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of the model. First, leave-one-out cross validation is applied 
whereby the country of landfall is determined by the major-
ity vote (considering the location by only highest percentage 
of landfall) from the simulated tracks. Second, the probabil-
ity distribution of simulated landfall is evaluated against the 
observed landfall. Third, the distances between the point of 
observed landfall and simulated landfall are compared and 
quantified. Overall, the model shows very good cross-vali-
dated hindcast skill of modelled landfalling cyclones against 
observations in each of the NIO tropical cyclone seasons and 
for most NIO rim countries, with only a relatively small dif-
ference in the percentage of predicted landfall locations com-
pared with observations.

Keywords  Tropical cyclone · Genesis · Tracks · Landfall · 
North Indian Ocean · Generalised additive model · Kernel 
density estimation

1  Introduction

Tropical cyclones (TCs) are considered to be the most dev-
astating weather phenomena that affect North Indian Ocean 
(NIO) rim countries, producing major impacts over sig-
nificantly large areas (Tyagi et  al. 2010; Girishkumar and 
Ravichandran 2012; Nath et  al. 2015). TCs have affected 
NIO rim communities since the earliest days of settlement 
(O’Hare 2001) and can have substantial impacts on the 
coastal countries of the Bay of Bengal and the Arabian Sea 
(Belanger et al. 2012).

The NIO is a breeding ground for tropical cyclones 
(Mohapatra et al. 2014; Shaji et al. 2014) but accounts for 
only 7% (Mohapatra et  al. 2014; Sahoo and Bhaskaran 
2016) of the world’s tropical cyclones [about 5/year 
(Mohapatra et  al. 2014)]—four in the Bay of Bengal 

Abstract  Extensive damage and loss of life can be caused 
by tropical cyclones (TCs) that make landfall. Modelling of 
TC landfall probability is beneficial to insurance/re-insurance 
companies, decision makers, government policy and plan-
ning, and residents in coastal areas. In this study, we develop 
a climatological model of tropical cyclone genesis, tracks and 
landfall for North Indian Ocean (NIO) rim countries based 
on kernel density estimation, a generalised additive model 
(GAM) including an Euler integration step, and landfall 
detection using a country mask approach. Using a 35-year 
record (1979–2013) of tropical cyclone track observations 
from the Joint Typhoon Warning Centre (part of the Interna-
tional Best Track Archive Climate Stewardship Version 6), 
the GAM is fitted to the observed cyclone track velocities as 
a smooth function of location in each season. The distribution 
of cyclone genesis points is approximated by kernel density 
estimation. The model simulated TCs are randomly selected 
from the fitted kernel (TC genesis), and the cyclone paths 
(TC tracks), represented by the GAM together with the appli-
cation of stochastic innovations at each step, are simulated 
to generate a suite of NIO rim landfall statistics. Three hind-
cast validation methods are applied to evaluate the integrity 
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(Alam et al. 2003; Vissa et al. 2013; Balaguru et al. 2014; 
Mohapatra et al. 2014; Rajasekhar et al. 2014) and one in 
the Arabian Sea (Rajeevan et  al. 2013; Mohapatra et  al. 
2014; Rajasekhar et  al. 2014)—but the number of deaths 
from TCs that make landfall in the region can be staggering 
(Webster 2008; Islam and Peterson 2009; Lin et al. 2009; 
McPhaden et  al. 2009; Ng and Chan 2012; Pattanaik and 
Mohapatra 2016). Examples of the devastating effects of 
TCs in this region include the impacts of the Category-5 
TC (TC 02B) that hit the Chittagong district of Bangladesh 
in 1991, and TC Nargis that hit Myanmar in 2008, with 
each resulting in around 140,000 lives lost and US$2.4 bil-
lion and $10 billion in damages respectively (Mydans and 
Cowell 2008; Alam and Collins 2010; Nath et  al. 2015). 
Further, between 2007 and 2010, there were significant 
losses associated with at least one event in each year (Hag-
gag and Badry 2012). In short, the human and financial 
costs annually due to TCs making landfall across NIO rim 
coastlines can be enormous.

In the present study, we develop a climatological TC 
model that takes account of the characteristics of past tropi-
cal cyclones and that can be used as a fundamental baseline 
for understanding the seasonality of TC genesis, tracks and 
landfall. Modelling of seasonal TC landfall probabilities 
has the potential to assist decision-makers, and residents in 
vulnerable coastal areas, to consider and plan. At the gov-
ernment planning and policy levels, seasonal modelling can 
be usefully adopted to inform and assist decision-making. 
Ultimately skilful prediction and careful assessment of 
the possible risk and extent of losses in areas affected by 
tropical cyclones can be beneficial to insurance companies 
(Rumpf et al. 2007).

Seasonal forecast modelling of tropical cyclone activity 
represents a major challenge for dynamical models (Cama-
rgo 2013; Shaevitz et al. 2014; Camp et al. 2015). Dynami-
cal seasonal forecast model skill depends on the model 
used, the model resolution, and the intrinsic predictabil-
ity of the large-scale circulation regimes (Camargo et  al. 
2005; Bengtsson et al. 2007; Camargo and Barnston 2009). 
Camargo et al. (2007) suggest that at least part of the rea-
son for poor performance of dynamical models (European 
Centre for Medium-range Weather Forecasts (ECMWF) 
and the UK Met Office predict tropical storm frequency 
based on dynamical models) in predicting tropical storm 
frequency is due to model error and lack of predictability.

Camp et al. (2015) describe the seasonal forecast skill of 
the UK Met Office Hadley Centre GloSea5 model, which is 
a high-resolution dynamical seasonal forecast system with 
an atmospheric horizontal grid of 0.83° longitude ×0.55° 
latitude (∼53 km at 55°N) and 0.25° in the global ocean. 
Model skill of tropical storm predictions was evaluated 
across various basins for the period 1992–2013. While Glo-
Sea5 and ERA-Interim have been shown to be remarkably 

skilful in most basins across the globe, these model systems 
show no seasonal forecast skill over the NIO region (Camp 
et  al. 2015)—a region notably characterised by a double-
peak in tropical cyclone occurrences throughout the annual 
cycle [maxima during the pre-monsoon (April–May) and 
post-monsoon (October–November) periods]. Yahyai 
(2014) describes the ability of the dynamical High Resolu-
tion Model (HRM) and Consortium for Small-scale Model-
ling (COSMO) models in the NIO to predict the probabili-
ties of tropical cyclone landfall, but their performance was 
insufficient for predicting landfall points compared to those 
observed, due to limited spatial resolution.

In a separate study, Ray et  al. (2012) used an artificial 
neural network system for the North Indian Ocean region 
to point out the prediction error between the landfall points 
of the simulated eastward tracks and the observed tracks. 
Zhao et  al. (2009) explored global atmospheric dynami-
cal models (with a horizontal grid scale of 50 km) to show 
that tropical cyclone activity (the frequency and interan-
nual variability of tropical cyclones with intensities above 
a threshold of 33  m/s) are simulated quite realistically in 
the Atlantic and Northwest Pacific basin. However, the 
simulation for the NIO is not as close to the observations, 
with too many storms simulated in the Arabian Sea and too 
few in the Bay of Bengal. Knutson et al. (2014) concluded 
that while reasonable results have been found for the North 
Atlantic and northwest Pacific basins, a substantially larger 
intensity bias was found for simulations in the NIO region 
using the Geophysical Fluid Dynamics Laboratory (GFDL) 
hurricane model (with a horizontal grid scale of 9 km) in a 
seasonal forecast mode.

