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ABSTRACT: Winter extratropical cyclones (ETCs) are dominant features of winter weather on the east coast of North
America. These storms are characterized by high winds and heavy precipitation (rain, snow, and ice). ETCs are well pre-
dicted by numerical weather prediction models (NWPs) at short- to midrange forecast lead times, but prediction on sea-
sonal time scales is lacking. We develop a set of multiple linear regression models, using stepwise regression and cross
validation, to predict the number of storms expected to affect a specific location throughout the winter storm season. Each
model in the set predicts a specific storm type (e.g., snow, rain, or bomb storms). This set of models is applied in a probabil-
istic forecast framework that uses the probability density function of the prediction in combination with climatological
mean storm activity. The resulting forecast makes statements about the likelihood of below-average, average, or above-
average activity for all storms and for each of the type-specific subsets of storms. Though this forecast framework could in
theory be applied anywhere, we demonstrate its skill in forecasting the characteristics of the winter storm season experi-
enced in Halifax, Nova Scotia, Canada.

SIGNIFICANCE STATEMENT: Winter storms are a disruptive but inevitable part of life on the eastern coast of
North America all the way from the Carolinas to Labrador. Knowing each fall what to expect for the upcoming winter
storm season is not only a matter of public interest, but also of great public safety and financial importance. Here we de-
velop a model that uses the state of the atmosphere over the month of September to forecast the upcoming winter
storm characteristics for a specified region of interest. Our model uses a multiple linear regression approach to make
skilled forecasts including probability statements about the level and type of storm activity. Forecasts can be used to in-
form planning for the winter ahead.

KEYWORDS: Extratropical cyclones; Winter/cool season; Regression analysis; Probability forecasts/models/distribution;
Seasonal forecasting; Statistical forecasting

1. Introduction

Extratropical cyclones (ETCs) are salient features of midlati-
tude weather and extreme cases threaten life and property in
eastern North America and around the world every winter.
Hurricane-force winds can down power lines, mixed precipita-
tion can cause treacherous road conditions, storm surges can
flood coastlines, and countless homes can be snowed in as these
powerful synoptic-scale low pressure systems pass through a
region. Fortunately, not every storm passing through has these
extreme consequences. As with hurricanes, their severity and
frequency varies greatly from storm to storm and from winter to
winter. ETC tracks and impacts are typically well predicted by
numerical weather prediction (NWP) models and operational
forecasters on time scales of a few days. Prediction on this time
scale is crucial for emergency preparedness and human safety.
However, a seasonal forecast can provide the opportunity for

more extensive planning, preparation, and damage mitigation in
the months leading up to the storm season.

Seasonal forecasting of ETCs trails behind that of the well-
established field of Atlantic hurricane seasonal forecasting.
The development of seasonal hurricane models, led by research-
ers at Colorado State University (Klotzbach and Gray 2009),
began with purely statistical modeling (Gray 1984) and more re-
cently moved into the realm of statistical–dynamical modeling
(Klotzbach et al. 2020). In general, current seasonal hurricane
forecasts, such as the outlook produced by NOAA, are skillful
(Klotzbach et al. 2019) and used by the general public. Current
seasonal ETC forecasts are mainly derived from global circula-
tion models (GCMs; Perkins and Hakim 2020), empirical or-
thogonal functions (EOFs; Feng et al. 2019), or teleconnections
with large-scale climate modes (DeGaetano et al. 2002). The
most influential teleconnections for east coast winter storms are
the NAO and ENSO. While they show some effects on seasonal
activity, the combined variability explained by these predictors
is still small (DeGaetano et al. 2002). The region with greatest
predictability in seasonal ETC forecasting is located in the
North Pacific, where many studies have identified enhanced pre-
dictability (Feng et al. 2019; Yang et al. 2015; Befort et al. 2019).
Seasonal activity of windstorms near Europe have also been
predicted with some skill (Befort et al. 2019); however, most
models fail to skillfully predict storms in the western North
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Atlantic on a seasonal scale (Befort et al. 2019; Yang et al. 2015;
Feng et al. 2019). One existing model for extratropical cyclone
prediction which specifically focusses along the U.S. coast
was developed by DeGaetano et al. (2002). It produces skill-
ful forecasts of overall seasonal storm activity, but does not
add any detail around the expected storm types. The majority
of models are characterized by generality: the spatial extent
of the prediction area is large, there is little spatial nuance
added in the forecast, and little to no information about pre-
cipitation typing or storm intensity is included. The prediction
efforts presented here are focused on two aspects lacking in
previous studies. We add the capacity to forecast storms
based on impacts and do so in areas where GCMs and other
prediction models have limited skill: the east coast of North
America.

