
1.  Introduction
A key element for climate change projection and for carbon emission policy is how effective the ocean is, and will 
be, in mitigating the effects of anthropogenic CO2 emissions. The northwest Atlantic is one of the largest oceanic 
carbon sinks on an areal basis, taking in and storing large amounts of anthropogenic CO2 (Khatiwala et al., 2013). 
There are several chemical, physical and biological factors that influence how much CO2 the ocean takes up 
throughout the year. In the winter, cold winds cool the surface waters, increasing the solubility of CO2 (Emerson 
& Hedges, 2008), which enhances dissolved inorganic carbon (DIC) concentrations in the surface layers as a 
result of air-sea gas exchange. Temperature also influences the physical uptake processes of the area, as cooling 
reduces stratification and facilitates the transport of DIC rich waters from the surface to the deeper waters. The 
shoaling of the mixed layer in the summer traps DIC rich waters in the subsurface ocean where it is no longer in 
contact with the atmosphere. While respiration will release CO2 into the surface waters, phytoplankton will use 
CO2 for photosynthesis. Strong, seasonal biological production also promotes seasonal uptake of CO2 from the 
atmosphere, which is transported deeper via the biological carbon and mixed-layer pumps (Lacour et al., 2019).

Abstract  The northwest Atlantic Ocean is an important sink for carbon dioxide produced by anthropogenic 
activities. However the strong seasonal variability in the surface waters paired with the sparse and summer 
biased observations of ocean carbon makes it difficult to capture a full picture of its temporal variations 
throughout the water column. We aim to improve the estimation of temporal trends of dissolved inorganic 
carbon (DIC) due to anthropogenic sources using a new statistical approach: a time series generalization of 
the extended multiple linear regression (eMLR) method. Anthropogenic increase of northwest Atlantic DIC in 
the surface waters is hard to quantify due to the strong, natural seasonal variations of DIC. We address this by 
separating DIC into its seasonal, natural and anthropogenic components. Ocean carbon data is often collected 
in the summer, creating a summer bias, however using monthly averaged data made our results less susceptible 
to the strong summer bias in the available data. Variations in waters below 1000m have usually been analyzed 
on decadal time scales, but our monthly analysis showed the anthropogenic carbon component had a sudden 
change in 2000 from stationary to an increasing trend at the same rate as the waters above. All depths layers 
had similar rates of anthropogenic increase of ∼0.57µmol kg −1 year −1, and our uncertainty levels are smaller 
than with eMLR results. Integration throughout the water column (0–3,500 m) gives an anthropogenic carbon 
storage rate of 1.37 ± 0.57 mol m −2 year −1, which is consistent with other published estimates.

Plain Language Summary  We need to measure the ocean sink for the CO2 emitted by 
industrialized societies, and it is particularly important for the northwest Atlantic Ocean. The rate of carbon 
increase is often overshadowed by natural and seasonal variability. We introduce new statistical approaches 
to better estimate the rate of anthropogenic carbon that has accumulated due to human activities. Ocean 
carbon data is often collected in the summer, creating a summer bias, however using monthly averaged data 
made our results less susceptible to the strong summer bias in the available data. From 1993 to 2015 in the 
northwest Atlantic Ocean, anthropogenic carbon increased at ∼0.57 μmol kg −1 year −1 within all depth-layers. 
Integration of results throughout the water column (0–3,500 m) gives an anthropogenic carbon storage rate of 
1.37 ± 0.57 mol m −2 year −1.
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The column inventory of anthropogenic DIC is the depth-integrated amount of ocean carbon present as a result 
of human activities, reported on a per area basis. In the northwest Atlantic this was estimated at 160 mol m −2 in 
2010, several times greater than the global average (Khatiwala et al., 2013). The global ocean's uptake of atmos-
pheric CO2 estimated in the last 10 years, as diagnosed from observations, has been increasing at a faster rate 
than the uptake estimated from ocean models (see Figure 9 in Friedlingstein et al. (2020)). Such inconsistencies 
motivate our goal of improving the estimation of uptake and storage of anthropogenic carbon for the northwest 
Atlantic, as determined directly from DIC observations.

Observational data from two main sources are used to study the ocean carbon cycle. The SOCAT data set 
provides near-surface ocean pCO2 measurements made on research cruises and ships of opportunity (Bakker 
et al., 2016). This data set has been used to estimate air-sea fluxes on the global scale with methods ranging 
from neural networks (Landschützer et al., 2014) to atmospheric inversion (Rödenbeck et al., 2013, 2015) and 
interpolation (Goddijn-Murphy et  al.,  2015). The GLODAP data set provides discrete water sample meas-
urements for the ocean interior (Lauvset et al., 2021). This data set has been used to estimate the build up 
of anthropogenic CO2 in the oceans (Khatiwala et  al.,  2013; Lauvset et  al.,  2016; Sabine, 2004) and diag-
nose ocean transport of carbon (Holfort et al., 1998; Macdonald et al., 2003). Analyses of temporal changes 
have tended to use regression approaches (Bostock et al., 2013; Friis et al., 2005; Gruber et al., 2019), but 
also use mechanistic approaches based on ocean biogeochemical models (Carroll et al., 2022; Friedlingstein 
et  al., 2020; Gerber & Joos, 2010). Our study focuses on the use of interior ocean DIC observations from 
GLODAP.

An important and long-standing research question is how to separate DIC into its natural and anthropogenic 
components (Sabine & Tanhua, 2010; Wallace, 2001), where anthropogenic typically refers to the excess DIC 
present in the ocean as a result of human activities (i.e., due to atmospheric CO2 increases since preindustrial 
times). Multiple linear regression (Wallace,  1995), and especially the extended Multiple Linear Regression 
method (eMLR) (Friis et al., 2005), are now widely used to estimate the increase of anthropogenic DIC. This 
is usually done between two time points that are a decade or more apart and on repeat hydrographic sections 
(Thacker, 2012). This approach has been extended recently to include eMLR in a depth-spatial moving window 
(Carter et  al.,  2017), eMLR for column inventories (Plancherel et  al.,  2013), and eMLR(C*) (Clement & 
Gruber, 2018). eMLR approaches are based on exploiting the changing relationship between observed DIC and 
other correlated ocean variables that are not directly impacted by anthropogenic CO2 uptake, such as temperature, 
salinity and oxygen. The eMLR(C*) approach, for example, incorporates more ocean predictor variables and 
centers the analysis on a derived variable, called C*, that more closely relates to anthropogenic carbon than DIC. 
The eMLR based methods have proven to be useful for estimating trends over long time intervals (decades) in the 
sub-surface waters, but few studies have attempted an observation-centric analysis of DIC variations on shorter 
time scales. In addition, they have also not provided for reliable estimates in the surface ocean. This study aims 
to rectify those shortcomings and improve our understanding of ocean DIC.

