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ABSTRACT: Atmospheric and oceanic reanalyses are used widely by the climate science community. These products provide
full three-dimensional state fields and gapless time series, along with the confidence of being constrained by observational
measurements, for atmospheric scientists and oceanographers to use in analyses of the climate system. However, as ubiquitous
as reanalysis data are, it is not often considered how a scarcity of measurements in certain poorly observed regions, or over
the course of a long period of time in which the observational system has changed significantly, impacts the realism of the
data. This study explores this question using tropical surface pressures from the Twentieth Century Reanalysis to hindcast an
index of the Madden–Julian Oscillation (MJO) over the 20th century. We show that by changing the choice of surface pressure
predictor locations, and being aware of the observational measurements that have been assimilated by the reanalysis system,
it is possible to control the estimated centennial-scale trend in MJO activity from nearly zero to an increase of 30% over the
20th century. We emphasize that this is an apparent trend as it arises solely from the use of reanalyzed surface pressures from
locations that have either been poorly observed or have experienced significant changes in the observing system over the 20th
century. This highlights the need to be aware of the observational measurements (or lack of them), particularly their density
in space and time, that have been assimilated by a reanalysis system.

KEY WORDS reanalysis; Madden-Julian Oscillation; data assimilation; multidecadal variability; climate trends

Received 1 October 2014; Revised 13 September 2015; Accepted 22 October 2015

1. Introduction

For the last 20 years, meteorological and oceanographic
reanalyses have provided climate researchers with data
sets of great utility. A reanalysis provides a data set which
synthesizes the merits of observations and numerical mod-
els. Namely, the quasi-observational nature of a reanalysis
ensures that the data remain strongly constrained by
observed variability, due to the assimilation of histor-
ical measurements, while the nature of the underlying
unchanging numerical models ensures that the output
contains no gaps or discontinuities in time or space as
is common in the observational record. This provides a
data set which can be used for a wide variety of studies
of atmospheric, oceanographic, and climate variability.
Frequently used reanalysis products include the National
Centers for Environmental Prediction/National Center
for Atmospheric Research (NCEP/NCAR) Reanalysis
1 (Kalnay et al., 1996), the Japanese 25-year ReAnal-
ysis [JRA-25, Onogi et al. (2007)], and the European
Centre for Medium-Reange Weather Forecasts Interim
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Reanalysis [ERA-Interim, Dee et al. (2011)] for the
atmosphere; the Simple Ocean Data Assimilation (SODA,
Carton et al., 2000a, 2000b), the French Global Ocean
Reanalysis and Simulations [GLORYS, Bernard et al.
(2006)], and Bluelink ReANalysis [BRAN, Oke et al.
(2008); Schiller et al. (2008)] for the ocean; and the
NCEP Climate Forecast System Reanalysis [CFSR, Saha
et al. (2010)] for the coupled climate system.

There are two philosophical interpretations of what
a reanalysis is. First, one can interpret a reanalysis as
using observations to constrain a numerical model. This
is the most common interpretation and relies on the
data-assimilative nature of reanalyses whereby histori-
cal observational measurements of the atmosphere and
ocean are ‘assimilated’ into a numerical model, using a
variety of techniques [e.g. three-dimensional variational
(3D-VAR), four-dimensional variational (4D-VAR); the
Ensemble Kalman Filter; e.g. Evensen (2007)], in order
to constrain an otherwise free-running numerical model to
track as closely as possible the observed state trajectory.
Second, one can interpret a reanalysis as using a numeri-
cal model to interpolate between, and extrapolate beyond,
all available observations. All forms of interpolation and
extrapolation use an underlying mathematical model to
provide predictions where observations are missing. Data
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assimilation and numerical models can be thought of as
advanced interpolation methods (using our mathematical
understanding of atmosphere and ocean dynamics) in time,
space, and between geophysical parameters. Without such
schemes, one has to revert to more simple schemes, e.g.
linear interpolation, which assumes bit-wise linear data
structures.