This paper demonstrates a methodology to produce a storm-
type- and location-specific forecast of ETCs for an upcoming
winter season. The winter ETC field is spatially variable and
nuanced, making skilled large-scale prediction models difficult
to create. Therefore, we control for the spatial variability of the
storm field by focusing on a specific region. By considering a re-
gion small enough such that the storm field varies uniformly in
space within the region, we can focus specifically on analyzing
the temporal variability in that area, limiting the complexity
of the problem and potentially allowing for a higher level
of predictability. We used the region around Halifax, Nova
Scotia, Canada, to demonstrate a methodology which, in
principle, may be applied to develop a forecast at any loca-
tion. The model is developed with the application of opera-
tional usage in mind. Therefore, we elect to use predictors
from the immediately preceding fall season so they can be
observed and processed with adequate time to produce a
forecast before the following winter season. With a goal of
supplementing public forecasting, it is desirable to have a
model that can give outputs that a typical citizen would
value. For this reason, the focus is placed on forecasting fre-
quency of storms and storm types, rather than trying to pro-
duce specifics such as track locations. The main ETC effects
that the average citizen is concerned with are precipitation
type, whether or not there will be high winds, and the over-
all intensity of the storms (e.g., a rapidly deepening bomb
storm as in Sanders and Gyakum 1980). We then develop a
multiple linear regression prediction model for each subset of
storm type. Model outputs are combined with their uncertain-
ties to develop a probabilistic seasonal forecast. Forecast results
are communicated as the likelihood of high, average, or low
storm-track activity through the season for storms of each type.

The structure of the paper is as follows. The data sources
for the project are given in section 2. Next, the development
of the storm-track dataset is described in section 3, which
ends by presenting the predictand Halifax storm-track time
series. Section 4 explains the development of the model in-
cluding the selection of predictors and model fitting. Then, a
practical application of the statistical model is proposed in
section 5, including the results of the probabilistic winter
storm forecast for Halifax. Finally, the discussion and conclu-
sions are presented in section 6.

2. Data

a. Atmospheric reanalysis

The storm data used in this study are derived from the output
of an atmosphere reanalysis. Reanalysis data were obtained
from the European Centre for Medium-Range Weather Fore-
casts Reanalysis v5 (ERA5) hourly single levels data from 1979
to the present (Hersbach et al. 2018b). The variable used is
mean sea level pressure, at a temporal resolution of 3 h, starting
at 0000 UTC. The grid spacing of the model is 0.258. Data were
obtained between 258 and 708N and between 1108W and 08. In
this study, the extended winter storm season is defined as
1 November of the first year to 31 March of the following year.
Data were obtained from 1 November 1979 to 31 March 2019
(40 winter storm seasons). The convention used when naming a
season is to refer to it by the year in which it began. For exam-
ple, the 1979 season spans the period of time from 1 November
1979 to 31 March 1980.