The main challenges to quantifying the temporal variability of the carbon sink and the carbon inventory 
include: the seasonal variability that is particularly strong in the surface waters, observation sparsity, and a 
strong bias toward summer sampling (Fassbender et al., 2018; McKinley et al., 2017). There is potential for 
use of improved  time series approaches to optimally extract information from existing DIC observational 
databases to improve our quantification of DIC dynamics over multiple time scales. Gruber (2002) has, for 
example, used time series methods that incorporate deseasonalization via harmonic analysis, fitting of linear 
trends, and analyzing correlations between variables. In this study, we build upon and generalize the eMLR 
method into a time series framework using dynamic linear regression. This allows us to analyze seasonally 
biased observations of DIC and isolate its sources of variability, while improving temporal resolution of 
the analysis and producing objective observation-driven error estimates. Our method provides estimation of 
anthropogenic changes in DIC, making it capable of assessing non-linear trends in anthropogenic CO2 uptake, 
as well as its seasonal and inter-annual variability. Here, we use this approach to study DIC in the northwest 
Atlantic within three depth-layers ranging from the surface to the deep waters, and estimate on a monthly time 
scale the seasonal, natural variability and anthropogenic DIC. We also investigate the influence of seasonally 
biased observations on the analysis and results. This provides a North Atlantic perspective to complement 
the work performed with seasonally biased data in the Southern Ocean (Fassbender et  al.,  2018; Mackay 
et al., 2022).
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2.  Data
The principal data set used in this study is the GLODAPv2.2019 data product 
(Olsen et al., 2016, 2019), hereafter referred to as GLODAP. It is a global 
collection of quality controlled in situ measurements from scientific cruises 
conducted from 1972 to 2017. It contains 12 core biogeochemical variables, 
including our target variable of Dissolved Inorganic Carbon (DIC), which 
were measured from bottle samples and include their time and location 
coordinates (i.e., date, latitude, longitude and depth). Physical variables also 
reported include potential temperature and practical salinity; we make use of 
these two variables in our analysis because they have a strong mechanistic 
and statistical connection with DIC, are widely available, and are commonly 
used in eMLR analyses (Friis et al., 2005). The remaining biogeochemical 
variables have less frequent in situ measurements than temperature and salin-
ity, and were chosen not to be include in this analysis. Hence, we considered 
only DIC and covariates of temperature and salinity in our analysis, although 
we note that in the future measurements of biogeochemical variables, such 
as oxygen from profiling floats, could be used with our approach to improve 
results.

Our region of interest is the northwest Atlantic, which we define as the region 
south of 65° N within the Atlantic Arctic (ARCT) Longhurst biogeochemical 

province (Longhurst, 2007) (Figure 1a). It includes areas of deep convection that are associated with intense 
anthropogenic carbon storage (Raimondi et al., 2021). These areas of deep convection have been shown to shift 
their location and intensity in space and time (Rühs et al., 2021). The relatively broad study area was chosen to 
ensure we captured all key regions of deep convection, as well as the more pragmatic concern of having a large 
enough data set for our analysis.

We separated the data into three depth-layers: layer 1: 0–200m, layer 2: 200–1,000 m, and layer 3: 1,000–4,500 
m. These correspond to the euphotic zone (sunlit), the mesopelagic zone (twilight) and the bathypelagic zone 
(midnight), respectively (Berger & Shor, 2009). Biogeochemical ocean regions transition from surface to inter-
mediate and deep waters at different depths due to the mixed layer depth which varies seasonally, interannually 
and spatially, and can be challenging to define quantitatively (Rühs et al., 2021). For this analysis the depths of 
layer boundaries were chosen to be constant through the year, and correspond to how the mean and standard 
deviation of DIC changed with depth (Figure 1b). The near surface, layer 1, has the largest spread of DIC due 
to direct gas exchange with the atmosphere and the seasonal biological activity that occurs in the euphotic zone 
(mean 2,124 μmol kg −1 and standard deviation 31 μmol kg −1). The separation between layer 1 and layer 2 at 200 
m is similar to that used by others (Brewer et al., 1995; Turk et al., 2017; Ullman et al., 2009), as is the separation 
between layer 2 and layer 3 around 1,000 m (Bostock et al., 2013; Emery, 2001; Keppler et al., 2020). In layer 
2 the mean DIC value becomes more constant and with a large reduction in spread (mean 2,158 μmol kg −1 and 
standard deviation 8.6 μmol kg −1). The deep layer 3 has an even smaller spread with a near-constant DIC (mean 
2,159 μmol kg −1 and standard deviation 5.6 μmol kg −1).

The DIC observations from January 1993 to December 2015 have a distinct seasonal sampling bias, which is 
clearly seen in the distribution of observations by month (Figure 2a). Of the individual observations, 37% were 
recorded in the summer (July to October) while only 2% were recorded in the winter (Jan to Apr). The seasons 
are defined as the 4 months with the warmest and coldest temperatures in the ocean surface layer. Figure 2b 
shows DIC observations over time in the northwest Atlantic and highlights the difference between winter and 
summer, with summer having lower DIC values due to higher sea surface temperatures causing some outgassing 
but mainly due to phytoplankton photosynthesis using CO2 (Montes-Hugo et al., 2010) in the surface waters. 
Fitting a linear temporal trend using least squares regression to the winter observations shows it is increasing at 
0.77 ± 0.07 μmol kg −1 year −1, a faster rate than the 0.23 ± 0.41 μmol kg −1 year −1 for the summer observations. 
Figure 2b motivated the question of whether winter and summer really have different DIC trends, or if this an 
artifact of sampling bias. This will be explored in Section 4.1. We pre-processed the data by separating it into the 
three depth-layers, after which each subset was turned into monthly averaged time series (which still have obser-
vation gaps). The monthly data was better balanced in terms of its seasonal distribution, that is, of the months 

Figure 1.  Spatial distributions of GLODAPv2.2019 data. (a) Geographical 
location of observations (semi-transparent gray dots). Repeated observations 
at the same location or at multiple depths or times are plotted on top of each 
other (appearing as solid black dots). The Atlantic Arctic Longhurst Province 
is indicated (gray polygon). (b) Observations of DIC versus depth are given. 
Horizontal dashed lines identify the 200 and 1,000 m depths that separate our 
data into three depth-layers.
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occurring in winter between 1993 and 2015, 8% had at least 1 observation and likewise 12% in summer had at 
least one observation. By averaging all observations in a month, this implicitly assumed that the observations 
in that month had homogeneous oceanographic properties, which is a viable assumption for our data contained 
within the Atlantic Arctic Longhurst Province.

GLODAP has many data gaps through time (Figure 2a). Our analysis has DIC as its target variable but, like 
the eMLR method, makes use of temperature and salinity as covariates to better estimate it. To improve the 
spatial and temporal coverage of temperature and salinity, we used the GLORYS12v1 reanalysis product to 
provide a complete time series for these physical oceanographic variables (GLORYS12V1 - Global Ocean Phys-
ical Reanalysis Product, 2018). GLORYS12v1 provides potential temperature and practical salinity values over 
a regular 1/12° spatial grid, at 50 vertical depth-levels and on daily time intervals from 1993 to 2018. As with 
the GLODAP data, this daily reanalysis product was separated into our three depth-layers and converted into 
times series of monthly and spatially averaged values within our region of interest in the northwest Atlantic. 
Figure S2 in Supporting Information S1 shows that deseasonalized values for temperature and salinity from both 
GLODAP and GLORYS12v1 agree, with GLODAP having a slightly larger scatter, but are centered around the 
GLORYS12v1 values.