Both interpretations of a reanalysis given above are cor-
rect and allow us to understand the strengths and limita-
tions of these products. One very important limitation is
that if a reanalysis system is lacking observations for a
particular period of time, or region of space, it will still
provide an estimation of the full three-dimensional state
of the atmosphere and/or ocean. (This could rightly be
considered a feature, but for the purposes of this study,
it is considered a limitation.) However, according to the
first interpretation, a lack of observations implies that the
underlying model is no longer being constrained by them,
and the output is simply that of a free-running numerical
model. (Note that even freely running numerical models
are subject to boundary forcing, or background fields to
which the model state is relaxed, and these may strongly
constrain certain aspects of the variability in a way that is
not strictly free.) Similarly, according to the second inter-
pretation, interpolation and extrapolation schemes cannot
cope with a complete lack of observations, and the model
will relax to a state that is consistent with observations in
other locations and the model’s physics, but one that is not
necessarily the true state of the system.

Clearly, it is important to consider the limitations of a
reanalysis system when the spatial and temporal density
of observations is very low. Previous studies have shown
that changes to the observing system (i.e. changes to the
frequency and/or locations of observations) have led to a
spurious positive trend in sea level pressure in the South-
ern Hemisphere in the NCEP/NCAR Reanalysis (Hines
et al., 2000; Marshall and Harangozo, 2000), trends in
Antarctic geopotential height and air temperature in the
NCEP/NCAR Reanalysis (Marshall, 2002), and a warming
trend in the lower troposphere in the ERA-40 reanalysis
(Bengtsson et al., 2004). This study reconstructs the vari-
ability of the Madden–Julian Oscillation (MJO) over the
20th century using surface pressures from the Twentieth
Century Reanalysis (20CR), as done by Oliver and Thomp-
son (2012), and demonstrates the implications of ignoring
density of observations assimilated by the system. In doing
so, we propose a method of overcoming this limitation by
taking into account the density of assimilated observations
in time and space.

2. Data and methods

The MJO is the dominant mode of intraseasonal atmo-
spheric variability in the tropics (Madden and Julian,
1971, 1972, 1994; Wheeler and Hendon, 2004; Zhang,
2005). It consists of a region of deep convection, typically
originating over the Indian Ocean, which then propa-
gates eastward roughly following the equator. Strongly

associated with the MJO are variations in cloud cover, pre-
cipitation, zonal wind in the lower and upper troposphere,
and surface pressure. The temporal variability of the MJO
is broad-banded with most energy on intraseasonal time
scales between periods of about 30–90 days. We use
the Wheeler and Hendon (2004) index to characterize
the MJO. This bivariate index is based on the first two
principal components of a multivariate combination of
tropical outgoing longwave radiation and zonal wind at
200 and 850 hPa. We use daily values of the index over
the 1979–2008 period, obtained from the Australian
Bureau of Meteorology website (http://cawcr.gov.au/
staff/mwheeler/maproom/RMM/). We have low-pass fil-
tered the MJO index with a cutoff period of 10 days. This
filtered index is denoted by IWH and hereafter referred
to as ‘the MJO index’. We also calculated (1) the MJO
amplitude, defined as the square root of the sum of the
squares of the two components of the index, which is a
measure of the strength of MJO activity, and (2) the MJO
phase, defined as the angle of the two components of the
index in phase space, discretized into eight integer values
(Wheeler and Hendon, 2004).

The 20CR (Compo et al., 2011) provides
three-dimensional fields of the estimated atmospheric
state from 1871 to the present. The reanalysis system
uses a 56-member ensemble Kalman smoother and only
assimilates surface and sea level pressures, sea surface
temperature, and sea ice distribution in order to maintain
a more constant observational system over the entire
analysis period. This avoids, for example, potential shocks
induced by the introduction of satellite data during the
late 20th century. Daily fields of the ensemble mean and
ensemble spread of surface pressure (p and Δp, respec-
tively) on a 2∘-resolution grid were obtained from 20CR
(V2c) over the 1905–2008 period. The ensemble spread
is a measure of the degree to which ensemble members
have diverged from each other and tends to be large in the
absence of observational measurements and small when
the presence of observations are able to constrain the
reanalysis estimates. In truth, this is an oversimplification
and ensemble spread is also a function of the hydrody-
namic flow itself as well as representing errors from both
imperfect observations and an imperfect numerical model.
Seasonal, interannual, and high-frequency variability were
removed from the surface pressure time series following
Oliver and Thompson (2012).