When considering potential predictors, we use 2-m air tem-
perature (T2M), 1000–500 hPa thickness (T500), mean sea
level pressure (MSLP), 500-hPa geopotential height, wind at
250 hPa (u component: U250; y component: V250; magnitude:
WND250), and total precipitable water vapor (TPWV) from
the ERA5 hourly data on pressure levels from 1979 to 2019
(Hersbach et al. 2018a). Each of these variables is considered
over a spatial extent that is bounded by the longitudes of 1038
and 228W and latitudes of 258 and 638N. Within this region,
the data are obtained on a 18 3 18 grid. Though these poten-
tial predictor fields are available at 1/48 spatial resolution, we
use the coarser resolution to reduce computational cost.

b. Weather station

Hourly observations were obtained from the Environment
and Climate Change Canada (ECCC) weather station at the
Halifax Stanfield International Airport over the same time
period as the ERA5 data. We used the wind speed measure-
ment, which is measured by an anemometer at 10 m above
the ground. We also used the current conditions recorded by
the onsite observer to determine precipitation type. These ob-
servations describe any weather phenomena occurring such as
reductions to visibility and precipitation.

3. Storm-track methodology

We begin by developing a dataset of storm tracks that will
be used to build the predictand time series. The principles of
the storm-tracking algorithm used here originate in the ocean
eddy tracking algorithm developed by Chelton et al. (2011) as
applied by Oliver et al. (2015), which has been adapted here
to track atmospheric storms.

a. Storm-track dataset

1) DETECTION

Storms are detected in a mean sea level pressure (MSLP)
field that was preprocessed with a Gaussian filter with a 18 ra-
dius to remove high wavenumber variability. At a single point
in time the algorithm loops through a series of critical MSLP
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levels from highest to lowest. The array of critical MSLP lev-
els begins at 1048 hPa and goes down to 920 hPa at decre-
ments of 4 hPa. At each level, the MSLP field is separated
into pixels with values above the critical level and pixels with
values below the critical level.

Storms are then identified as contiguous regions of pixels
below the critical level that meet the following criteria:

(i) There is at least 1 local minimum (i.e., a viable storm
center).

(ii) There are at least 9 pixels and not more than 6000 pixels
within a region.

(iii) The relative amplitude of the storm, or difference be-
tween pressure at the edge of the storm and in the cen-
ter of the storm, is at least 1 hPa.

(iv) The distance between any pair of pixels is no more than
a maximum value based on the area of the storm. If the
area of a storm is assumed to take the shape of an el-
lipse with eccentricity 0.9, the maximum distance of any
two pixels would be equal to the length of the major
axis. If two pixels in the region are further than this cal-
culated distance, we determine the region does not rep-
resent a storm.

After a storm is identified, the location of its center is re-
corded along with the date and time. The pixels comprising
the storm are then removed from consideration at all lower
critical MSLP levels to avoid double detection.

2) TRACKING

Once possible storm centers have been identified at each
time step, they are stitched together across time to form tracks.
For each storm center at time t, the algorithm looks for a storm
center at time t1 1 within a radius of 240 km. This works out to
a maximum propagation speed of 80 km h21. If there is one
storm center found at time t 1 1 within a 240 km radius of the
time t location, the time t 1 1 and time t storm centers are
stitched together as part of a track. If multiple centers are de-
tected, the closest one to the time t location is chosen. If no cen-
ters are found, the storm is considered to be terminated. The
details of the storm are then saved and no further time steps can
be added to its track. These details include location, central
pressure, deepening rate, speed, and storm area every 3 h. Once
the storm-track dataset have been created for the whole study
period, track locations are reinterpolated to hourly resolution.

3) POSTPROCESSING

After the tracking is complete, the dataset is refined by re-
moving storms that are not representative of the systems in
which we are interested. Specifically, storms are removed if
they have (i) duration less than 24 h, (ii) genesis north of
608N, or (iii) location above 1000 m above sea level. The rea-
soning for each criterion is given below.