3.  Methods
The eMLR method (Friis et  al.,  2005) has been widely used to estimate the anthropogenic increase of DIC 
between two time points, typically a decade or more apart. For a repeat-sampled ocean transect and assuming the 
relationship between the natural variability of DIC and oceanographic variables remains constant over time, any 
changes in the regression coefficients of the relationship can be interpreted as a non-natural change, that is, excess 
DIC due to anthropogenic sources (Thacker, 2012). When this is evaluated for the later time point, it yields an 
estimate of the anthropogenic increase of DIC over the time interval of study.

Here we develop and apply a time series generalization of the eMLR method. We build upon the eMLR meth-
odology by using a time-invariant linear regression relationship of DIC against temperature and salinity to 
represent the natural variability of DIC, and we also include a time-varying term to represent the excess DIC. 
As with the eMLR method, we seek to quantify the change in DIC over time, but ours is a time series method 
that better resolves the changes through time. While the eMLR looks at differences over a fixed time interval, 
our time series approach constrains variability over a range of time scales, and allows us to look at inter-annual 
to decadal variability of anthropogenic DIC. It can also account for common observational issues such as 
varying sampling intervals and data gaps. Importantly, it can produce statistically objective error bars that 
change through time and reflect the data properties and distribution. Our approach, as detailed below, is based 
on a decomposition of the DIC observations into three components: a seasonal cycle, natural variability, and 
excess carbon due to anthropogenic sources. It produces monthly time series of these carbon components (with 
confidence intervals).

Figure 2.  (a) Proportion by month of GLODAPv2.2019 DIC observations for depths 0–200m. Numbers at the top of each 
bar gives the proportion of observations occurring in that month. (b) Dissolved inorganic carbon (DIC) over time in the 
Northwest Atlantic domain for depths 0–200 m. Dots are colored by the season they were recorded: winter that is, January 
to April (blue dots), and summer that is, July to October (red dots). Note that spring and fall are not shown. To each of the 
different subsets, linear temporal trends were fitted using ordinary least squares, and their slopes are reported in units of 
μmol kg −1 year −1.
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3.1.  Decomposition of DIC

We designate DIC observations as Ct. The first step was to deseasonalize them, such that.

𝐶𝐶
′

𝑡𝑡
= 𝐶𝐶𝑡𝑡 − 𝐶𝐶

s

𝑡𝑡� (1)

where 𝐴𝐴 𝐴𝐴
′

𝑡𝑡
 are the deseasonalized DIC anomalies and 𝐴𝐴 𝐴𝐴

s

𝑡𝑡
 represents the mean seasonal cycle over the period of 

interest. This seasonal cycle, 𝐴𝐴 𝐴𝐴
s

𝑡𝑡
 was estimated empirically by taking the mean of each month (Jan, Feb, etc.). The 

equivalent deseasonalization procedure was also performed for our other variables of temperature Tt and salinity 
St. The DIC anomalies were then further decomposed as follows:

𝐶𝐶
′

𝑡𝑡
= 𝐶𝐶

e

𝑡𝑡
+ 𝐶𝐶

n

𝑡𝑡
+ 𝑣𝑣𝑡𝑡� (2)

where 𝐴𝐴 𝐴𝐴
e

𝑡𝑡
 represents the excess carbon (e.g., assumed due to anthropogenic sources) and 𝐴𝐴 𝐴𝐴

n

𝑡𝑡
 represents the natural 

variability (e.g., from variations in oceanic water properties). The 𝐴𝐴 𝐴𝐴𝑡𝑡 is called the observation error, and contains 
the remaining variability not described by the excess and natural variability components, that is, within-month 
variations, and measurement error. Separating the natural and anthropogenic changes of DIC in Equation 2 is the 
same concept proposed in Clement and Gruber (2018), but the methods used to estimate the natural and anthro-
pogenic components target different parts of the carbon system, that is, circulation and mixing, biological pump, 
solubility pump, and air-sea flux, and will be discussed further in Section 5.

In order to separate and estimate the excess carbon and natural variability components, we build upon founda-
tional assumptions of the eMLR method and re-cast Equation 2 as the regression equation

𝐶𝐶
′

𝑡𝑡
= 𝛽𝛽0,𝑡𝑡 + 𝛽𝛽1𝑇𝑇

′

𝑡𝑡
+ 𝛽𝛽2𝑆𝑆

′

𝑡𝑡
+ 𝑣𝑣𝑡𝑡.� (3)

The excess DIC, 𝐴𝐴 𝐴𝐴
e

𝑡𝑡
 , is now represented by the time varying intercept term β0,t. The natural variability, 𝐴𝐴 𝐴𝐴

n

𝑡𝑡
 , is 

equated with the terms 𝐴𝐴 𝐴𝐴1𝑇𝑇
′

𝑡𝑡
+ 𝛽𝛽2𝑆𝑆

′

𝑡𝑡
 , representing a linear relationship between anomalies of DIC and anoma-

lies of temperature, 𝐴𝐴 𝐴𝐴
′

𝑡𝑡
 , and salinity, 𝐴𝐴 𝐴𝐴

′

𝑡𝑡
 . Note, the linear regression could be expanded to include biogeochemi-

cal ocean variables such as oxygen, etc. We assumed observation error 𝐴𝐴 𝐴𝐴𝑡𝑡 ∼ 𝑁𝑁
(

0, 𝜎𝜎
2

𝑣𝑣

)

 . For this time-dependent 
regression, we estimated the four parameters: β0t, β1, β2, and 𝐴𝐴 𝐴𝐴𝑣𝑣 using the monthly averaged and deseasonalized 
GLODAP DIC data.

To illustrate how our method relates to the equations used in the eMLR method, consider the eMLR prediction 
equation for anthropogenic carbon (C eMLR) that has been expanded to show its two regressions:

����� =
(

��2 − ��1
)

+
(

��2 − ��1
)

��2 +
(

��2 − ��1
)

��2

=
(

��2 + ��2��2 + ��2��2

)

−
(

��1 + ��1��2 + ��1��2

)

.
�

The regression parameters 𝐴𝐴 𝐴𝐴𝑡𝑡1 , 𝐴𝐴 𝐴𝐴𝑡𝑡1 and 𝐴𝐴 𝐴𝐴𝑡𝑡1 would be estimated from DIC, temperature and salinity data at time 
t1, and similarly for parameters 𝐴𝐴 𝐴𝐴𝑡𝑡2 , 𝐴𝐴 𝐴𝐴𝑡𝑡2 and 𝐴𝐴 𝐴𝐴𝑡𝑡2 estimated at time t2. Both regressions are predicted at 𝐴𝐴 𝐴𝐴𝑡𝑡2

 and 𝐴𝐴 𝐴𝐴𝑡𝑡2
 , 

temperature and salinity at time t2. When the eMLR is expanded to show its two regressions, the second bracket 
𝐴𝐴

(

𝑎𝑎𝑡𝑡1 + 𝑏𝑏𝑡𝑡1𝑇𝑇𝑡𝑡2
+ 𝑐𝑐𝑡𝑡1𝑆𝑆𝑡𝑡2

)

 is equivalent to our natural component but evaluated at each time t in our monthly time 
series. The anthropogenic carbon (C eMLR) is equivalent to our time varying intercept term (β0,t).

