast (Godfrey et al. 1980). This likely corre-

sponds to the different physical processes acting to the

north and south of this separation point, a factor that

might be important in model performance depending on

physical process complexity and scale issues.

5. Connectivity with the mean circulation

An analysis of the optimal locations of the offshore

predictors based on our previous criteria was also per-

formed. The continental shelf around Tasmania and

Victoria was chosen as the case study region. The shelf

was divided into five regions (northwest, northeast, Bass

Strait, western Tasmania, and eastern Tasmania), and

these have been color coded along with the correspond-

ing offshore predictor locations from the model for re-

sidual SST variability (see Fig. 8, top panel). Predictors

tend to lie either (i) along the shelf break immediately

adjacent to the inshore region that they predict or (ii)

offshore and predominantly to the west (;84% of all

predictors in this region lie to the west of the southern

tip of Tasmania). The predictors also tend to lie in re-

gions where the mean surface flow, determined from

daily fields of meridional and zonal surface currents

from BRAN, is strong and continuous between the

shelf and the offshore region (see Fig. 8, top panel, gray

arrows). This suggests that connectivity between the

shelf and offshore regions may be a useful physically

based metric for optimal predictor selection.

Connectivity was determined by calculating the La-

grangian trajectories of particles, seeded at an offshore

location, following the mean flow: x(t) 5 [x1(t) x2(t)]
T.

FIG. 7. As in Fig. 6, but a comparison of observed and predicted SST on the continental shelf around New South Wales and southern

Queensland. Note that the orientation of the panels has changed from Fig. 6 because of the projection of the location.
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Given a location at time t, the location at some time Dt
later can be approximated by

x(t1Dt)5x(t)1u[x(t)]Dt , (24)

where u(x) is the mean flow at location x. Similarly, the

trajectories backward in time can be approximated by

x(t2Dt)5x(t)2u[x(t)]Dt . (25)

The mean flow was calculated from BRAN at fixed

locations in space across the 1/108 grid and so the mean

flow u at the exact location x(t) was determined by bi-

linear interpolation. In our algorithm, trajectories stop

moving if they reach the coast or the open boundaries.

Trajectories forward and backward in time starting from

the same initial location are denoted xf (t) and xb(t),

respectively. To simulate turbulent motion, we add a

random kick to the particles at each time step by re-

placing u(x) with u(x) 1 Du. The random kick velocity

Du is a Gaussian random number with a mean of zero

and a standard deviation given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ah/Dt

p
, where Ah is

a horizontal eddy diffusivity (e.g., Brickman and Smith

2002).

The connectivity statistic C, measuring the extent of

connectivity between each of the offshore locations and

the continental shelf, is calculated from

Cij52min

�
12

t200,ij

t
, 0:5

�
, (26)

where t200,ij is the total time spent over the continental

shelf (water depth less than 200m) by both xf(t) and xb(t)

starting from an initial location (i, j) and integrated for

a total T. If a trajectory spends the entire time on the

shelf, either backward or forward, then Cij 5 1, and if it

never reaches the shelf, thenCij5 0; otherwise, 0,Cij,
1. Connectivity around Tasmania and Victoria was cal-

culated for each location in the domain bounded by 358–
488S and 1328–1608E. An ensemble of 500 forward and

backward trajectories (with t 5 300 days, e.g., 150 days

forward and 150 days backward; Dt 5 0.5 days; Ah 5
4m2 s21) was calculated at each location to yield 500

connectivity matrices [calculated according to Eq. (26)],

which were then averaged at each location to give the

final C (Fig. 8, bottom panel).

The statistical model was applied over the continental

shelf of Tasmania and Victoria, with the cost function

(used for determining offshore predictor locations)

modified as follows:

Jij5
1

QijSijRijCij

, (27)

to include the effect of C. The quality functions calculated

using the new estimate of Ŷt are shown in the middle

panels of Fig. 9. The inclusion of the connectivity matrix

improves the model predictions in two ways. First, the

results are much smoother in space; for example, there are

fewer jumps in quality between adjacent grid points. Sec-

ond, the quality functions indicate that the model pre-

dictions perform better (especially for the seasonal cycle

and residual variability) than those without the connec-

tivity information (cf. right panels of Figs. 5, 9). Notably,

the results for residual SST variability along coastal

Victoria are much improved. It should be noted that the

results for the mean SST do not show such a dramatic

improvement and in some regions are slightly worse. This

may be because information about themean circulation is

implicitly part of the mean SST statistics, and so its in-

clusion does little to improve mean SST predictions.