Interestingly, statistical models have shown some prom-
ise for TC count prediction in the NIO region (Nath et al. 
2015). Skilful TC track studies have been previously 
also demonstrated using statistical forecast models in the 
western North Pacific (Rumpf et  al. 2010), North Atlan-
tic (Emanuel et  al. 2006) and South Pacific (James and 
Mason 2005) regions. There is no guarantee that statistical 
TC models, developed for the Atlantic and Pacific, will be 
similarly beneficial in the NIO in a seasonal context, since 
the seasonal cycle is characterised by the double peak that 
exists in the pre-monsoon and post-monsoon periods. Com-
pared to other ocean basins across the globe, the Indian 
Ocean has also received much less attention for statistical 
seasonal prediction of cyclones (Nath et al. 2015). There-
fore, in the first instance, an attempt has been made here 
to develop a climatological model of the four TC seasons 
in the NIO region, i.e. that best characterises the win-
ter (December–February), pre-monsoon (March–May), 
monsoon (June–September) and post-monsoon (October–
November) seasons.

This paper discusses the development of a statistical sea-
sonal model of tropical cyclone genesis, tracks and landfall 
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for the North Indian Ocean—that represents a climatologi-
cal model of tropical cyclones for the region. The genesis 
model is based on kernel density estimation, and the tracks 
are estimated using a generalised additive model (GAM). 
Three hindcast methods are used to cross-validate the 
model. The structure of the paper is as follows: The data 
on which the model is based and how the model works 
are described in Sect. 2. The kernel density estimation for 
tropical cyclone genesis distribution, the GAM used for 
cyclone tracks, and country and state-based hazard zone 
mapping for landfall probabilities, are also described in 
Sect.  2. Section  3 presents the simulation and cross-vali-
dation results from the model, and evaluates these against 
observed data. Results are discussed in Sect. 4, and some 
concluding remarks are provided in Sect. 5.

2 � Data and methods

2.1 � Data from IBTrACS

Tropical cyclone track data for the North Indian Ocean 
region (Fig.  1) were obtained from the International Best 
Track Archive for Climate Stewardship (IBTrACS), 
National Climatic Data Center (www.ncdc.noaa.gov/oa/
ibtracs/).

IBTrACS provides global tropical cyclone best track 
data, in a centralised location, to aid understanding of the 
distribution, frequency, and intensity of TCs worldwide. 
In combining track and intensity estimates from many 
sources, this consolidated collection of TC data provides 
an extensive global climatology and insight into data 
uncertainty, which is a critical consideration for climate 
trending (Knapp et  al. 2010; Kossin et  al. 2013). Specifi-
cally, we have used data from the Joint Typhoon Warning 

Centre (JTWC) for the 35-year period from 1979 to 2013. 
The JTWC data are a contributed subset within IBTrACS 
version 6, which are the data most commonly used by 
researchers worldwide (Knapp et  al. 2010). The param-
eters used in our analysis of ‘storms’ include date, position 
(degrees of latitude and longitude) and wind speed. Note 
that we also take account of tropical depressions that have 
not reached tropical cyclone intensity, as well as tropical 
cyclone intensity storms (i.e. those storms that occurred 
where wind speeds have reached at least 34 knots, or 
17.5 m s−1).

For the genesis model, we determined the time and posi-
tion along each track that the tropical storm winds first 
exceeded the critical speed of 34 kt to determine that the 
storm had reached tropical cyclone intensity. For tropical 
cyclone pathways in the North Indian Ocean (NIO) region, 
we note that both tropical depressions and tropical cyclones 
follow tracks that are not really any different (Warrick 
et al. 2000; Mohapatra et al. 2012). By including the tracks 
from both tropical cyclones and storms, we increase the 
overall sample size [since the historical database of tropi-
cal cyclones for the NIO region is not large (Paliwal et al. 
2011)] and hence improve the overall statistical represen-
tation, based on this assumption that the tracks are not 
significantly different between tropical storms or tropical 
cyclones. Notably, we have ignored TCs prior to 1979 to 
improve reliability of the observational database (Evan and 
Camargo 2010; Weinkle et al. 2012).

2.2 � Methods

Skilful basin-wide statistical models have been developed by 
several researchers (Gray 1984; Nicholls 1985; Wilks 1995; 
Nicholls et  al. 1998; Elsner and Jagger 2004, 2006, 2010; 
Camargo et al. 2005; James and Mason 2005; Saunders and 

Fig. 1   Geographic map show-
ing the countries (and states) 
along the North Indian Ocean 
rim relevant to this study. 
The six countries affected by 
tropical cyclone landfall include 
India, Bangladesh, Myanmar, 
Sri Lanka, Oman and Yemen
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Lea 2005; Emanuel et al. 2006; Hall and Jewson 2007; Hol-
land and Webster 2007; Landsea 2007; Rumpf et al. 2007; 
Leroy and Wheeler 2008; Jagger and Elsner 2010; Hall and 
Yonekura 2013; Kang et al. 2016). A crucial component of 
basin-wide TC modelling is the TC track—i.e. the trajec-
tory from genesis (Hall and Jewson 2007). First, TC gen-
esis modelling can be performed in several ways, including 
sampling from historical genesis sites (Vickery et al. 2000), 
interpolating historical genesis locations (James and Mason 
2005), binning historical genesis events through a probability 
density function (PDF) (Emanuel et al. 2006), or the applica-
tion of a near-neighbour approach to develop and sample a 
genesis kernel PDF (Rumpf et al. 2007). Second, TC track 
modelling can also be approached in different ways. For 
example, Vickery et al. (2000) and James and Mason (2005) 
used autoregressive models to increment TC track direction. 
Casson and Coles (2000) draw from the historical tracks, 
translating TC tracks through small random displacements. 
Emanuel et al. (2006) propagate tracks by sampling a transi-
tion matrix for TC track direction, and Rumpf et al. (2007) 
described a stochastic model for the separation of tropical 
cyclone tracks based on the geographic characteristics and 
applied kernel probability density function and direction 
increment to simulate the tracks.

Our approach has been to develop a statistical clima-
tological model of TC genesis, tracks and landfall for the 
NIO, and based on some similar methods employed by 
Hall and Jewson (2007) for the North Atlantic Ocean and 
Yonekura and Hall (2011) for the Western North Pacific 
region. The basic modelling approach comprises of kernel 
density estimation for TC genesis, application of a gener-
alised additive model for the TC tracks (fitting and baseline 
for simulation) and Euler integration, and takes account of 
a country mask for determining points of landfall.

The genesis model developed here closely follows the 
previous work of Hall and Jewson (2007) for the North 
Atlantic and Yonekura and Hall (2011) for the western 
North Pacific. In their research, genesis is sampled from 
a Poisson distribution and an empirical kernel-density 
function and genesis has no climate state sensitivity. Our 
approach fits and utilises a kernel density function for ran-
dom sampling (using a standard plug in estimator), with the 
kernel density estimates masked over shallow water and 
land for the genesis distribution.

TC tracks are modelled as successive 4 step (i.e. 6-h) 
track displacements each day. The choice of a 6-h incre-
ment is consistent with that applied by Hall and Jewson 
(2007) and Yonekura and Hall (2011). However, in those 
previous studies, auto regression was applied for the tracks. 
In a separate study, Mestre and Hallegatte (2009) used 
a GAM approach to predict the number and intensity of 
TCs in the North Atlantic. Here, we used a GAM approach 
instead to model the storm track velocity field in the NIO.

The landfall detection closely follows the work of Wein-
kle et al. (2012) for the North Atlantic, Eastern and Western 
Pacific, North Indian Ocean, and the Southern Hemisphere. 
They used an operational sea surface temperature product 
as a land mask with 1/20° global grid spacing to detect the 
first landfall. In the present study, we used a 1/12° mask 
approach with Euler integration to detect landfall across 
country and state boundaries.

In the following subsections, we present the approaches 
that we have applied to model tropical cyclone genesis, 
tracks and landfall, and also to cross-validate the models.