3.2.  Dynamic Linear Regression

To estimate excess carbon, 𝐴𝐴 𝐴𝐴
e

𝑡𝑡
 via β0t, we used a state space modeling framework that corresponds to dynamic 

linear regression (Laine,  2020; Zivot & Wang,  2003). This uses two equations: an observation equation (as 
described by Equation 3 above) and a prediction equation (as described by Equation 4 below). The prediction 
equation predicts the time evolution of excess carbon, as embodied in the regression intercept β0t. It takes the form

𝛽𝛽0,𝑡𝑡 = 𝛽𝛽0,𝑡𝑡−1 + 𝜙𝜙(𝛽𝛽0,𝑡𝑡−1 − 𝛽𝛽0,𝑡𝑡−2) +𝑤𝑤𝑡𝑡.� (4)

This is a correlated random walk process. It predicts the excess carbon at time t (β0t) based on its previous two 
values at times t − 1 and t − 2. Specifically, the update is based on β0t−1 plus a proportion of the change occur-
ring between the previous two time steps (β0t−1 − β0t−2). Note that the unit time increments used here refer to the 
time interval of the analysis, in this instance monthly. The parameter ϕ is a measure of the strength of the excess 
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carbon time tendency; we term this the proportion of trend persistence. Note that we used a random walk instead 
of an auto-regressive process for the prediction (Equation 4) because such a stationary autoregressive processes 
have a mean reversion property (i.e., when predicting forward in time, they are drawn back to the mean), which 
is inconsistent with the increasing anthropogenic DIC over time that we wish to quantify. The purpose of the 
correlated random walk is to introduce temporal memory in excess carbon, with the DIC observations guiding 
its time evolution through the state space model Equations 3 and 4. The prediction error for the new intercept is 
given by 𝐴𝐴 𝐴𝐴𝑡𝑡 ∼ 𝑁𝑁

(

0, 𝜎𝜎
2

𝑤𝑤

)

 , and its variance 𝐴𝐴 𝐴𝐴
2

𝑤𝑤 will be estimated as part of the implementation (see Section 3.3).

The Kalman filter/smoother algorithm (see, e.g., Anderson & Moore, 1979) was used to solve this dynamic linear 
regression Equations 3 and 4. This fixed-interval smoother provides for estimation of the system state, which in 
this instance is excess carbon, β0t. Specifically, it provides for the monthly estimates of the mean values of excess 
carbon and its time-varying variance. The variance can be used to produce errors bars, that is, confidence inter-
vals for excess carbon. The algorithm uses sequential, or recursive, estimation. This relies on the Kalman filter, 
which operates as a forward in time recursion such that at each time step t, an estimate of the new excess carbon 
value is available via a one-step ahead prediction using Equation 4. This prediction is then updated to be closer 
to the DIC observation using a smoother step that further refines these estimates through a backwards in time 
recursion. The ratio of the variances for the observation error (𝐴𝐴 𝐴𝐴𝑣𝑣 ) to the prediction error (𝐴𝐴 𝐴𝐴𝑤𝑤 ) is a key quantity that 
dictates how closely the results follow the observations. To facilitate their specification, the Kalman filter also 
allows for parameter estimation through likelihood-based approaches. For this study, we estimated the parameters 
ϕ and 𝐴𝐴 𝐴𝐴

2

𝑤𝑤 using maximum likelihood, while 𝐴𝐴 𝐴𝐴𝑣𝑣 was estimated from analysis of DIC observations. For details of 
the Kalman filter/smoother and parameter estimation, the reader is referred to the Supplementary Information.

3.3.  Implementation

To implement our proposed methodology, the following steps were taken to perform the analysis on each 
depth-layer. Following the pre-processing of the DIC, T and S data into monthly average time series, we: (i) 
determine the seasonal cycle, and deseasonalize DIC, T and S; (ii) find the regression coefficients relating DIC 
to T and S, that is, β0t = 1, β1 and β2; (iii) specify initial conditions for mean and variance of excess carbon; (iv) 
specify or estimate the state space model parameters: 𝐴𝐴 𝐴𝐴𝑣𝑣 , 𝐴𝐴 𝐴𝐴𝑤𝑤 and ϕ; (v) carry out state estimation of excess carbon 
component with Kalman Smoother; (vi) reconstruct the total carbon time series by combining its components 
(excess, natural, seasonal). These steps are outlined in detail below.

(i) Seasonal Component and Deseasonalize DIC, T, and S

After pre-processing the data into a monthly average time series, the seasonal cycle of DIC, 𝐴𝐴 𝐶̂𝐶
s

𝑡𝑡
 , was estimated 

from the GLODAP monthly observations as the long-term mean for each month (e.g., the mean of all Januaries 
across all years of data). The seasonal cycle of DIC was removed to produce observations of deseasonalized DIC 
anomalies, 𝐴𝐴 𝐴𝐴

′

𝑡𝑡
 . The temperature and salinity observations were also deseasonalized to yield 𝐴𝐴 𝐴𝐴

′

𝑡𝑡
 and 𝐴𝐴 𝐴𝐴

′

𝑡𝑡
 .

(ii) Estimate Regression Coefficients That Relate 𝑨𝑨 𝑨𝑨
′

𝒕𝒕
 to 𝑨𝑨 𝑨𝑨

′

𝒕𝒕
 and 𝑨𝑨 𝑨𝑨

′

𝒕𝒕
 : β0,t = 1, β1, and β2

The regression coefficients 𝐴𝐴 𝛽𝛽0,𝑡𝑡=1 , 𝐴𝐴 𝛽𝛽1 , and 𝐴𝐴 𝛽𝛽2 from Equation 3 were estimated with ordinary least squares regression 
using deseasonalized GLODAP data from the first five years (1993–1997). When estimating the regression param-
eters for the covariates, it was important to check the overall regression significance (F-test), and the significance 
for each parameter (t-test). If the regression was not significant, then the natural component become a constant 
value set to 0 and we set 𝐴𝐴 𝛽𝛽1 = 𝛽𝛽2 = 0 , as is seen in Table 1. In the case that one parameter was not significant then 
that parameter was set to 0 (e.g., 𝐴𝐴 𝛽𝛽2 = 0 ), effectively simplifying the regression to have only one covariate.

The 5 year time span was chosen to provide enough data to estimate a statistically significant regression, but 
small enough that we could assume the anthropogenic changes of carbon within the time span were negligible. 