The MJO is represented strongly in 20CR surface pres-
sure over the 1979–2008 period (Figure 1). Negative pres-
sure anomalies develop over the Indian Ocean in phases
1–2 and propagate eastward through the Indo-Pacific in
phases 3–4 and then into the eastern Pacific by phases
5–6. During phases 5–6, positive pressure anomalies
develop over the Indian Ocean and propagate eastward
out of phase (by four MJO phases) with the negative
pressure anomalies. There is also poleward propagation
of sea level pressure anomalies (notably over Asia from
phases 3–4 to phases 5–6) which is possibly an expres-
sion of the Boreal Summer Intraseasonal Oscillation [e.g.
Kikuchi et al. (2012)]. The proportion of MJO variability
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Figure 1. Relationship between the MJO and Twentieth Century Reanalysis surface pressures. Colours show composites of surface pressure
anomalies over the 1979–2008 period with pairs of MJO phases (1 and 2 together, 3 and 4, etc.) based on the IWH index.

that could be statistically accounted for by surface pressure
was calculated at each location over the 1979–2008 period
(Figure 2(a)). The metric used, 𝜅, was calculated at each
location as the average coherence [e.g. Priestley (1981)]
between IWH and the surface pressure time series at that
location, weighted according to the spectral density of IWH.
This metric is analogous to a correlation over intraseasonal
time scales, i.e. a value of 1 indicates that 100% of the
variability can be accounted for while a value of 0.5 indi-
cates that only 50% of the variability can be accounted
for (Oliver and Thompson, 2010, 2012). Time series of
20CR surface pressures clearly exhibit a strong statistical
relationship with the MJO index throughout much of the
tropics, particularly over the Indian and Pacific Oceans,
explaining up to 65% of the variability in the Indo-Pacific
warm pool. Therefore, we will use surface pressures from
the 20CR as predictors of the state of the MJO.

We hindcasted an MJO index from time series of surface
pressure at a finite number of locations using the multi-
variate linear regression model of Oliver and Thompson
(2012). The model is of the form

It = 𝛽pt + 𝜀t (1)

where It is the 2× 1 bivariate MJO index at time t, 𝛽 is a 2×
m matrix of regression coefficients, pt is a m × 1 vector of
surface pressure predictors (and their Hilbert transforms)
at time t, and ∈ t is an error term. The time resolution
was daily. Estimates of the regression coefficients 𝛽 were

determined by an ordinary least squares fit of Equation (1)
to the MJO index over the 1979–2008 period; the MJO
index was then reconstructed over the 1905–2008 period
using Ît = 𝛽pt.

3. Results

We fit the model presented in Section 2 in three ways. First,
in Section 3.1, we fit using surface pressures from locations
chosen based on a simple model. In other words, we
assumed that MJO-related variability of tropical surface
pressure was well represented by 20CR and developed a
simple model including locations which should contribute
significant MJO-related variability. Second, in Section 3.2,
we fit using surface pressures at locations chosen after
taking into account the spatial and temporal density of the
observations which were assimilated by 20CR. Finally, in
Section 3.3, we purposefully choose a set of locations for
which surface pressures are poorly observed.

3.1. Predictor locations chosen based on simple
reasoning

The MJO is expressed strongly in surface pressure
throughout much of the tropics [e.g. Madden and Julian
(1972); also Figures 1 and 2(a)] and so, in the first instance,
we sampled this region by choosing predictor locations
distributed equally every 30∘ longitude along the equator

© 2015 Royal Meteorological Society Int. J. Climatol. (2015)
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Figure 2. Observational feedback in model design. (a) The fraction of the total standard deviation of the MJO index that can be statistically accounted

for by surface pressure. (b) and (c): measures of data uncertainty and stability, respectively, given by the time-mean Δp̃ and linear trend bΔp̃ of Δp̃.
Thick contours indicate the critical values [(a) 0.33, (b) 0.5, and (c) − 1.32 × 10− 5 days− 1
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area where 𝜅, Δp̃, and bΔp̃ are all below critical thresholds. Circles show the locations used for predictors in the Simple model; white circles show
the subset of locations used in the Informed model, and the shaded blue circles show the subset used in the Poor model.

and along 14∘N and 14∘S, leading to a set of 36 locations
from which to extract surface pressure time series pt
(Figure 2, all circles). This was called the ‘Simple’ model
and later models consisted of a subset of points used in
the Simple model.