2.2.1 � Tropical cyclone genesis: kernel density estimation

In the present study, we have applied a Kernel density 
approach to model the spatial distribution of observed 
tropical cyclone genesis locations. This approach has been 
previously used successfully by, for example, Vickery et al. 
(2000); James and Mason (2005); Emanuel et  al. (2006) 
and Rumpf et  al. (2007). Kernel density estimation is a 
method to estimate the probability density function (PDF) 
of a random variable in a non-parametric way. This distri-
bution is defined by a smoothing function and a bandwidth 
value (length scale) that controls the smoothness of the 
resulting density curve. Bandwidth selection can be under-
taken in various ways, including by “rule of thumb”, by 
cross-validation, by “plug-in” methods, or by other means 
(Turlach 1993; Bashtannyk and Hyndman 2001).

More formally, Kernel estimators smooth out the con-
tribution of each observed data point over the local neigh-
bourhood of that data point, with the neighbourhood 
defined by the bandwidth. The contribution of data point 
x(i) to the estimate at some point x depends on how far 
apart x(i) and x are situated. If we denote the kernel func-
tion as K and its bandwidth by h, the estimated density at 
any point x is

In essence, the convolution smoothes out the contribu-
tion of each observed data point over a local neighbourhood 
of that data point. The extent of this contribution is depend-
ent upon the shape of the kernel function, K, and the cho-
sen bandwidth, h. A larger bandwidth increases the region 
influenced by each xi, resulting in a smoother estimate.

The kernel K must satisfy the constraint ∫K(x)dx = 1, 
but is otherwise arbitrary. The Gaussian kernel,

is a common choice and the one we use here.

f̂ (x) =
1

n

n
∑

i=1

K

(

x − x(i)

h

)

K(x) = (2π)−1 exp

(

−
x2

2

)
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In our analysis, we calculate the kernel bandwidth for 
the kernel density function using a standard plug in esti-
mator. This approach has been shown to be a simple but 
effective method for estimating relevant bandwidths 
(Rigollet and Vert 2009) and makes for pragmatic calcula-
tions. Hence, kernel density estimation is also used in the 
present study to model and quantify the probability dis-
tribution (function) of observed tropical cyclone genesis 
locations and occurrences from which we can randomly 
sample.

The choice of bandwidth is a crucial issue in kernel den-
sity estimation. The plug in method is based on a simple 
idea that gives an estimate ( f̂ ) of the bias of the unknown 
function f. A pilot estimate of f is then “plugged in” to 
derive an estimate of the bias and hence an estimate of the 
mean integrated squared error. The optimal bandwidth (h) 
minimises the error/estimated measure of fit (Loader 1999). 
Essentially, the kernel density estimator places a Gaussian 
kernel of specified bandwidth over each observation and 
sums. Samples are drawn from the estimated density by 
treating the estimate as a Gaussian mixture—first a compo-
nent of the mixture is chosen and then a sample deviate is 
drawn from that component of the mixture.

In the absence of any modification, simple application of 
the kernel estimator enables TC genesis over land, which 
is most apparent for longer smoothing (bandwidth) scales. 
While there are a few isolated cases when TCs have been 
observed to form over land, such occurrences are largely 
atypical. To address this issue, we restrict genesis to ocean 
regions by masking the kernel density function over land 
areas and also choose to reject genesis in regions where 
water depths are shallower than some critical depth—we 
assume this to be for water depths <200  m, i.e. typically 
across the continental shelf. This process is iterated to gen-
erate a sample of the correct size.

For genesis, we determined the time and position along 
each track that the tropical storm winds exceeded the criti-
cal speed of 34 knots, defined as becoming tropical cyclone 
strength (WMO 1997). It was found that <10% (9.4%) of 
the estimated genesis locations were either very close to the 
coast or over land, which were removed by our mask. As 
a simulation set, we extracted 50 genesis points from the 
kernel to set up the climatology.

2.2.2 � Tropical cyclone tracks: generalised additive model

Cyclone trajectories were modelled by fitting a generalised 
additive model (GAM) to the incremental track velocities. 
The GAM is an extension of the generalised linear model 
(GLM), which in turn is an extension of the standard lin-
ear model (LM) (Guisan et al. 2002). GAMs are a gener-
alisation of linear regression in which the linear terms are 
replaced by smooth transformations of the predictors.

One of the most popular and useful tools in data analysis 
is the linear regression model or simply the “linear model”. 
Standard regression models assume the response, y, is nor-
mally distributed about its mean, µ, with variance σ2

In the regression case, the mean µ, can be modelled as 
a linear combination of predictor variables, X1, X2, …, Xm

where β0, β1, …, βm are the regression coefficients to be 
estimated.

The GLM extends the linear model in two key ways. 
First, the GLM assumes the response may be distributed 
about its expected value according to any distribution F from 
any exponential family of distributions (including the Pois-
son, Binomial and Normal families)

And secondly, that the predictors enter the model 
through the linear predictor η which is related to the 
expected response µ by a monotonic function ℓ, called the 
link function

These extensions relax the restrictions imposed by the 
linear model on both the distribution of the data and the 
functional relation between the response and predictors. 
Note that if F is the Normal family of distributions and the 
link function ℓ is the identity, then the generalised linear 
model reduces to the linear model.

The GAM further relaxes the functional relation 
between the response and the predictors by assuming the 
linear predictor is related to the predictors through a num-
ber of smooth transformations f1, f2, . . . , fp

where a LM or GLM seek to estimate the regression coef-
ficients β0,β1, . . . ,βp, a GAM seeks to estimate the smooth 
functions f1, f2, . . . , fp of the predictors.

The advantage of the GAM scheme is that it is a data 
driven approach and can automatically discover relation-
ships in the data. The smooth functions f1, f2, . . . , fp are 
not prescribed by any rigid parametric representation, but 
instead are typically estimated by smoothing.

The disadvantage of the GAM is that it cannot easily 
represent interactions amongst terms. Rather, it assumes 
each term contributes additively. To a limited degree, inter-
actions can be modelled by including multivariate smooth 
terms, that is terms of the form fij

(

xi, xj
)

. However, multi-
variate smooth terms require much greater volume of data 
to be reliably estimated (Hastie et al. 2009).

y ∼ N
(

µ, σ 2
)

.

µ = β0 + β1X1 + β2X2 + · · · + βmXm

y ∼ F(µ)

ℓ(µ) = η = β0 + β1x1 + β2x2 + · · · + βpxp

ℓ(µ) = η = β0 + f1(x1)+ f2(x2)+ . . .+ fp
(

xp
)
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In this paper, GAMs are used to model the two compo-
nents of the velocity field that define the trajectory of the 
cyclones. First, track velocities are generated by calculat-
ing the increment in identifiable tropical storm positions at 
each time step to estimate the storm track velocities along 
their tracks. Then, the GAM is fitted to these storm track 
velocities. A separate GAM is fitted to each velocity com-
ponent in the x (east) and y (north) directions, to allow the 
vector velocity field to be predicted. In this simple model 
we fit each velocity as a smooth function of location in 
each season.

Cyclone trajectories are simulated using the fitted GAM 
to predict mean increment velocities at each step along the 
simulated track, together with random (stochastic) innova-
tions also at each step—starting from randomly selected 
genesis locations drawn from the kernel for each NIO 
region TC season. Based on the mean vector field estimated 
by the GAM fit, an Euler step is used to project trajectories 
forward in time from this genesis point. A stochastic inno-
vation is added at each time step to account for the variable 
nature of the vector field that is not captured by the GAM, 
with a variance determined by the residual error of the 
GAM fit. For each simulated genesis point, 50 trajectories 
(and each trajectory has an independent set of innovations 
applied) were simulated 7  days forward in time with a 6 
hourly time step.