(i) Duration less than 24 h.
This is a common practice used to remove very short
term, noisy features that have been picked up by the
tracking algorithm (Hoskins and Hodges 2002; Massey

2012; Neu et al. 2013; Pinto et al. 2016; Raible et al.
2008).

(ii) Genesis north of 608N.
This was implemented for the purposes of another study
that shared the storm-track dataset. The other study fo-
cused on climatology extending as far north as Iceland.
This part of the methodology prevents the Icelandic low
from increasing the storm-track density in that region,
but retains the contribution of extratropical cyclones
that pass through that area. It has no impact on the set
of storms used in this particular study.

(iii) Location more than 1000 m above sea level.
Orographic effects on air circulations in mountainous
regions create mesoscale low pressure centers that
differ from the larger ETCs which are the focus of
this study. The filtering removes all centers that are
detected at a location where the surface elevation is
greater than 1000 m above sea level before the track-
ing begins. Some of these rotational features may de-
velop into ETCs of interest. However, if they do, the
algorithm picks them up once they are below 1000 m
elevation so they are not lost.

b. Storm time series

Wemust define a predictand time series in order to develop
a prediction model. The model takes a regionally specific ap-
proach by focusing on storms that affect Halifax, Nova Scotia.
Storms are selected from the full storm-track dataset de-
scribed above for inclusion in the predictand time series based
on a single criterion: that their storm center location is within
750 km of Halifax for at least one time step (Fig. 1a). Given
this set of storm tracks, an annual time series of total Halifax
winter storms is calculated (Fig. 2a). Each unique storm track
can contribute to the total counts in the time series exactly
one time, regardless of the number of times it enters or exits
the 750 km radius.

The time series is additionally separated into seven subsets
based on precipitation, winds, and pressure tendency at the Hal-
ifax International Airport. It is assumed that the weather experi-
enced at Halifax is due to the storm when the storm is within
1000 km of the weather station given the typical length scale of
ETCs is on the order of 1000 km. When assessing hours of pre-
cipitation due to the storm or hours of high winds due to the
storm, the precipitation and/or wind are assessed at Halifax air-
port only for the time steps when the storm is within 1000 km of
the station. The combination of 750 and 1000 km radii allowed
us to minimize the number of storms included that had little ef-
fect on the conditions at Halifax while retaining sufficient pre-
cipitation information from storms that did have an impact. The
seven subsets of storms that pass within 750 km of Halifax are
defined as follows:

(i) Storms with at least 3 h of precipitation (total precip)
If a storm is within 1000 km of Halifax for at least 3 h, and
precipitation is recorded at the Halifax airport for at least
three of the hours that it is within that radius, the storm is
determined to be a precipitating storm (Fig. 1b). Remarks
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that qualify as precipitation include the words “rain,”
“drizzle,” “freezing,” “snow,” or “ice pellets.”

(ii) Snow storms (snow)
All storms with at least 3 h of precipitation are fur-
ther classified as either a snow, rain, or mixed storm.
To be a snow storm, the observation remarks must
include either “snow” or “ice pellets” for at least 90%
of time steps during which precipitation is recorded,

with the restriction that precipitation can only be re-
corded when the storm is within 1000 km of Halifax
(Fig. 1c).

(iii) Rain storms (rain)
To be classified as a rain storm, the observation remarks
must include either “rain” or “drizzle” for at least 90%
of time steps at which precipitation is recorded when
the storm is within 1000 km of Halifax (Fig. 1d).

FIG. 1. Tracks of all storms passing within 750 km of Halifax (gray) overlaid with storms of each subseries (red):
(a) total, (b) total precip, (c) snow, (d) rain, (e) mixed, (f) no precip, (g) high wind, and (h) bomb.