The chosen pressure series p were fit to the MJO index
over 1979–2008 and then hindcast over the 1905–2008
period using the model described in Section 2. The pre-
dicted MJO index, denoted ISm, captures IWH well, with
correlation coefficients of 0.89 and 0.87 for the first and
second components, respectively (see Table 1). Time series
of the components of IWH and ISm over the 2000–2002
period demonstrate that ISm captures well the intraseasonal
variability present in IWH (Figures 3(a) and 4(a), black and
blue lines). A cross-spectral analysis showed that ISm has
a peak of energy in the same band of frequencies as IWH

and is highly coherent (>0.75) and in phase over those
frequencies (Figure 5, black and blue lines). Note that
the two components of the MJO index are more coherent
with each other, outside of the intraseasonal band (30–90
days), for ISm than for IWH indicating that the reconstructed
index is capturing coherent non-intraseasonal variability
not present in the original WH04 index. Time series of
ISm over the 1920–1922 period also demonstrate that it
exhibits similar intraseasonal variability (in character),
although with a slightly lower amplitude, over the early

Table 1. Performance of predicted MJO indices for different
choices of predictor locations.

Choice 𝜌1 𝜌2 Trend (century− 1)

Simple ISm 0.89 0.87 0.285 ± 0.023
Informed IIn 0.69 0.70 0.0436 ± 0.025
Poor IPo 0.87 0.85 0.289 ± 0.023

Correlation coefficients between the Wheeler and Hendon (2004) index
and predicted MJO indices are shown for the first and second components
(𝜌1 and 𝜌2, respectively) along with the linear trend over the 20th century
(±95% confidence interval) in MJO amplitude of the predicted index for
each of the model fits.

20th century (Figures 3(b) and 4(b), blue lines). This is
confirmed by the similarity in power spectra calculated
over the 1979–2008 period (Figure 5, solid blue line) and
over the 1905–1978 period (Figure 5, dashed blue line).
Also note that ISm and IWH spend roughly the same pro-
portion of time in each MJO phase (Table 2).

Time series of the MJO amplitude (smoothed with a
10-year moving average) of IWH and ISm indicate simi-
lar linear trends (−0.102 century− 1 and −0.164 century− 1,
respectively) and a number of shared interannual variations
over the shared 1979–2008 period (Figure 6, black and
blue lines). However, over the entire record (1905–2008),
the MJO amplitude of ISm exhibits a strong positive trend

© 2015 Royal Meteorological Society Int. J. Climatol. (2015)
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IWH IIn
ISm IPo

Figure 3. Time series of the Wheeler and Hendon (2004) and predicted MJO indices (first component). The first component of IWH (black), ISm

(blue), IIn (red), and IPo (green) are shown plotted over (a) 2000–2002 and (b) 1920–1923 (except IWH).

IWH IIn
ISm IPo

Figure 4. Time series of the Wheeler and Hendon (2004) and predicted MJO indices (second component). The first component of IWH (black), ISm

(blue), IIn (red), and IPo (green) are shown plotted over (a) 2000–2002 and (b) 1920–1923 (except IWH).

with time. The magnitude of this trend is 0.285 ± 0.023
century− 1 (see also Table 1). This corresponds to an
increase in MJO amplitude of ∼30% over the 20th century.
Is this trend realistic or a consequence of our choice of pre-
dictors from a potentially imperfect reanalysed variable?
We address this question in the following subsection.

3.2. Predictor locations chosen based on observational
feedback

We now wish to choose predictors by taking into account
the density of observational measurements in time and
space that have informed the 20CR reanalysis. Information

on the observations that have been assimilated by 20CR,
what we call here observational feedback, is readily avail-
able (Compo et al., 2011). The surface pressures assimi-
lated by 20CR are detailed and available in their original
form as part of the International Surface Pressure Data-
bank (ISPD). The ISPD is made up of three parts: sta-
tion observations, marine (ship-based) observations, and
tropical cyclone observations. The station component is
largely drawn from the International Surface Database
[ISD; Lott et al. (2008)], the marine component from the
International Comprehensive Ocean Atmosphere Data Set
[ICOADS; Worley et al. (2005)], and the tropical cyclone

© 2015 Royal Meteorological Society Int. J. Climatol. (2015)
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Table 2. Proportion of days (in %) spent in each phase for IWH and for the predicted index for each of the model fits.

Index Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6 Phase 7 Phase 8

IWH 13.3 13.5 11.8 12.2 12.9 12.4 12.2 11.7
ISm 12.8 12.3 12.5 12.3 13.2 12.3 11.9 13.0
IIn 13.8 13.2 12.2 11.1 12.6 12.8 11.6 12.6
IPo 12.1 12.0 12.7 12.8 12.8 12.2 12.1 13.3

component from the International Best Track Archive
for Climate Stewardship [IBTrACS; Knapp et al. (2010)].
Summary data for these databases are publicly available,
e.g. location and time period for active stations in ISPD.
Furthermore, 20CR provides fields of ensemble spread
which can also be related to observational data density.