We have endeavoured to be both pragmatic with our life-
time choice and consistent with typical TC lifetime scales 
for the region in our modelling. This choice of a 7-day 
lifetime for TCs in the model is based on both reported 
research and our own analysis of historical NIO region TC 
observations from genesis to landfall. Cyclone lifetimes 
over the NIO range from 1 to 12 days (1–9 days has been 
reported by Evan and Camargo (2010) for the Arabian Sea 
in the period 1979–2008), with an average TC lifetime of 
4.8  days, with most TCs making landfall by the 7th day. 
Almost 80% (79.3%) of NIO region TC lifetimes are within 
7  days of genesis, and we therefore consider this to be a 
reasonable and appropriate choice for our climatological 
model. Our analysis shows that the model-simulated land-
fall is 80% for a choice of 7-days for the cyclone lifetime, 
which is consistent with observations (75%). If we run the 
model with a lifetime of 12  days the simulated landfall 
becomes too large (94%) and if we run the model with a 
lifetime of 2 days then the simulated landfall becomes too 
small (23%). Overall, by considering the maximum TC 
lifetime over the NIO and our sensitivity analysis the 7-day 
choice of lifetime is the most representative.

2.2.3 � Landfall locations

To determine the points of landfall, each trajectory is inter-
polated in time to finer increments, with successive points 

along the trajectory compared to the land mask and the first 
land mask crossing is taken to be the point of landfall. The 
estimated precise point of landfall accuracy depends on the 
resolution to which the trajectory is interpolated. One limi-
tation of this approach is that only the first point of landfall 
is identified. For a cyclone that passes over the Andaman or 
Nicobar Islands, this will be the recorded point of landfall, 
even if the cyclone carries on to possibly strike elsewhere. 
To functionally solve this problem, we removed the islands 
from the mask in our analysis (although they appear on the 
geographical map), so the model simply allows the cyclone 
track to continue.

From the literature and our own analysis, we note that 
multiple landfalls are rare in the NIO region; it is almost 
never seen that a cyclone strikes a country in the NIO rim 
and then comes back again to strike land a second time 
(Evan and Camargo 2010; Weinkle et al. 2012; Alam and 
Dominey-Howes 2015). In the study period, 95.2% of NIO 
region TCs made landfall (95.7% is reported by Alam and 
Dominey-Howes (2015) based on their long-term catalogue 
(from 1000 AD to 2009) of landfall occurrences in sur-
rounding countries of the Bay of Bengal) and none make 
secondary landfalls. Based on this observation, we have 
only considered the first point of landfall for this region, 
while being consistent with other previous research across 
other basins by Weinkle et  al. (2012) where they assume 
that even in TC multiple landfall cases, only the first point 
of landfall is counted.

2.2.4 � Model validation

To assess the integrity and potential utility of the model, 
we have applied three separate model validation methods. 
These are introduced as follows.

2.2.4.1  Cross‑validation  Cross-validation is a resam-
pling procedure where the available data are repeatedly 
divided into development and verification (prediction) sub-
sets (Wilks 1995). It tries to simulate actual forecasts and 
provide an accurate estimate of the predictive skill of the 
model or algorithms (Hess and Elsner 1994; McDonnell and 
Holbrook 2004). Cross validation endeavours to assess how 
well the developed model will perform in forecasting the 
unknown future (Elsner and Schmertmann 1993).

We develop instead a climatological model of tropical 
cyclones, where the model represents our best fit to the 
observed seasonal cycle. The model is developed through 
standard cross-validation procedures, whereby we leave out 
individual tracks and fit on the remaining data, which is in 
itself a test of model capability against data not included 
in the fit. Given that our climatological represents our best 
estimate of the seasonal cycle, holding out the last 10 years 
of observations would not be particularly instructive since 
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it would compare climatological seasonal forecasts against 
interannually changing conditions. We point out though 
that in ongoing separate work, we build forecast model ver-
sions using indices of El Niño—Southern Oscillation and 
the stratospheric Quasi-Biennial Oscillation as predictor 
variables for forecasting. In those model cases, we indeed 
do assess forecast skill against independent data and our 
climatological model forecasts.

Here, we apply leave-one-out cross-validation where 
we:

1.	 Remove each storm track in turn, and fit the model to 
the remaining data;

2.	 Simulate each of the removed storm trajectories based 
on the model fit to the reduced data set; and

3.	 For each simulated track determine the country of land-
fall, and from all landfalls determine the most likely 
country of landfall by majority vote (we only identified 
one state/country where most of the tracks make land-
fall).

2.2.4.2  Probability distribution  Because India has the 
longest coastal boundary of any country along the NIO rim, 
India is exposed to higher rates of landfall than other neigh-
bouring countries, such as Bangladesh. As such, a ‘majority 
vote’ approach means that India results in greater occur-
rences of landfall. To address this, we considered an alterna-
tive approach whereby we examined the probability distri-
bution of simulated landfall with relation to the observed 
landfall. Here, we ran the GAM simulation 40 times and 
averaged the results in turn for each TC season. From the 
results, we also calculated the standard deviation and com-
pared the simulation with the observed data.

2.2.4.3  Distance between  simulated and  observed land‑
fall  Finally, we evaluated the model by calculating the 
distance between the observed and simulated landfall 
points, for tracks that correspondingly originate from the 

same observed genesis points. Each landfall location, from 
a simulated track, was measured against the corresponding 
observed landfall location, and a probability distribution 
was developed based on the differences.

3 � Results

3.1 � Model fits of TC genesis and tracks

Figure 2 shows the observed genesis locations (panel a) and 
tracks (panel b) for the 35-year record of storms contained 
in the JTWC database for the period of 1979–2013. During 
this period, a total of 105 storms reached tropical cyclone 
strength. Most of the TCs in the NIO region originate 
between 5°N and 15°N and east of 85°E. A greater propor-
tion of TCs formed in the Bay of Bengal (72.4%) compared 
to the Arabian Sea (27.6%). In the Bay of Bengal, most 
TCs initially move towards the northwest or north; later on 
in their lifetime a few have been seen to recurve towards 
the northeast. In the Arabian Sea, these storms generally 
move westward. Not all TCs made landfall: 25% decayed 
to below TC strength while still located over the ocean. In 
the Bay of Bengal, cyclones typically made landfall along 
the southeast coast of India, Bangladesh and Myanmar. For 
the Arabian Sea, TC landfall mainly occurred along the 
Oman and Yemen coasts, and very few crossed the western 
coast of India—with most cyclones dying out in the Ara-
bian Sea.

Annually, tropical cyclones form most frequently (44% 
of annual totals) during the post-monsoon (October–
November) season (Fig.  3), whereas winter (December–
February) represents the quietest season (15% of annual 
totals) for tropical cyclones, with only about one third 
of the post-monsoon season occurrences. The monsoon 
(June–September) season (18% of annual totals) displays 
similar numbers to winter while the pre-monsoon season 
(March–May) contributes slightly more than half of the 
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Fig. 2   Observed a tropical cyclone genesis locations, and b tracks 
of the corresponding storms that reach tropical cyclone intensity at 
the genesis points. Red dots in a identify the tropical cyclone genesis 
points in the North Indian Ocean region (0°–30° N and 50°–100°E) 

for the JTWC storm record in the 35-year period from 1979 to 2013. 
The blue lines indicate the tropical cyclone tracks with the last 
recorded location of the tropical storm intensity tracks indicated as a 
yellow dot
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total number of TCs formed during the post-monsoon sea-
son (23% of annual totals). There is a clear latitudinal shift 
of genesis locations with season. In winter, genesis tends 
to occur south of 10°N, but occurs north of 10°N in the 
other seasons. In winter and during the monsoon season, 
cyclones move in a westward or north-westward direction. 
In the Bay of Bengal, these storms tend to track westwards 
and north-westwards into the east coast of India during the 
post-monsoon season, and north-eastwards into Bangladesh 
and Myanmar during the pre-monsoon. The distribution of 
observed storm tracks corresponding to each TC season 
(Fig. 3) illustrates that most TCs during the post-monsoon 
season make landfall along the western and north-western 
coastal fringe of the Bay of Bengal—in particular, the 
Indian state of Andra Pradesh (see Fig.  1) and the south-
west Bangladesh state of Khulna. During the pre-monsoon 
season, TCs tend to make landfall in the north-eastern part 
of the Bay of Bengal, including the south-eastern part of 
Bangladesh and Myanmar. In winter, TCs tend to track 
towards the Tamil Nadu coast of India (i.e. the south-west-
ern fringe of the Bay of Bengal). During the monsoon sea-
son, storms tend to track towards the Orissa coast of India 
(i.e. north-western fringe of the Bay of Bengal).