By including the connectivity as an integral part of the

model, we havemoved from a purely statistical model to

a hybrid statistical–connectivity model. The power of

such a model is that changes in the connectivity (e.g.,

under a changing climate) can be incorporated into the

model to modify it accordingly. This concept can be

generalized to a statistical–dynamical model in which

FIG. 8. Off-shore predictor locations and connectivity in-

formation. (top) The shelf is divided into five regions (northwest,

northeast, Bass Strait, western Tasmania, and eastern Tasmania),

and these have been color coded along with the corresponding

offshore predictor locations from the model for residual SST var-

iability. (bottom) The C calculated from Lagrangian particle tra-

jectories [Eq. (26)].
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information related to ocean dynamics (in our case, only

mean circulation) are explicitly incorporated into the

statistical model.

6. Conclusions and future work

The approach presented in this paper provides a sys-

tematic statistical method for the estimation of across-

shelf ocean climate variability (here, the case study of sea

surface temperature in an Australian marine context was

presented) across a range of time scales. The mean SST,

SST seasonal cycle, and residual SST variability on the

shelf were predicted using estimates of offshore SST from

an ocean reanalysis product (BRAN). Independent linear

statistical models were developed to predict each of these

components, and the model parameters were informed

using the observed (e.g., from AVHRR) relationship be-

tween SST offshore and SST on the continental shelf. A

method of optimally choosing the offshore predictor us-

ing three criteria (data quality, strength of offshore/shelf

connection, and proximity) was developed. Finally, the

model was refined into a simple hybrid statistical–

connectivity model by including passive tracer connec-

tivity, based on the mean surface circulation, as a further

criterion for predictor selection. The approach presented

in this paper represents a potentially useful method for

generating homogeneous daily SST fields on the conti-

nental shelf and provides a framework for estimating

other climate fields (e.g., sea surface salinity and surface

chlorophyll a) at relatively low computational cost.

The model was applied to the continental shelf around

southeastern Australia. The statistical model predictions

of across-shelf SST are generally much closer to the

observations than those available directly from BRAN—

especially around Tasmania, Victoria, and the Great Aus-

tralian Bight. Themean and seasonal cycle are much better

FIG. 9. As in Fig. 5, except the statistical model includes the shelf–offshore connectivity information introduced in section 5.
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predicted. Typical RMSEs for the seasonal cycle were re-

duced by up to 18C (60%–80% reduction in Bass Strait and

nearly 100% reduction in the Great Australian Bight). The

residual variability was also better predicted, except very

near to the coast. TheRMSEs in central Bass Strait and the

upperGreatAustralianBight are demonstrably reduced by

0.58C (50% reduction in Bass Strait and 75% reduction in

the Great Australian Bight). Prediction quality for coastal

New South Wales and southern Queensland were more

mixed, and it is not clear that the statistical model provides

better predictions in those regions. Overall, however, our

model shows significant promise as a methodological ap-

proach for the estimation of across-shelf SST in terms of

accuracy, robustness, and potential utility beyond the

Australian case study example.

In the simplest statistical model approach, predictor

locations were identified by minimizing a cost function

depending first on three factors: quality, strength, and

proximity. We do not presume that this is an exhaustive

list of factors thatwould influence the choice of predictors.

They were selected here based on a combination of in-

tuition and oceanographic understanding and allowed us

to develop a relatively simple model. The inclusion of

other relevant factors in the analysis, once identified,

would be relatively simple as an addition to the model

formulation. For example, we have been able to readily

expand the definition of the cost function to also include

a simplemeasure of connectivity, creating a hybrid type of

statistical–connectivity model.

Connectivity between the shelf and the open ocean is

defined in terms ofLagrangian trajectories, given themean

surface circulation. We found that predictors that lie in

regions with strong connectivity to the coast provided ac-

curate and spatially smooth results. While a purely statis-

tical approach, such as localized EOF analysis, could also

lead to model improvements, our connectivity-based ap-

proach has the strength of a hybrid statistical–physical

model, in that we are informed about from where the in-

formation is coming. However, the connectivity statistics

should be improved with a more complete treatment and

consideration of the full three-dimensional and time-

varying flow field, and not only the mean flow. These

connectivity statistics could be calculated by extending our

technique appropriately, or they could be obtained, for

example, from projects such as the Marine Connectivity

Interface (Connie2, http://www.csiro.au/connie2/; Condie

et al. 2011). We chose to use the mean circulation as the

connectivity metric of relevance in our demonstration of

concept study here since analysis of the predictor locations

indicated that, to first order, it was the physically based

oceanographic feature (i.e., the circulation) that linked

SST variability between the shelf and offshore regions. It is

clear that the inclusion of this physically based metric

provided improved model results and greater spatial ro-

bustness of the model predictions.

It may be possible to further refine the model by con-

sidering frequency-dependent models of residual vari-

ability. The ‘‘gappy’’ nature of the observed SST time

series prevents the application of a fully spectral ap-

proach, but this could be partly achieved by splitting the

residual variability into more than one time series. For

example, monthly means of the residual variability could

be calculated and this time series would represent the

‘‘low frequency’’ residual variability. The remainder

would represent the ‘‘high frequency’’ residual variabil-

ity. It is possible that different mechanisms are at play on

different time scales. Separatemodels for each could then

be constructed, allowing for different predictor locations

and regression coefficients. Additionally, other predictors

could be included in the model (local winds, climate

modes of variability, etc.), as it is likely that different

mechanisms may lead to predictability on different time

scales. Seasonally dependent regression coefficients may

also improve the residual SST prediction.