𝐴𝐴 𝛽𝛽0,𝑡𝑡=1  𝐴𝐴 𝛽𝛽1  𝐴𝐴 𝛽𝛽2  𝐴𝐴 𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒=1  𝐴𝐴 𝐴𝐴𝐴𝑣𝑣  𝐴𝐴 𝐴𝐴𝐴𝑤𝑤 𝐴𝐴 𝜙̂𝜙 

Layer 1: 0–200 m −5.40 −6.97 47.72 2.0 10.1 0.10 0.64

Layer 2: 200–1,000 m −4.17 0 0 1.7 2.2 0.95 0

Layer 3: 1,000–4,500 m −2.73 7.40 0 1.5 6.5 0.10 0.46

Table 1 
Dynamic Linear Regression Parameters Estimated for Each Depth-Layer
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The relationship between carbon and its covariates change over time, such that if regressions on the first 5 years 
and the last 5 years were performed, their estimated parameters would be different, which is the foundation of the 
eMLR method (Friis et al., 2005). We took the eMLR assumption that the natural relationship of carbon with 
covariates does not change over time literally by using data at only the beginning of the analysis period in order 
to establish the baseline natural oceanographic relationship between DIC and temperature and salinity, that would 
not take into account anthropogenic changes over time.

(iii) Initial Conditions for Mean and Variance of Excess Carbon

To run the sequential Kalman smoother algorithm, we require an initial condition for the mean and variance of 
the state. The initial condition for its mean, 𝐴𝐴 𝛽𝛽0,𝑡𝑡=1 , was estimated in the previous step with the other regression 
coefficients, using ordinary least squares regression with the deseasonalized GLODAP data from the first two 
years (1993–1997). For the initial condition of its variance 𝐴𝐴 𝐴𝐴𝐴

2

𝑒𝑒𝑒𝑒𝑒=1
 a reasonable value is selected by iterating through 

Sections 3.3.3–3.3.5 a couple of times for an initial variance that did not artificially inflate or deflate the confi-
dence intervals of excess carbon.

(iv) Estimate State Space Model Parameters: 𝑨𝑨 𝑨𝑨𝒗𝒗 , 𝑨𝑨 𝑨𝑨𝒘𝒘 and ϕ

The observation error standard deviation, 𝐴𝐴 𝐴𝐴𝑣𝑣 , was derived from deviations of the original DIC observations, C, 
about the estimated seasonal cycle. Specifically, standard errors for each of the 12 months were calculated from 
the original GLODAP observations for the duration of the analysis period. The median of these values was used 
as 𝐴𝐴 𝐴𝐴𝐴𝑣𝑣 and are reported in Table 1. (Note that this standard error is for monthly mean values and hence corresponds 
to what is here termed the observation standard deviation of DIC anomalies 𝐴𝐴 𝐴𝐴

′

𝑡𝑡
 ).

Parameter estimates for the prediction standard deviation, 𝐴𝐴 𝐴𝐴𝑤𝑤 , and the proportion of trend persistence, ϕ, were 
determined using the method of maximum likelihood. The likelihood is determined by using the one-step ahead 
predictions of the Kalman filter, and its detailed computation is outlined in the Supporting Information S1. The 
maximum likelihood parameter values for ϕ and 𝐴𝐴 𝐴𝐴𝑤𝑤 are given in Table 1.

(v) State Estimation of Excess Carbon With Kalman Smoother

We execute the dynamic linear regression Equations 3 and 4 with the Kalman smoother algorithm, producing 
a monthly estimate of the excess carbon component 𝐴𝐴 𝛽𝛽0,𝑡𝑡 and its variance 𝐴𝐴 𝐴𝐴𝐴

2

𝑒𝑒𝑒𝑒𝑒
 , which was used to construct 95% 

confidence intervals. Details of the Kalman smoother are provided in the Supporting Information S1.

(vi) Reconstructing Total Carbon

The total carbon time series was reconstructed by combining estimates for its seasonal, natural and excess compo-
nents. The natural variability component within Equation 3 is estimated using the regression parameters 𝐴𝐴 𝛽𝛽1 and 

𝐴𝐴 𝛽𝛽2 along with deseasonalized temperature and salinity from a prediction data set 𝐴𝐴
(

𝐶̂𝐶
n

𝑡𝑡
= 𝛽𝛽1𝑇𝑇

′

𝑝𝑝𝑝𝑝𝑝
+ 𝛽𝛽2𝑆𝑆

′

𝑝𝑝𝑝𝑝𝑝

)

 . The 
GLORYS12v1 reanalysis product was used as the prediction data set. The errors of the natural component were 
calculated using the 95% prediction intervals from the linear regression, which is equivalent to the amount of 
variability that remains to be described by the excess carbon component.

As a final remark on error bars, by adding together the carbon components (seasonal, natural variability and excess 
carbon) we get a complete monthly time series estimate of total carbon 𝐴𝐴

(

𝐶̂𝐶𝑡𝑡 = 𝐶̂𝐶
s

𝑡𝑡
+ 𝐶̂𝐶

n

𝑡𝑡
+ 𝐶̂𝐶

e

𝑡𝑡

)

 . As the components 
are additive, so are the variances for natural variability and excess carbon, which produces a confidence interval 
for carbon anomalies. This uncertainty was also used for total carbon because we considered the deseasonal-
ization done in Equation 1 as a linear transformation prior to our main analysis. For the seasonal component, 
confidence intervals (1.96 × the standard error of the seasonal cycle of DIC) show the within month variability 
that was considered for the estimation of the observation standard deviation 𝐴𝐴 (𝜎̂𝜎𝑣𝑣) . Table 1 gives estimates for all 
the parameters needed to initialize and execute the dynamic linear regression: the estimated initial regression 
coefficients (𝐴𝐴 𝛽𝛽0,𝑡𝑡=1 , 𝐴𝐴 𝛽𝛽1 , and 𝐴𝐴 𝛽𝛽2 ), initial standard error 𝐴𝐴 (𝜎̂𝜎e,𝑡𝑡=1) , observation standard deviation 𝐴𝐴 (𝜎̂𝜎𝑣𝑣) , prediction stand-
ard deviation 𝐴𝐴 (𝜎̂𝜎𝑤𝑤) and the proportion of trend persistence 𝐴𝐴

(

𝜙̂𝜙
)

 .

4.  Results
4.1.  Carbon Components: Seasonal, Natural, and Excess

The seasonal evolution of DIC 𝐴𝐴
(

𝐶̂𝐶
s

𝑡𝑡

)

 for our three depth-layers is shown in Figure 3. The surface water in layer 
1 shows a prominent annual cycle peaking at 2,142 μmol kg −1 in the spring followed by the lowering of DIC 
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corresponding to the spring bloom of phytoplankton. In the fall, DIC begins to rise again, aligning with the 
deepening of the mixed layer, incorporating waters with higher DIC values due to subsurface respiration. Layer 
1 seasonal DIC showed a secondary peak in the fall at 2,133 μmol kg −1, however note there is large uncertainty 
associated with the dip in December. The deeper waters maintain a roughly constant value throughout the year. 
The annual average of the seasonal cycle in layer 2 is larger than in layer 1 (by 32 μmol kg −1) and for layer 3 it 
is slightly larger again (by 12 μmol kg −1). Layer 3 shows a subtle seasonal cycle that could possibly be related 
to changes through the year within the dominant water mass that flows into the region via boundary currents, 
similar to the seasonal signal discovered for oxygen concentrations in the deep Labrador Sea boundary current 
(Koelling et al., 2022). However, based on the width of the confidence interval, the seasonal cycle in layer 3 may 
not be statistically significant.