The modelled distribution of genesis points, approxi-
mated by the kernel density estimation, is shown in Fig. 4. 
Highest density estimates are found in the Bay of Ben-
gal (consistent with the observed genesis locations seen 
in Fig. 2). By season, highest densities were found in the 
post-monsoon season followed by the pre-monsoon. In the 

post-monsoon season the highest density is nearest to the 
Indian state of Andra Pradesh, while in the monsoon and 
winter seasons the highest genesis densities are closer to 
the Bangladesh and Sri Lanka coasts, respectively.

For each country around the NIO rim, the total numbers 
(and percentage within season) of TCs that make landfall 
as a function of season are provided in Table  1. Looking 
along rows (and thus across columns) we can see how 
landfall rates vary by season for each country (%*). Alter-
natively, looking down columns (and thus across rows) we 
can see how landfall rates vary by country within each sea-
son (%#). We see that 71% of NIO region TCs make land-
fall in two of the four TC seasons, annually—these are the 
post-monsoon (44% of the time) and pre-monsoon (23% 
of the time) seasons. Further, the pre-monsoon period rep-
resents the season with the highest annual number of TC 
landfall occurrences in Myanmar (50%) and Bangladesh 
(47%). The most landfall occurrences for India have been 
observed during the post-monsoon season, with 52% of 
India’s annual tropical cyclone landfalls. For Yemen, there 
was only one recorded landfall during the entire record, 
and this occurred during the post-monsoon. For Oman, the 
seasons with the most landfalls were the monsoon and pre-
monsoon seasons (each with 33%). For Sri Lanka, the most 
landfall occurrences (60%) have been in winter (a total 
number of 15 (14% of annual total) TCs make landfall).

Among the NIO rim countries, the total numbers, and 
percentage, of observed tropical cyclones that make land-
fall as a function of season are also provided in Table  1. 

Fig. 3   Seasonal distribution of 
North Indian Ocean region (0°–
30°N and 50°–100°E) observed 
tropical cyclone genesis loca-
tions (identified by red dots), 
tracks (identified by blue lines) 
and landfall locations (identified 
by green dots) over the 35-year 
period of 1979 to 2013
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Among the 6 countries, the highest percentage of landfall 
occurrences are in the pre-monsoon season (20 out of 24 
TCs, ~83%), followed by the post-monsoon season (36 

out of 47 TCs, ~76%); whereas 60% (9 TCs make landfall 
out of 15) of cyclones make landfall in winter and ~74% 
(14 TCs make landfall out of total 19) make landfall in the 

Fig. 4   Modelled seasonal distributions of tropical cyclone genesis 
based on kernel density estimates across the observations in the North 
Indian Ocean region (0°–30°N and 50°–100°E) based on the 35-year 

JTWC data record from 1979 to 2013. Green colour shows the high-
est density (concentration of TC numbers/km2) area of genesis

Table 1   For each country 
around the NIO rim, we show 
here the observed total numbers 
(and percentage) of tropical 
cyclones that make landfall as a 
function of season

For each country, the season with highest landfalls in that country is indicated by bold percentages. For each 
season, the country with highest landfalls in that season is indicated by bold with underlined percentages

IND India, MYN Myanmar, BAN Bangladesh, SLN Sri Lanka, YEM Yemen, OMN OMAN, NON no landfall 
recorded
*  (Across season) and # (across countries)

Country Winter Premonsoon Monsoon Postmonsoon Total

No %* %# No %* %# No %* %# No %* %# No %*

IND 4 10 26.6 5 12.5 20.8 10 25 52.6 21 52.5 44.7 40 100

MYN 1 10 6.7 5 50 20.8 1 10 5.3 3 30 6.4 10 100

BAN 0 0 0 8 47.1 33.4 1 5.8 5.3 8 47.1 17 17 100

SLN 3 60 20 0 0 0 0 0 0 2 40 4.3 5 100

YEM 0 0 0 0 0 0 0 0 0 1 100 2.1 1 100

OMAN 1 16.7 6.7 2 33.3 8.3 2 33.3 10.5 1 16.7 2.1 6 100

Landfall 9 60 20 83.3 14 73.7 36 76.6 79

NON 6 – 40 4 – 16.7 5 – 26.3 11 – 23.4 26 –

TOTAL 15 – 100 24 – 100 19 – 100 47 – 100 105 –
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monsoon season. Among the 6 NIO countries, almost 45% 
of cyclone landfalls occur in India during the post-monsoon 
season whereas Bangladesh (34%) is the favourable zone 
for TC landfalls in the pre-monsoon season.

We next look at how landfall is distributed with time 
since genesis, for each TC season (Fig. 5). Landfall tends 
to occur with greatest likelihood around 1–4 days after gen-
esis in winter (100% of the time) and 2–4 days after gen-
esis during the pre-monsoon (47%). During the monsoon, it 
tends to occur 0–1 day after genesis (70%) and during the 
post-monsoon 0–2 days after genesis (68%).

The GAM fit to the observed TC tracks acts to smooth 
estimates of the TC velocities as a function of space, inde-
pendently for each season (Fig.  6). In winter, the GAM 
velocity field indicates a westward or north-westward 
movement (10°−20°N) of the fitted TC tracks. In the pre-
monsoon season, the GAM fit shows a tendency for TCs to 
move towards the northwest or north (10–20°N), and then 
recurve towards the northeast (20°N above) in the Bay of 
Bengal or northwest/north (15–20°N) in the Arabian Sea. 
During the monsoon season, movement is towards the 
northwest (8–22°N) in the Bay of Bengal and west and 
north-westward (12–22°N) over the Arabian Sea. In the 
post-monsoon season, the initial movement of storms is 
north-westward (10°–18°N) followed by north-eastward 
curvature (18°N above).

3.2 � Simulated cyclone tracks and landfall locations

Simulations of TC tracks (Fig. 7) indicate how the modelled 
storms tend to track and where they tend to make landfall. 
In winter, the modelled TCs tend to track in a westward or 
north-westward direction over the Bay of Bengal and most 
of them make landfall along the northern Tamil Nadu coast 
or the eastern coast of Sri Lanka. Over the Arabian Sea, the 
storms tend to move towards the west, although some of 
them move towards the north and northeast. This is gener-
ally consistent with observations. During the pre-monsoon 
season, storms initially move northwest or north over the 
Bay of Bengal and later recurve towards the northeast and 

Fig. 5   Observed TC landfall frequency for each season, measured 
as a function of the number of days from genesis to landfall, within 
the North Indian Ocean region (0°–30°N and 50°–100°E) over the 
35-year record (1979–2013)

Fig. 6   Seasonal distribution 
of fitted tropical cyclone track 
velocities (data from 1979 to 
2013) across the North Indian 
Ocean estimated using a gener-
alised additive model approach. 
The length of the reference 
arrow corresponds to velocity 
magnitudes of 10 m/s
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make landfall along the Arakan coast of Myanmar. Over the 
Arabian Sea, the simulated storms move initially towards 
the northwest or north, and then after recurving they move 
towards the Gujrat-Sind Mekran coast of India (consistent 
with observations). A greater propensity of storms is seen 
in the Arabian Sea during the monsoon where a majority of 
the simulated storms move towards the northwest (consist-
ent with observations) and then recurve towards the north 
or north-northeast, resulting in increased landfall occur-
rences in the Middle East, which is also evident to a lesser 

degree in the post-monsoon season. Finally during the post 
monsoon season, simulated storms move in a north-west-
ward direction and then recurve towards the northeast (in 
contrast to the observations in which cyclones move both in 
north-westward and eastward directions).