Considering the time span covered by 20CR, there is
unsurprisingly considerable variation in the density of
observational measurements over time. For example, there
were clearly many more surface pressure observations
available from both station- and ship-based platforms, both
of which were assimilated by 20CR, in the late 20th cen-
tury as compared to the early 20th century (Figure 7). The
total number of stations recording in the tropics (equa-
torward of ±30∘ latitude) over four subsets of the 20th
century was 80 (1900–1925), 1156 (1926–1950), 22 762
(1951–1975), and 28 024 (1976–2000); the average num-
ber of ship observations per month over the same area
was 1.29× 104 (1900–1925), 2.26× 104 (1926–1950),
6.42× 104 (1951–1975), and 7.31× 104 (1976–2000).

The ensemble spread of surface pressure from 20CR,
Δp, can be used as a measure of how the density of
observational measurements varies in time and space
(G. Compo, 2009; pers. comm.). In the limiting case of no

observations, the ensemble members of the reanalysis sys-
tem will each act as a freely running model and so diverge
within the natural variability expected of the chaotic cli-
mate system, leading to a large value of Δp. In the case of
many observations, the ensemble members will converge
due to the presence of observations constraining their evo-
lution and limiting the degree to which they can diverge,
leading to a small value ofΔp. Regions of high (low) obser-
vational density will have low (high) values ofΔp. Because
the magnitude of surface pressure variations depends on
spatial location, we normalize Δp at each location by the
standard deviation of reanalysis surface pressure at that
location through time 𝜎 leading to the normalized ensem-
ble spread (NES) of surface pressure Δp̃:

Δp̃ =
Δp

𝜎
. (2)

We will refer to large (small) values of Δp̃ as high (low)
uncertainty reanalysis data.

We wish to estimate an MJO index that is both (1) accu-
rate (e.g. correlated with IWH), and (2) stable (in its level
of uncertainty) over the entire estimation period. This will
require predictors that have both (1) low data uncertainty,
and (2) little or no trend in data uncertainty over the record

© 2015 Royal Meteorological Society Int. J. Climatol. (2015)
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IWH IIn
ISm IPo

Figure 6. Time series of MJO amplitude of the Wheeler and Hendon (2004) and predicted MJO indices. The MJO amplitude, after smoothing with a
moving 10-year average, is shown over the 20th century for IWH (black), ISm (blue), IIn (red), and IPo (green). Corresponding straight lines indicate

the linear trend of each predicted index over the 1905–2008 period.
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length. We calculated the mean (Δp̃) and linear trend (bΔp̃)
of Δp̃ over the 1905–2008 period (Figure 2(b) and (c)). As
expected Δp̃ is generally low in regions with a high den-
sity of observations over the 20th century (e.g. the North
Indian Ocean, off Southeast Asia, Australia, the southeast
coast of Brazil, North America; compare Figures 2(b) and
7). The linear trend bΔp̃, which has been defined so that
positive indicates an increase ofΔp̃ with time, reflects local
changes in the observing system and tends to be low where

the number of measurements has been largely consistent
over time (e.g. the Eastern Pacific, the Tropical Atlantic
and Indian, eastern Australia; compare Figures 2(b) and
7). Note that bΔp̃ is always negative, i.e. there are no
locations in space where Δp̃ increases with time. We
have ensured low data uncertainty and stability by exclud-
ing from consideration locations where Δp̃ > 0.5 and
bΔp̃ < −1.32 × 10−5 days− 1 [thick contours, Figure 2(b)
and (c)]. These values correspond to an ensemble spread

© 2015 Royal Meteorological Society Int. J. Climatol. (2015)
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that is half the surface pressure variability (Δp̃ < 0.5 on
average) and a change in Δp̃ that is 1/2 over the entire
record. Note that this choice was arbitrary and only made
to ensure a relatively low data uncertainty (low mean value
ofΔp̃) and stability (weak trend inΔp̃); other choices could
function just as well, but these were used to illustrate sen-
sitivity to observational data density.