The natural variability component of carbon 𝐴𝐴
(

𝐶̂𝐶
n

𝑡𝑡

)

 shows variations of DIC that are related to oceanic temperature 
and salinity variations (Figure 4), and captures the inter- and intra-annual variations of carbon. For the natural 
component in layer 3, the variations are very small with an amplitude of 1 μmol kg −1 and a significant trend of 
0.07 ± 0.04 μmol kg −1 year −1 as estimated via generalized least squares regression. Layer 1 has no significant 
increasing trend, meanwhile its fluctuations have a larger amplitude of 7.9 μmol kg −1. Upon further inspection 
of the layer 1 natural component using spectral analysis, its statistical character changed at ∼2006 from high 
frequency (i.e., periods shorter than a year) to low frequency (i.e., periods longer than a year) (Figure 4a). The 
natural component in layer 2 is shown as a constant line because a statistically significant regression relationship 
could not be estimated for DIC anomalies against temperature and salinity covariates (Table 1 shows 𝐴𝐴 𝛽𝛽1  = 𝐴𝐴 𝛽𝛽2 = 0 ). 
A non-significant regression relationship occurred due to the small amount of data used for fitting, and also the 
natural variability being small. The natural regression relationship for layer 1 used both temperature and salinity, 
while that for layer 3 used only temperature. The 95% prediction intervals show the amount of variability that 
remains to be described by the excess carbon component.

The excess components of carbon 𝐴𝐴
(

𝐶̂𝐶
e

𝑡𝑡

)

 represent the increase of anthropogenic DIC over time, with the largest 
annual increase occurring in the surface waters. The anthropogenic increases are presented as a linear trend 

Figure 4.  The natural variability component of carbon, 𝐴𝐴 𝐶̂𝐶
n

𝑡𝑡
 , for each depth-layer: (a) layer 1: 0–200 m, (b) layer 2: 200–1,000 

m, and (c) layer 3: 1,000–4,500 m. Each plot shows the estimated mean (black line) and 95% prediction intervals (gray area).

Figure 3.  Seasonal cycle of DIC, 𝐴𝐴 𝐶̂𝐶
s

𝑡𝑡
 , for each depth-layer: (a) layer 1: 0–200m, (b) layer 2: 200–1,000 m, and (c) layer 3: 

1,000–4,500 m. Each plot shows the estimated mean (black line) and 95% confidence intervals (gray area).
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for convenience, and fit using generalized least squares. Considering their confidence intervals overlap, all 
three layers have approximately the same rate of increase of ∼0.57 μmol kg −1 year −1 (Figure 5). Specifically, 
the trend in layer 1 is 0.63 ± 0.59 μmol kg −1 year −1, layer 2 is 0.57 ± 0.11 μmol kg −1 year −1, and layer 3 is 
0.47 ± 0.11 μmol kg −1 year −1. However, the layer 3 trend was only estimated using 2000–2015 data. Prior to 
2000, the excess carbon component had a slight declining trend, though it was not statistically significant. The 
apparent difference in trend before and after 2000 is notable, and is suggestive of low frequency variability in the 
ventilation of the deep ocean.

The time series characteristics of excess carbon in layer 2 (Figure 5b) are influenced by the observations and the 
input parameters used for the dynamic linear regression (i.e., 𝐴𝐴 𝐴𝐴𝑣𝑣 , 𝐴𝐴 𝐴𝐴𝑤𝑤 , and ϕ). The maximum likelihood proce-
dure estimated the trend persistence to be zero (ϕ = 0), which suggests that excess carbon in this layer follows 
a random walk, instead of a correlated random walk (when ϕ ≠ 0). This leads to a more blocky and erratic 
(rather than smoothly varying) appearance. Excess carbon in layer 1 and 3 have smoother inter-annual varia-
tions due to following a correlated random walk through the observations (ϕ = 0.64 and 0.46, respectively). In 
layer 3, the observations are less frequent, commonly with 3–5 month gaps, resulting in sections with a subtle 
staircase appearance with the Kalman smoother predicting the same value over the observation gaps (e.g., years 
2000–2005).

As a naive test for sampling bias, a linear trend was estimated for the reconstructed total carbon over time. Simi-
lar trends were obtained regardless of the subset of months used of our carbon estimate, thus supporting that we 
have accounted for the data's sampling bias. In contrast, trend analysis of individual GLODAP observations (not 
monthly averages) produced very different results for different subsets (i.e., only winter or only summer data). 
The largest influence in accounting for seasonal sampling bias was the pre-processing step of monthly averaging 
the data.

4.2.  Comparison to eMLR

We now compare the results from our statistical approach with those obtained using the eMLR approach. We 
ran an eMLR analysis with potential temperature and practical salinity to estimate the increase of anthropo-
genic carbon in the study region using GLODAP data from the first two years (1993–1994) and the last two 
years (2015–2016); spatial plots of the data used are shown in Figure S3 in Supporting Information S1. The 
eMLR anthropogenic increase over 24 years was estimated for layer 1, layer 2, and layer 3 to be 0.52, 0.49, and 
0.47 μmol kg −1 year −1, respectively. These eMLR results agreed generally with other eMLR results from Friis 
et al. (2005), who reported results between 0.4 and 1.6 μmol kg −1 year −1 for transects in the same overall region 
of the North Atlantic.

We then compared these eMLR results with our excess carbon results from dynamic linear regression; the rates 
of increase for layer 1, layer 2 and layer 3 were 0.63 ± 0.59, 0.57 ± 0.11, and 0.47 ± 0.11 μmol kg −1 year −1, 
respectively (from Figure 5). For layer 3, both the eMLR and dynamic linear regression report the same rate of 

Figure 5.  The excess carbon component, 𝐴𝐴 𝐶̂𝐶
e

𝑡𝑡
 , for each depth-layer: (a) layer 1: 0–200 m, (b) layer 2: 200–1,000 m, and (c) 

layer 3: 1,000–4,500 m. Each plot shows the estimated mean (black line) and 95% confidence intervals (gray area). Monthly 
averaged excess DIC (i.e., 𝐴𝐴 𝐴𝐴

′′

𝑡𝑡
 are DIC anomalies after removing the seasonal and natural components) are also shown (purple 

dots). Annual trends are shown for excess DIC (orange dashed line), and their slopes are reported in the legend in units of 
μmol kg −1 year −1.
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increase of 0.47 μmol kg −1 year −1. For layers 1 and 2, our dynamic linear regression results gave faster increases 
than the eMLR results, but the eMLR results are within our confidence intervals. Our method produces roughly 
equivalent rates of overall anthropogenic increase as eMLR, but are resolved on a monthly time scale providing 
information on climate-related changes in DIC over time.