The simulated total number (and percentage) of TCs that 
make landfall as a function of season are provided in Table 2 
for each country around the NIO rim. Looking along rows 
(and thus across columns) we can see how the landfall rates 
vary by season for a single country (%*). It is seen that 80% 

Fig. 7   Simulation of tropi-
cal cyclones across the North 
Indian Ocean region as a func-
tion of season. A total of 50 
tropical cyclone genesis points 
were randomly selected from 
the modelled kernel density and 
the tropical cyclone tracks were 
simulated using the fitted gener-
alised additive model combined 
with the random innovations. 
Red dots show the TC genesis 
points, blue lines indicate the 
tropical cyclone tracks, and 
green dots indicate landfall 
locations

Table 2   For each country 
around the NIO rim, we show 
here the GAM fitted total 
numbers (and percentage) of 
tropical cyclones that make 
landfall as a function of season

Maxima are in bold and underlined. Format is the same as in Table 1

IND India, MYN Myanmar, BAN Bangladesh, SLN Sri Lanka, YEM Yemen, OMN OMAN, NON no landfall 
recorded
*  (Across season) and # (across countries)

Country Winter Pre-monsoon Monsoon Post-monsoon Total

No %* %# No %* %# No %* %# No %* %# No %*

IND 21 24.1 42 21 24.1 42 19 21.8 38 26 29.9 52 87 100

MYN 1 4.3 2 13 56.5 26 6 26.1 12 3 13.1 6 23 100

BAN 0 0 0 6 50 12 1 12.5 2 5 37.5 10 12 100

SLN 7 63.6 14 4 36.4 8 0 0 0 0 40 0 11 100

YEM 1 16.7 2 1 16.7 2 0 0 0 4 66.6 8 6 100

OMAN
Landfall

0
30

0 0
60

3
48

14.3 6
96

12
38

57.1 24
76

6
44

28.6 12
88

21
160

100

NON 20 – 40 2 – 4 12 – 24 6 – 12 40 –

TOTAL 50 – 100 50 – 100 50 – 100 50 – 100 200 –
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of the simulated TCs make landfall across the NIO rim, simi-
lar to the observed value of 75%. Myanmar (56.5%) and 
Bangladesh (50%) were predicted to have the largest number 
of tropical cyclone landfalls during the pre-monsoon season, 
consistent with observations. The most active period for India 
is apparent during the post-monsoon season when 29.9% of 
the country’s annual tropical cyclone landfalls occurred. For 
Yemen, a highest number of 4 TCs (~66.7%) make landfall 
during the post-monsoon. For Oman, the maximum of 57.1% 
of annual landfalls occur during the monsoon and the most 
landfall was in winter for Sri Lanka (63.6%).

By looking down columns (and thus across rows) we 
can see how landfall rates vary by country within a sea-
son (%#). The model simulations predict that India would 
have the highest proportion (52%) of tropical cyclones that 
make landfall during the post monsoon season, consistent 
with the observations. 60% (30 TCs make landfall out of 
50) of cyclones make landfall in winter and 76% (38 TCs 
make landfall out of 50) in the monsoon season. Among the 

6 NIO countries, Myanmar (56.5%) and Bangladesh (50%) 
is the favourable zone for landfalls in the pre-monsoon 
season.

Geographically, the simulated percentages of TC land-
fall as a function of season across the NIO rim countries are 
presented in Fig. 8. During winter, the model simulates the 
highest proportion of TC landfall occurrences for the states 
of Tamil Nadu and Andra Pardesh in India and across a few 
states in Bangladesh. In the pre-monsoon season, the states 
of Ayeyarwady, Rakhine and Tanintharyi in Myanmar, 
states of Oman, and the western Indian state of Orissa, are 
all predicted to have the largest proportion of TC landfalls 
relative to other NIO rim countries. During the post-mon-
soon, the Indian states of Andra Pradesh, Orissa and Tamil 
Nadu, and the coastal states of Myanmar, are predicted to 
have the largest proportion of TC landfalls during that sea-
son. In the monsoon season, Orissa in India, Chittagong in 
Bangladesh, and Myanmar states are predicted to have the 
highest proportion of TC simulated landfall occurrences, 

Fig. 8   Geographic distribution of model simulated percentage prob-
abilities of tropical cyclone landfall by state across the NIO rim coun-
try boundaries. Colours range from yellow to red (according to per-

centage) corresponding from the lowest to highest model simulated 
percentage probabilities by TC landfall. Grey indicates a percentage 
of zero landfalls
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with elevated numbers also predicted for Al Wusta, Ash 
Sharqiyah and Dhofar in Oman.

The highest percentage of modelled landfall occurrences 
are seen in 0–2 days after genesis in the winter (80%) and 
pre-monsoon (69.5%) seasons, whereas for the monsoon 
season (62.5%) it occurs in 0–1 day and within 0–2 days 
during the post monsoon season (74.4%) (Fig.  9). These 
simulated landfall times match well with the observations, 
except in the pre-monsoon season where the highest land-
fall rates occur in 2–4 days after genesis.

3.3 � Prediction skill of model measured 
against observations

Leave-one-out cross validation (LOOCV) is performed by 
removing each track in turn and then simulating the tra-
jectories corresponding to the deleted tracks based on the 
reduced data set, but from the observed genesis point cor-
responding to the removed track. For each simulated track, 
we predict the most likely country and point of landfall, by 

the majority vote from the simulated tracks. Based on com-
parison of the percentages of country-based statistics of 
cyclone landfalls between the observations and the model 
simulations, it was found that the model performs very well 
overall (except Bangladesh) according to the majority vote 
approach (Table 3).

The highest percentages of both observed and simulated 
landfall totals are in India—38 and 57%, respectively. The 
observed percentage (9.5%) for Myanmar is remarkably 
well simulated by the model (10%). The percentage dif-
ference in total landfall occurrences (Table 3) between the 
observations and simulated values is smallest for Myanmar 
(0%) and largest for Bangladesh (100%). The only excep-
tion to overall good model performance was for Bangla-
desh where the model fails to simulate landfall (Table 3 and 
4). With Bangladesh’s coastline being a relatively small tar-
get for tropical cyclones to strike (239 km long coastline, 
as compared with 7517 km for India), using a majority vote 
approach, where we decide on a single state/country that 

Fig. 9   Model simulated TC 
landfall frequency for each sea-
son, measured as time estimated 
in the number of days from 
genesis to landfall, for the North 
Indian Ocean region (0°–30°N 
and 50°–100°E)

Table 3   Number and percentages of observed and simulated annual 
probabilities of North Indian Ocean region tropical cyclones that 
landfall across each country coastline

Country Observation Simulation

No % No %

India 40 38.1 57 57

Myanmar 10 9.5 10 10

Bangladesh 17 16.2 0 0

Sri Lanka 5 4.8 4 4

Oman 6 5.7 7 7

Yemen 1 0.9 4 4

Total landfall 79 75.2 82 82

No landfall 26 24.8 18 18

Total 105 100 100 100

Table 4   Number and percentages of annual total North Indian Ocean 
region observed and simulated tropical cyclones that landfall across 
each country coastline

In this analysis, vector fields depend only on season

Country Observation Simulation

No % No %

India 40 38.1 61 61

Myanmar 10 9.5 7 7

Bangladesh 17 16.2 0 0

Sri Lanka 5 4.8 3 3

Oman 6 5.7 8 7

Yemen 1 0.9 1 1

Total landfall 79 75.2 80 80

No landfall 26 24.8 20 20

Total 105 100 100 100
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represents where most of the tracks make landfall, appears 
to be an inadequate approach.