A possible weakness of the statistical model is that each

submodel is informed by a single offshore location. A

more complex model version might instead utilize infor-

mation from multiple locations to inform each inshore

SST prediction. There are several ways inwhich this could

be achieved. For example, the residual could be predicted

by multiple linear regression, with the offshore predictors

selected to maximize the amount of on-shelf variance

explained. A more general approach would be to use

kernel regression, with the kernel defined in a similar way

to the cost matrix. This could then be generalized to the

submodels for themean and seasonal cycle (which are not

presented as simple linear regression models).
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APPENDIX A

Estimating the Seasonal Cycle by Harmonic
Regression

Given a time series xt, assume that its seasonal cycle xSt
can be approximated by a sum of K harmonics of the

annual cycle:

JANUARY 2014 OL IVER AND HOLBROOK 229

http://www.csiro.au/connie2/


xSt ’ �
K

k51

Ak cos(vkt2fk) , (A1)

where Ak, fk, and vk are the amplitude, phase, and

frequency of the kth harmonic, respectively. The vk

are written as

vk52pkL , (A2)

whereL is the length of the year (in units of the sample rate

of xt, for example, L 5 12 for monthly data). These fre-

quencies correspond to a period of 1yr for k5 1, 1/2 yr for

k5 2, 1/3yr fork5 3, etc.Note thatEq. (A1) is equivalent to

xSt ’ �
K

k51

(ak cosvkt1 bk sinvt) , (A3)

whereA2
k 5 a2k 1 b2k and fk5 arctan(bk/ak). We useK5

3 in this study.

We write the following regression model:

xt5Bst1«t , (A4)

where B is a vector of length 2K of regression co-

efficients, st is a vector of length 2K of sines and cosines,

and «t is an error term representing effects not included

in the model. The ith element of st is given by:

for odd i , sit5cosvkt, where k5(i11)/2, (A5)

and

for even i, sit5sinvkt, where k5 i/2. (A6)

The estimated regression coefficients B̂ are calculated by

least squares. The values of ak and bk are given by the (2k2
1)th and (2k)th element of B̂, respectively. It is then trivial to
calculate Ak and fk using the relations given above.

APPENDIX B

Cost Function Sensitivity to Relative Weightings
of Terms

In the model described in section 3, the optimal pre-

dictor location is determined by the minimum of J given

by Eq. (23):

Jij5
1

QijSijRij

. (B1)

FIG. B1. Sensitivity tests of the boundary-scaling model to relative weighting of the terms that make up J [Eq.

(B2)]. (left) The quality functions and (right) the errors for the (top) mean SST, (middle) SST seasonal cycle, and

(bottom) residual SST variability for the relative weighting ofQ, S, and R given by the triplet of values (wQ, wS, wR).

For each sensitivity test, the results (quality values and errors) at all locations on the shelf are collected and sum-

marized by its probability distribution (represented here as a box-and-whisker plot that indicates the four quartiles

along with any outliers).
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In this form, the individual terms (Q, S, and R) are each

weighted equally. Here, we consider another form in

which each term is given a weight indicating its overall

contribution to the cost function:

Jij5

1

[wQQij1(12wQ)][wSSij1(12wS)][wRRij1(12wR)]
.

(B2)

Here,wQ,wS, andwR are scalar values constrained to lie

between 0 and 1. A value of 1 gives full weighting to that

term and a value of 0 gives noweighting to that term. For

example, weighting values of (wQ,wS, wR)5 (1, 0.5, 0.2)

would give full weighting to the quality, 50% weighting

to the strength, and 20% weighting to the localization.

A suite of sensitivity calculations were performed to

test the sensitivity of the boundary-scaling model to the

relative weighting of the terms in the cost function. For

each sensitivity test, the model was fit to the entire

continental shelf around the Great Australian Bight,

Tasmania, Victoria, New South Wales, and southern

Queensland (as in section 4), and the quality values and

RMSEs at all grid points were collected together, sum-

marized by their probability distribution (Fig. B1).

There were small variations in the mean and spread of

the results for different weighting choices, which in-

dicated that the quality appears to be the most impor-

tant term and localization the least important term (in

the sense that these results improve as these terms are

weighted higher and lower, respectively). However,

considering the overlap in the spread of quality values

and RMSEs across all sensitivity runs, including the

equally weighted model with (wQ,wS,wR)5 (1, 1, 1), we

can conclude that the results are not strongly sensitive to

changes in the relative weighting of the three terms.

Therefore, in the interest of simplicity, we have elected

to weight all the terms equally.
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