Example time series of Δp̃ for selected locations in
the Eastern and Western Pacific Oceans and in the East-
ern Indian Ocean are shown in Figure 8. These loca-
tions were chosen as good examples to illustrate cases
which did not meet the thresholds outlined above (the
Pacific Ocean examples) and a case which did (the Indian
Ocean example). In the Eastern Pacific Ocean, there have
never been many land- or ship-based observations, so the
value of Δp̃ has remained high over the entire record
leading to a region of high data uncertainty from which
to derive predictors (Figure 8(a)). Predictors from this
region were rejected based on the condition requiring

Δp̃ ≤ 0.5. In the Western Pacific Ocean, there was a dra-
matic change in the observing system: from nearly no
observations prior to 1940 to a very well observed region
afterwards (Figure 8(b)). This was reflected in the dramatic
change in Δp̃ pre- and post-1940 leading to an unstable
region from which to derive predictors; predictors from
this region were rejected based on the condition requir-
ing bΔp̃ ≥ −1.32 × 10−5. The Eastern Indian Ocean has
been well observed over the course of the 20th century
with very few major changes to the observing system. Pre-
dictors from this region were accepted as of low uncer-
tainty (Δp̃ ≤ 0.5) and stable over the entire record [bΔp̃ ≥

−1.32 × 10−5 days− 1; Figure 8(c)].
Predictor locations were chosen by taking into account

both reasoning based on statistical relationships and data
uncertainty and stability. Simple reasoning takes into
account the statistical connection between the MJO index
and surface pressure using the 𝜅 metric limiting the domain
from which predictor locations can be selected to regions
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Table 3. Linear trend over the 20th century in MJO amplitude, within each MJO phase, of the predicted index for each of the
model fits.

Index Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6 Phase 7 Phase 8

ISm 0.257 0.209 0.262 0.456 0.262 0.303 0.279 0.281
IIn 0.0154 −5.70× 10− 3 8.45× 10− 5 0.0574 0.0509 0.129 0.0814 0.035
IPo 0.272 0.182 0.288 0.475 0.242 0.274 0.280 0.320

Units are century− 1
.

where 𝜅 ≥ 0.33 [Figure 2(a), thick contour]. As above,
this choice was arbitrary and only made to ensure sur-
face pressures statistically account for a fair proportion of
MJO variability; other choices are just as valid but this was
chosen for illustrative purposes. We have also taken into
account data uncertainty and stability using the above cri-
teria for Δp̃ and bΔp̃, and the thick contour in Figure 2(d)
shows the combined exclusion region based on the com-
bined criteria. This led to a set of five locations from which
to extract surface pressure time series p [Figure 2(d), white
circles].

The chosen pressure series p were fit to the MJO index
over 1979–2008 and then hindcast over the 1905–2008
period as in Section 3.1. Again, the predicted MJO index,
denoted IIn (the ‘Informed’ fit), captured well the vari-
ability of IWH, with correlation coefficients of 0.69 and
0.70 the two components (see Table 1) which is supported
by plots of the time series (Figures 3 and 4, red line).
It should be noted that the lower correlation coefficients,
as compared with the Simple fit, are reflected in the time
series with a number of departures of IIn from IWH, partic-
ularly at oscillation periods shorter than MJO variability.
In fact, a cross-spectral analysis showed that while IIn did
have a peak of energy in the same band of frequencies as
IWH, it was slightly less coherent over this band than was
ISm (0.50–0.85) and much less so at higher frequencies
(e.g. coherence was < 0.5 for periods less than 20 days;
Figure 5, black and red lines). Also note that IIn and IWH

spend roughly the same proportion of time in each MJO
phase (Table 2). Similarly, the MJO amplitude of IIn is sim-
ilar to the amplitude of IWH (Figure 6, red line). However,
it is notable that the amplitude of IIn has a much weaker
trend than ISm over the 1905–2008 record: 0.0436 ± 0.025
century− 1. This trend is barely significantly different from
zero with 95% confidence.