Assuming the vector fields depend only on season, the 
Table 3 contents analysis (vector fields depend on smooth 
function of longitude and latitude and the function varies 
with season) is extended to produce Table 4 where we see 
the highest observation (40%) and simulation percentages 
(61%) are shown in India and the lowest in Yemen (0.9%) 
across the NIO rim countries—except for Bangladesh 
which again fails due to the majority vote approach. The 
percentage difference in total landfall occurrences (Table 4) 
between the observations and simulated values is smallest 
for Yemen (0%) and largest for Bangladesh (100%).

Following the second model validation approach (intro-
duced in Sect.  2.2.4.2), we examined the probability dis-
tribution of simulated landfall occurrences against the 
observed landfall occurrences. The model was run 40 times 
and the statistical mean plus error was compared against 
the observations (Table 5a, b). This means that we have an 
ensemble of tracks, and therefore landfall locations, from 
which to build a distribution and compare its mean and 
spread against the observations. It is seen (Table  5a) that 

the percentage of simulated landfall occurrences (37.4%) 
matches well with the observed percentage (38.1%) of 
landfall occurrences for India. The observed values for all 
the other countries lie within the spread of the simulated 
ensemble. The only exception is Bangladesh, where the 
simulated probability is 0–9.6% but the observed percent-
age is 16.2%. When examining the results based on sea-
sonal model fits (Table  5b) it is found that the predicted 
landfall probability with mean error for Bangladesh in the 
monsoon season (3.6%) is similar to the observed. How-
ever, as a whole, the model performance for Bangladesh is 
poor across the other TC seasons. For example, the simu-
lated landfall probability in the pre-monsoon season is 
only 6.6% compared to 33.4% for the observations. The 
model also over predicts landfall rates for Yemen in all sea-
sons and for Myanmar in the post-monsoon. Overall the 
percentage of simulated landfall occurrences against the 
observed landfall occurrences matches well for all seasons, 
especially the pre-monsoon and post-monsoon periods 
(Table 5b).

In the third model validation approach (introduced in 
Sect. 2.2.4.3), we calculated the distance between observed 

Table 5   Results of the second model validation technique. Percentage frequency of total observed and predicted tropical cyclone landfall occur-
rences across country coastlines a) for all months, and b) for each season. Errors represent the standard deviation about the mean

Bold numbers highlight the best match for the NIO rim

(a) Country Observation Prediction mean with error

No % %

India 40 38.1 37.4 ± 17.1

Myanmar 10 9.5 13.4 ± 13.5

Bangladesh 17 16.2 4.7 ± 4.9

Sri Lanka 5 4.8 7.2 ± 6.4

Oman 6 5.7 12.8 ± 9.6

Yemen 1 0.9 3.5 ± 3.5

Total landfall 79 75.2 79

No landfall 26 24.8 21

Total 105 100 100

(b) Country Observation Prediction mean with error

Win Pre Mon Post Win Pre Mon Post

No (%) No (%) No (%) No (%) % % % %

IND 4 (26.6) 5 (20.8) 10 (52.6) 21 (44.7) 32.7 ± 20.9 33.2 ± 14.4 39.6 ± 17.8 43.9 ± 15.4

MYN 1 (6.7) 5 (20.8) 1 (5.3) 3 (6.4) 8.9 ± 14.8 25.9 ± 18.4 4.9 ± 6.1 13.8 ± 14.7

BAN 0 (0) 8 (33.4) 1 (5.3) 8 (17) 2.2 ± 4.8 6.6 ± 5.3 3.6 ± 3.7 6.4 ± 5.6

SLN 3 (20) 0 (0) 0 (0) 2 (4.3) 20.9 ± 16.3 3.3 ± 3.8 0.9 ± 1.6 3.8 ± 4

OMN 1 (6.7) 2 (8.3) 2 (10.5) 1 (2.1) 0.9 ± 1.7 10.8 ± 7.1 30.7 ± 20.4 8.9 ± 9.2

YEM 0 (0) 0 (0) 0 (0) 1 (2.1) 1.9 ± 2.5 4.4 ± 3.6 3 ± 4.4 4.5 ± 3.4

Landfall 9 (60) 20 (83.3) 14 (73.7) 36 (76.6) 67.5 84.2 82.7 81.3

NON 6 (40) 4 (16.7) 5 (26.3) 11 (23.4) 32.5 15.8 17.3 18.7

Total 15 (100) 24 (100) 19 (100) 47 (100) 100 100 100 100
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landfall and simulated landfall occurrences to evaluate 
model performance. The distribution of distances between 
the observed and simulated landfall points across all sim-
ulated tracks is presented in Fig.  10. It is found that the 
majority of simulated TC landfall occurrences (54.6%) 
occur within 0–500 km of the observed landfall locations, 
with the best model performances found in the winter, 
monsoon and post-monsoon seasons. For the pre-monsoon 
season, there is a greater spread of differences between 
modelled landfall locations and those observed, with the 
majority difference being at just over 1500  km from the 
observed. Given the spatial scale of tropical cyclones is typ-
ically O(1000  km), modelled landfall occurrences within 
~500  km of the observations would suggest very good 
model performance, while those falling within ~1000  km 
should still be deemed as beneficial and effectively skilful.

4 � Discussion

This study has described a new climatological statistical 
model of tropical cyclone genesis, tracks and landfall for 
the North Indian Ocean region. This climatological model 
is intended to represent a model baseline against which 
future TC forecast models might be developed and assessed 
for their seasonal forecast skill on year-to-year or longer 
time scales. The model presented here simulates tropical 
cyclone genesis, tracks and landfall as a function of sea-
son only, and takes no account of the influence of possi-
ble climatic prediction, or predictor, influences on year-to-
year or longer time scales, such as the possible effects of 
El Niño—Southern Oscillation or the Indian Ocean Dipole. 
Hence, the model represents a climatological model for 
TCs in the North Indian Ocean region.

So far, little skill has been shown in dynamical (cli-
mate) model seasonal forecasts of tropical cyclones for 
the NIO region (Camargo et  al. 2007; Camp et  al. 2015). 

Specifically, Camargo et  al. (2005) and Shaevitz et  al. 
(2014) noted that both low and high-resolution models are 
generally unable to properly simulate the seasonal cycle. 
We have instead applied a statistical modelling approach 
here, where the tropical observed cyclone genesis is mod-
elled by kernel density estimation, producing a probability 
density function (PDF) from which individual storms can 
be randomly sampled. Tracks are fitted using a generalised 
additive model, and model track simulations use random 
innovations at spatial increments to produce an ensemble 
of simulated tracks. The model is cross-validated in three 
separate ways to assess and ensure reliability of the results.