4.3.  Column Inventories of Carbon

We converted our estimate of excess carbon concentration (𝐴𝐴 𝐶̂𝐶
𝑒𝑒

𝑡𝑡
 in units of μmol kg −1) into column inventories 

of anthropogenic carbon (It), that is, depth-integrated carbon per unit area (in units of mol m −2). The purpose 
was to facilitate comparison with other values in the literature, which are often reported as column inventories. 
The conversion 𝐴𝐴 𝐴𝐴𝑡𝑡 = 𝜌𝜌 𝜌𝜌 𝐶̂𝐶

𝑒𝑒

𝑡𝑡
 used the average density of seawater ρ = f(T, S, P) and the layer thickness (H). 

For layer 3, which has observations from 1,000 to 4,500 m, its layer thickness was calculated with an ocean 
bottom depth of 3,500 m, which was the median bottom depth associated with GLODAP observations. The 
conversion to It produced a time series of mean column inventory in our study region that looks the same as 
Figure 5. The difference between the maximum and mininimum values gave estimates for the excess carbon stor-
age per square meter for each layer: 5.55 mol m −2 for layer 1 (0–200 m), 13.86 mol m −2 for layer 2 (200–1,000 
m), and 20.63 mol m −2 for layer 3 (1,000–3,500 m). The time series for the three depth-layers were then added 
together and the difference between its maximum and minimum values gave an overall excess carbon storage 
of 35.41 mol m −2 through the whole water column over the period 1993 to 2015, corresponding to an average 
storage rate of 1.54 mol m −2 year −1. A conservative storage rate of 1.37 ± 0.57 mol m −2 year −1 was estimated 
as the slope (±95% confidence interval) of a linear generalized least squares regression through the time series 
for the whole water column (i.e., the combined layers). Note, this water column estimate is strongly influenced 
by  the  excess carbon time series in layer 3 due to its very large layer thickness.

Our estimated storage rate of excess carbon of 1.37 ± 0.57 mol m −2 year −1, when considering the width of its 
confidence interval, is consistent with the average storage rate of 1 mol m −2 year −1 approximated from Figure 3A 
in Gruber et al. (2019) for our study region. Our confidence interval also overlaps with the reported estimate and 
uncertainty of 0.97 ± 0.34 mol m −2 year −1 for DIC storage rate in the subpolar northwest Atlantic above 2000m 
(Tanhua & Keeling, 2012), as well as those for the Irminger Sea, where Fröb et al. (2018) reports the increase of 
anthropogenic carbon at 1.84 ± 0.16 mol m −2 year −1. The time spans of study were similar: 1994–2007 (Gruber 
et al., 2019), 1980–2010 (Tanhua & Keeling, 2012), 1991–2015 (Fröb et al., 2018) and 1993–2015 for our study. 
Differences might be accounted by our data pre-processing step of spatially and monthly averaging data across a 
large region spanning both the Labrador Sea and Irminger Sea, while Gruber et al. (2019) and Fröb et al. (2018) 
analyzed column inventories on a smaller spatial grid. While spatial sampling bias across the large study region 
may affect our estimates, it nonetheless serves to demonstrate the analysis method while highlighting and miti-
gating data availability complications, such as seasonal sampling bias.

5.  Discussion and Conclusions
Our time series generalization of the eMLR method is based on a dynamic linear regression (a state space model) 
that incorporates time dependence, accounts for irregular temporal sampling of data, and provides for an assess-
ment of estimation errors based on observation properties. We then analyzed the temporal trends and varia-
bility of DIC on a monthly basis and estimated the anthropogenic increase of DIC in a manner that accounts 
for the strong seasonal sampling bias of the input data. We improved the temporal resolution of anthropogenic 
carbon estimates from being a simple difference between two widely separated time periods with eMLR (Carter 
et al., 2017; Friis et al., 2005) to providing DIC estimates on a monthly time scale. This allows the opportunity 
to look at inter-annual variability and elucidate connections between excess carbon uptake and climate forcing or 
circulation changes. We were also able to present improved estimates of the anthropogenic component of DIC in 
the surface layer by accounting for the strong seasonal variations, which usually interfere.

For the northwest Atlantic we produced monthly time series estimates of DIC, with uncertainties, including 
estimates for the seasonal cycle, natural variability and excess anthropogenic carbon components. The annual 
increase of excess carbon due to anthropogenic sources since 2000 was estimated at ∼0.57 μmol kg −1 year −1 for 
all depth-layers. Our estimated storage rate, through the full water column (0–3,500 m), of anthropogenic carbon 
was 1.37 ± 0.57 mol m −2 year −1, which seems consistent with the 1 mol m −2 year −1 shown in Figure 3A of Gruber 
et al. (2019) for our study region.
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While we summarize our results with linear trends it brings into question whether a linear trend could be used directly 
in Equation 3 to model anthropogenic carbon instead of a correlated random walk (i.e., the time-varying intercept 
term β0,t). Though a linear trend in the model would provide for similar estimates of the rate of anthropogenic carbon 
increase, the correlated random walk provides a framework that allows the state variable to follow the data through 
its inter-annual variations while not constraining the data to follow a straight line. As seen in Figure 5c, the trend is 
not linear for the whole time frame of analysis, with an increase in excess carbon after 2000 but not before. The flex-
ibility of the correlated random walk framework also can show excess carbon variations at sub-seasonal time scales.

Our excess carbon component describes most of the anthropogenic change of DIC in the northwest Atlantic, 
but potentially not all of it. Global ocean temperatures are warming and salinity in the subpolar North Atlantic 
is freshening (Sathyanarayanan et al., 2021). These anthropogenic changes in temperature and salinity can then 
influence what is here defined as the natural variability component of carbon. Our natural variability component 
for layer 3 (Figure 4c) shows an increasing trend starting at the year 2000 that may reflect this anthropogenic 
influence, and could even be associated with the ‘warming hole’ of ocean temperature and changes in deep 
convection in the North Atlantic (Drijfhout et al., 2012). Hence, a benefit of our method is that it allows for the 
distinction between the anthropogenic change in ocean properties (i.e., temperature and salinity) and anthropo-
genic changes in DIC due to increasing CO2 in the atmosphere. In contrast, Gruber et al. (2019) subtracted the 
non-steady state net flux of natural CO2 associated with anthropogenic climate change such as ocean warming. 
Meanwhile, Fröb et al. (2018) estimated the natural DIC component in the Irminger Sea to have had a declining 
trend until 2015. This distinction of different sources of anthropogenic change may be important in the future 
because they might even drive opposing changes. For example, in the near-surface, the anthropogenic increase 
of atmospheric pCO2 (partial pressure of CO2) will increase ocean carbon, while warming ocean temperatures 
due to anthropogenic climate change lowers the solubility of CO2 and may drive outgassing (Ciais et al., 2013).

By estimating a monthly time series of excess carbon, we are moving toward understanding variability of anthro-
pogenic DIC on a finer time resolution. In our layer 1 excess carbon estimate, clusters of observations in 1993 
and 2011 cause a dip below the decadal trend, and these clusters coincided with North Atlantic Oscillation 
(NAO) Index values above 2 (North Atlantic Oscillation, 2005). Connections between inter-annual variability of 
near-surface DIC and the NAO have been discussed in earlier studies (Gruber, 2002; Levine et al., 2011; Thomas 
et al., 2008; Ullman et al., 2009). Though variations of DIC at higher frequencies than annual are possible, they 
are rarely discussed due to data sparsity, which generally does not allow us to resolve these intra-annual variations 
with simpler time series methods.