3.3. Predictor locations chosen with large data
uncertainty and stability

A further fit was performed where predictor locations were
purposely chosen from regions with large data uncertainty
and stability. These predictors, denoted the ‘Poor’ fit, were
the subset of predictors used for the Simple fit which did
not satisfy the selection criteria outline above [Figure 2(d),
blue dots]. Again, the predicted MJO index, denoted IPo,
captured IWH well, with correlation coefficients of 0.87
and 0.85 for the two components (see Table 1) which is
supported by plots of the time series (Figures 3 and 4, green
line), high coherence with IWH (Figure 5, green lines),
and a similar proportion of time spent in each MJO phase

(Table 2). However, the trend in MJO amplitude of IPo

(Figure 6, green line) is now notably much larger than IIn

and similar to the trend in ISm: 0.289 ± 0.023 century− 1

(an increase of ∼30% over the 20th century).
The region from which predictor locations were chosen

for the Informed fit was most strongly affected by active
MJO convection in phases 2 through 5, while the regions
sampled for the Poor fit are affected in other phases [e.g.
Wheeler and Hendon (2004)]; the Simple fit on the other
hand used predictor locations which sampled more evenly
the tropics. Did phases corresponding to active convection
in regions with large data uncertainty and stability exhibit
the same long-term trends in all three indices, or was
the observational feedback (used to develop the Informed
fit) able to provide improved information across MJO
phases despite a regionalization of predictor locations?
We calculated the trend in MJO amplitude within each
MJO phase to determine if this regional restriction of
predictor locations impacts MJO activity unevenly across
MJO phases (Table 3). While there is phase-dependency
in the trend for each fit there remains a large difference
in trend between IIn and both ISm and IPo, just as for the
all-phase trend. Also note that all indices spend roughly
the same proportion of time in each MJO phase as IWH

(Table 2). Therefore, the Informed fit is not restricted to
only providing improved information for phases which
active MJO convection lies within the region sampled by
predictor locations.

4. Summary and discussion

In this study, we have examined the impact of spatial and
temporal variations in the density of observational mea-
surements assimilated by a reanalysis system on estimates
of long-term climate variability. Specifically, we fit 20CR
surface pressures to the Wheeler and Hendon (2004) MJO
index over the 1979–2008 period and, provided with a sat-
isfactory fit, hindcast the MJO index back to 1905. We
showed that three different choices of predictor locations
in the tropics each provided an acceptable fit to MJO vari-
ability characterized by the Wheeler and Hendon (2004)
index, generally capturing the timing and relative ampli-
tude of major events. However, these choices provided
dramatically different long-term trends in estimated MJO
activity. In the case of predictor locations informed only
by the statistical relationship between the MJO and tropi-
cal surface pressure, we estimated a trend in MJO activity
of 0.285± 0.023 century− 1 over the 20th century. We then
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used observational feedback to take into account the tem-
poral and spatial density of observational measurements
assimilated by the reanalysis system and restricted our
choice of predictors accordingly which lead to an esti-
mated trend in MJO activity of nearly zero (0.0436± 0.025
century− 1). We further demonstrated that by purposefully
choosing predictors from locations where the density of
observational measurements assimilated by a reanalysis
system was low and/or changed significantly over time
lead, we could find a strong estimated trend in MJO activ-
ity (0.289± 0.023 century− 1). By changing the location
(and therefore the uncertainty of the reanalysis data) from
which predictors are chosen, we have been able to main-
tain a good fit to the Wheeler and Hendon (2004) index
over the 1979–2008 period while modifying the trend
over the 20th century of the estimated index by nearly a
factor of ten.

The results of this article highlight one of the poten-
tial pitfalls of using reanalysis data blindly without con-
sidering the underlying data. It is important when using
reanalysis data to have an understanding of the nature
of the observations that have (or have not) been assimi-
lated by it and the deficiencies of the underlying numerical
model. This is particularly the case for climate phenomena
which are often poorly simulated in free-running models,
such as the MJO. In such cases with a lack of observa-
tions, a reanalysis system reverts to the predictions from
a free-running model, i.e., without an accurate representa-
tion of the climate phenomenon of interest. On the other
hand, in the presence of observations, the reanalysis sys-
tem is constrained to represent the climate phenomenon
in a more realistic manner. Therefore, this study rein-
forces that care needs to be taken when using reanalysis
data, and it should not be assumed that they are a substi-
tute for observations or are a perfect representation of the
climate system.

It should be noted that the specific results of this study,
namely the representation of the MJO in 20CR through
surface pressures, should not be generalized to other
reanalysis products. For example, it is quite possible that
the expressions of the MJO in surface pressures from
the NCEP/NCAR Reanalysis or ERA-Interim are very
accurate. The reason for the specific findings of this study
is due to the heterogeneous spatial and temporal density
of tropical surface pressure observations assimilated by
20CR. This does not imply that reanalyses are generally
poor at reconstructing the MJO but only that an under-
standing of the observational density is important when
using any reanalysis.
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