The simulation of a large number of tracks with an 
implementation of this model enables the calculation of 
landfall probabilities at any location of interest in the 
North Indian Ocean region affected by tropical cyclones. 
In our 35-year study period (1979–2013), a total number 
of 105 tropical cyclones (TCs) have been reported and 
are recorded in the JTWC database (within IBTrACS). 
Of these, 79 (75%) made landfall across six North Indian 
Ocean (NIO) rim countries, namely Bangladesh, India, 
Myanmar, Sri Lanka, Oman and Yemen. Almost half of 
the TCs that made landfall, have done so during the post-
monsoon season, while 25.3% (20) made landfall during 
the pre-monsoon season—a total of 71% making landfall 
during only these two of the four seasons annually. Spe-
cifically, 50% of annual TC landfall events into Myanmar 
have occurred during the pre-monsoon season, while 47% 
of total annual TC landfall events also occurred during this 
same season in Bangladesh. Conversely, 52% of landfall 
events into India have occurred during the post-monsoon 
season. In terms of time from genesis to landfall, it was 
found that it takes around 2–4 days since genesis for 47% 
of events to make landfall during the pre-monsoon season 
and from 0 to 2 days (68% of events) during the post-mon-
soon season. Correspondingly, the model also predicts that 
the highest percentage of TC landfall events should occur 

Fig. 10   Distribution of dis-
tances between observed and 
simulated landfall location over 
the NIO as per season
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in the pre-monsoon season for Myanmar and in the post-
monsoon season for India. However, the model failed to 
predict the highest number of landfall occurrences in the 
pre-monsoon season for Bangladesh.

We have chosen three methods to cross-validate this 
statistical model. First, leave-one-out cross-validation was 
applied. We have shown that the percentages of annual 
total NIO region observed and simulated TCs that made 
landfall across each country coastline compare well. It was 
found that the model performs best in this sense for Myan-
mar, with the smallest prediction error of 0.5% difference. 
On the other hand, the worst performance is identified for 
Bangladesh where the model fails to predict. The cross val-
idation analysis was repeated by assuming that the vector 
field depends on only season and then the model predicts 
well for Yemen and Myanmar, but again failed for Bangla-
desh due to the majority vote approach.

The second cross-validation approach considers the 
probability distribution of the simulated tracks, where the 
model is run several times and the statistical mean and 
error (standard deviation) are generated to assess whether 
the model results capture the percentage of observed 
landfalls within an error bound (standard deviation). The 
standard deviation represents the model error (±) around 
the model-predicted mean value, which encompasses the 
observed percentages of landfall occurrences for most of 
the six countries in the NIO rim. Exceptions are for Myan-
mar during the post-monsoon season (the model predicts 
13.8% whereas the observations correspond to 6.4%) and 
Bangladesh in the pre-monsoon season (the model predicts 
6.6% whereas the observations correspond to 33.4%).

The third and final cross-validation approach calcu-
lates the distance between observed and simulated landfall 
points, and reveals that the majority of modelled TC land-
fall occurrences are within 500 km of the observed landfall 
locations. This confirms the model skill, given that the typi-
cal spatial scale of tropical cyclones [O(1000 km)] is much 
larger than the typical error in landfall location. Impor-
tantly, a forecast with an error of 500 km is useful infor-
mation as compared with no information, which would be 
the case in the absence of a forecast model. Further, it is 
notable that the NIO basin is difficult to model due to the 
double peak in the seasonal cycle (Camargo et  al. 2005; 
Shaevitz et  al. 2014; Camp et  al. 2015). An error in pre-
dicted landfall location of 500 km is similar to the errors 
of dynamical models for the region, which have errors on 
the order of 100 s of km (Mallik et al. 2015; Rayhun et al. 
2015).

One limitation of the statistical modelling approach is 
the lower sharpness (the tendency of the forecast to pre-
dict extreme values) that comes with such models (Vitart 
et  al. 2010). Statistical models rarely predict very low or 

very high probabilities largely because of the constraints 
provided by climatology (Slade and Maloney 2013). In 
other words, we are examining the expected seasonal state 
rather than the extreme events. There is also room for the 
TC genesis kernel density estimation to be better tuned 
to the observations. Specifically, the kernel does not cap-
ture the genesis locations particularly well near Sri Lanka. 
Future improvements to the genesis model may translate to 
a bias reduction in the track simulations and thus landfall 
estimates.

Our model presented here provides the climatologi-
cal basis against which future developments of statistical 
forecasting applications, given climate predictors on inter-
annual to decadal time scales, can be tested for their skill. 
In particular, the Quasi-Biennial Oscillation and El Niño—
Southern Oscillation are potentially relevant climate modes 
of variability to the North Indian region tropical cyclone 
activity (Girishkumar and Ravichandran 2012; Fadnavis 
et  al. 2014). These climate modes and skill in seasonally 
forecasting tropical cyclone activity afforded by the model 
developed on other relevant predictor variables will be 
investigated and discussed in separate studies.

5 � Conclusions

The key aim of this paper has been to develop a climatolog-
ical statistical model of tropical cyclone genesis, tracks and 
landfall for the North Indian Ocean region and its neigh-
bouring rim countries that will be beneficial for forecast 
models to be compared against. The main findings are as 
follows:

1.	 An effective method has been developed to estimate 
the distribution of tropical cyclone genesis points by 
kernel density estimation. This paper demonstrates that 
the masked kernel density estimates well the observed 
genesis points within each season.

2.	 A novel generalised additive model (GAM) has been 
introduced and fitted to track increments and used as 
a baseline for predicting the tropical cyclone velocity 
field in each season. In the winter and monsoon sea-
sons, the GAM-fitted velocity field highlights the west-
ward or north-westward cyclone movement during this 
time. Conversely, during the pre-monsoon season, the 
model fit highlights the north-westward/northward 
movement, and north-eastward recurvature. In the 
post-monsoon season, the GAM shows the cyclone 
movement is typically in a north-westward direction 
which later recurves towards the northeast.

3.	 The observations indicate the highest percentage of 
landfall occurrences in the pre-monsoon seasons are 



A climatological model of North Indian Ocean tropical cyclone genesis, tracks and landfall

1 3

found in Myanmar (50%) and Bangladesh (47%), 
while for the post-monsoon season the largest percent-
age of landfall occurs in India (52%). Our model shows 
characteristically similar results with simulated highest 
percentage landfall occurrences for Myanmar (56.5%) 
and Bangladesh (50%) in the pre-monsoon season, and 
for India (30%) in the post-monsoon.

4.	 The characteristic number of days from tropical cyclone 
genesis to landfall can provide useful time scale informa-
tion for coastal planning and emergency response. We 
determined the time since genesis that landfall occurs, 
and found the percentage in the observations and simula-
tions are characteristically 2–4 days for the pre-monsoon 
season and 0–2 days for the post-monsoon season.

5.	 From analysis of the results by season, we find the 
highest number of model simulated cyclones move 
eastward during the pre-monsoon season and make 
landfall around the eastern part of Bay of Bengal, 
whereas they move westward making landfall in the 
western part of Bay of Bengal/eastern coast of India 
during the post-monsoon.

6.	 To validate the quality of the model hindcasts against 
the observed landfall occurrences across the NIO coun-
tries, three validation methods were introduced [(1) 
leave-one-out cross-validation, (2) probability distri-
bution of country of landfall, and (3) distance between 
observed and simulated landfall locations], collectively 
demonstrating that the model performs well as a clima-
tological baseline.

In summary, we have developed a new and skilful sea-
sonal climatological model of tropical cyclone genesis, 
tracks, and landfall for the North Indian Ocean region. It 
is found that our model produces skilful hindcasts of these 
tropical cyclone characteristics. An important outcome of 
this paper is the development of seasonal TC genesis distri-
butions using kernel density estimation, and trajectory simu-
lation and landfall detection using a generalised additive 
model with stochastic innovations that impinge on a country 
mask. Efforts are currently underway to adapt the presented 
model approach to develop a statistical seasonal forecast-
ing model that incorporates interannual climate predictors, 
including simple metrics for the stratospheric Quasi-Bien-
nial Oscillation or El Niño—Southern Oscillation.
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