The natural variability regression with temperature and salinity was investigated for its sensitivity to seasonally 
biased data. The regression was fit to four subsets of data, winter, spring, summer and fall. The parameters 
estimated (i.e., β1 and β2) were different for each subset. When all data was used the parameters estimated were 
equivalent to the average of the parameters from the seasonal subsets.

We reported our excess carbon estimates with 95% confidence intervals, however careful consideration is needed 
when comparing uncertainty measures with other studies and approaches. Confidence intervals are a common meas-
ure of uncertainty but in ocean carbon research other metrics are often used including: standard error and root mean 
squared error (RMSE) (Bittig et al., 2018; Clement & Gruber, 2018; Gruber et al., 2019; Landschützer et al., 2013; 
Plancherel et al., 2013), Gaussian propagation (Friis et al., 2005) or sum of error contributions and network weights 
for a Bayesian neural network (Bittig et al., 2018). Many who use these methods report errors as the deviations 
from their estimate, essentially a standard error (note 95% confidence intervals are: mean ± 1.96 × standard error). 
For an eMLR analysis in a similar region to this study, Friis et al. (2005) reported anthropogenic carbon with errors 
of ±7 μmol kg −1 in waters above 300 m and ±3 μmol kg −1 in water below 300m. Our confidence intervals vary over 
time based on the availability of the observations but we can use the mean of our estimated standard error from the 
Kalman smoother. Our comparable excess carbon errors are: ±1.6 μmol kg −1 in layer 1, ±1.3 μmol kg −1 in layer 2, 
and ±1.2 μmol kg −1 in layer 3. This implies that our uncertainty levels are smaller than with eMLR. Note also that 
our error estimates are anchored in maximum likelihood estimates of the key parameters in our state space model. 
Future work could focus on improvement of the uncertainty quantification by incorporating our multi-step analysis 
procedure into a comprehensive hierarchical statistical modeling framework (Cressie & Wikle, 2011).

In our approach, we separate DIC into its seasonal, natural variability and excess carbon components in Equa-
tions 1 and 2, with an emphasis on improving estimation of the increase in anthropogenic carbon, particularly 
its temporal aspects. Our goals are thus very similar to the eMLR(C*) method of Clement and Gruber (2018), 
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but there are important similarities and differences. (i) Our approach is designed to provide for detailed esti-
mates of the evolution of anthropogenic carbon through time (i.e., monthly time series), whereas eMLR(C*), 
like the original eMLR, focuses on contrasting anthropogenic carbon content between widely separated time 
points (typically decades or longer). (ii) We do not make use of the C* variable to correct carbon concentrations 
for effects of biological activity, but rather emulate the original eMLR approach by using linear regression to 
separate natural and anthropogenic carbon. (iii) Both approaches recognize and account for the fact there can 
be variability and trends in both anthropogenic and natural carbon, unlike the original eMLR method. (iv) The 
final step in eMLR(C*) after training the regression models makes use of fields of climatological ocean variables 
as predictors thus allowing for highly resolved spatial estimates of anthropogenic carbon. There is undoubtedly 
considerable scope for the fusion of our dynamic linear regression method with many aspects of the eMLR(C*) 
approach to further improve anthropogenic carbon estimation.

Other candidate approaches for estimating DIC trends and variability include machine learning and biogeochem-
ical modelling. Machine learning methods have risen in popularity and have been used to estimate the ocean 
carbon budget and air-sea CO2 fluxes (Bittig et al., 2018; Broullón et al., 2020; Keppler et al., 2020; Landschützer 
et al., 2013). Machine learning methods, such as neural networks, focus on linking response variables to predictors 
by optimizing predictive skill and allowing for complex, non-linear relationships between variables. However, 
interpretation and diagnosis of cause and effect is often difficult. Due to this, machine learning is commonly used 
to gap-fill sparse observational ocean data (i.e., mapping). Both regression and neural network outputs can be 
used to investigate anthropogenic carbon trends, inter-annual variations, and seasonal variations. However, our 
component-based time series regression provides for clear interpretability of model results, and for statistical 
uncertainty estimates. Biogeochemical models, in contrast, provide detailed information on ocean carbon dynam-
ics but are driven more by model assumptions about ocean processes, rather than by direct observational informa-
tion. They are useful for testing our understanding of oceanographic processes, and importantly have the potential 
to be used for future projection. Our statistical method provides a complementary observation-based approach to 
diagnosing carbon trends retrospectively, but has obvious limitations as it can not be used for projection.

In summary, the northwest Atlantic is an important carbon sink, but even in this relatively well-sampled region, 
available DIC observations in the ocean interior are sparse and have a strong summer sampling bias. To address 
these challenges, we developed a statistical time series method that generalizes the eMLR approach to allow 
assessment of non-linear trends and shorter term variability in DIC. Near-surface waters are usually discounted 
in eMLR analyses due to the high DIC variability associated with the seasonal cycle, however we improved the 
reliability of anthropogenic carbon estimates in the surface waters (0–200 m) by removing the seasonal cycle that 
overshadows the variability of anthropogenic carbon. The waters below 1,000 m have usually been analysed on 
decadal time scales, but our monthly results showed that excess carbon component had a sudden change point in 
the year 2000, changing from being stationary to increasing at the same rate as the shallower layers. Since 2000, 
all depths layers were estimated to have the same rate of anthropogenic increase of ∼0.57 μmol kg −1 year −1.

Current data collection relies on largely opportunistic sampling, which has an inherent and unavoidable amount 
of spatial and temporal bias. Improvement of ocean sampling schemes should be an important community goal. 
This work provides a step forward in the challenge of how to use limited and sparse ocean carbon observations so 
we can produce improved estimation and understanding of ocean carbon and its temporal variations. Future work 
lies in extending this analysis to include other informative ocean variables related to DIC (e.g., oxygen), better 
incorporate spatial and depth variations, improve uncertainty quantification and assess and improve spatial and 
temporal sampling schemes.

Data Availability Statement
Two data sources were used in this work and both are available online. GLODAPv2.2019 data product for the 
Atlantic Ocean (Key et al., 2015; Olsen et al., 2016, 2019) with data reference (GLODAPv2.2019, 2019) and 
data available at https://doi.org/10.25921/xnme–wr20. GLORYS12v1 reanalysis product with data reference 
(GLORYS12V1 - Global Ocean Physical Reanalysis Product, 2018) and data available at https://doi.org/10.48670/
moi–00021. The analysis was performed using R code (R Core Team, 2021) with RStudio (RStudio Teams, 2022), 
with the assistance of packages for date/time organization: lubridate (Grolemund & Wickham, 2011), to load 
netcdf files: ncdf4 (Pierce, 2021), for linear model analysis of time-correlated data: nlme (Pinheiro et al., 2022), 
and for assistance with plots: cmocean (Thyng et al., 2016), scales (Wickham & Seidel, 2021), and maps (Becker 
et al., 2021).
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