MONTHLY WEATHER REV I EW VOLUME 1512854

Brought to you by Environment Canada Library, Downsview | Unauthenticated | Downloaded 02/12/24 06:25 PM UTC



(iv) Mixed precipitation storms (mixed)
A storm can be grouped into the mixed precipitation cate-
gory one of two ways. If a precipitating storm does not fit
into the snow or rain storm categories, it is marked as a
mixed precipitation storm because it is not predominantly
one type or the other. Alternatively, a storm will be placed
in this category if it records a “freezing” remark in at least
90% of the time steps at which precipitation is recorded
within 1000 km of Halifax (Fig. 1e).

(v) Storms with less than 3 h of precipitation (no precip)
Any system with less than 3 h of precipitation recorded in
the weather remarks at the Halifax airport when it is
within 1000 km of the station is categorized as a storm
with no precipitation (Fig. 1f). This category separates out

storms that are geographically close enough to Halifax
that they could have an impact on the region, but either
are not large enough or developed enough to have a
significant precipitation impact. These storms may have
other impacts such as storm surge or high winds, al-
though in our dataset there are no storms that fall in
both the high wind and no precipitation categories. It
also catches storms that are not within 1000 km of Hali-
fax for at least three time steps, since such a storm does
not have enough time steps to meet the precipitation
requirements.

(vi) High wind storms (wind)
If an hourly sustained wind speed greater than 44 km h21

is recorded at Halifax while the storm is within 1000 km, it

FIG. 2. Time series of (a) all winter storms affecting Halifax and the seven subseries of storms:
(b) total precip, (c) snow, (d) rain, (e) mixed, (f) no precip, (g) high wind, and (h) bomb.
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is classified as a high wind storm (Fig. 1g). The threshold
of 44 km h21 is the value of the 98th percentile of all wind
measurements at Halifax throughout the study period.
This category is not a subset of the precipitation storms,
therefore these storms may or may not also be found in a
precipitation category or in bomb storms.

(vii) Rapidly deepening storms (bomb)
A storm is classified as rapidly deepening if the central
pressure drops at a rate of at least 12 hPa (sin f /sin 458)
in 12 h, where f is the latitude of the storm center
(Fig. 1h). This is consistent with the definition of a
bomb storm set by Sanders and Gyakum (1980). This
category has no requirements pertaining to precipita-
tion or wind speeds, although bomb storms are known
to be associated with high impact weather.

Annual time series of storm counts are calculated for
each of these categories or storm types (Fig. 2). Rain,

snow, and mixed storms sum to the precipitation storms. The
precipitation storms and the no precipitation storms sum to
the total storms. Each storm within the high wind storms and
bomb storms categories will also be found in either the precipi-
tation or no precipitation storms categories and possibly in
one of the subsets of precipitation types. The basic statistics of
these time series are summarized in Table 1. None of the time
series have a statistically significant linear trend except for the
high wind storm time series, which increases at a rate of 0.16
storms per season (p5 0.0002).

4. Model methodology and development

a. Overview

A multiple linear regression (MLR) model is a simple,
but powerful method of modeling future behavior within a
system that combines the effects of multiple variables to

TABLE 1. Statistics of Halifax storm time series.

Type Mean (count) Variance (count2) Linear trend (count yr21) p value (trend) Percentage of total storms

Total 32.2 16.91 0.01 0.8364 100
Total precip 24.85 20.23 20.03 0.6155 77
Snow 10.32 11.62 20.04 0.4404 32
Rain 5.75 6.69 0.02 0.6365 18
Mixed 8.78 4.07 20.01 0.6713 27
No precip 7.35 8.23 0.04 0.2754 23
Wind 7.38 10.43 0.16 0.0002 23
Bomb 11.05 8.15 0.04 0.3573 34

FIG. 3. Predictor selection process overview. Processes indicated with an asterisk are further explained subsequently in Fig. 4 (initial predictor
filtering), Fig. 5 (MLR training and validation), and Fig. 6 (final predictor processing).
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FIG. 4. Initial predictor filtering schematic.

FIG. 5. Multiple linear regression model training and validation process diagram.
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predict an outcome. For this task, we use a constant-lag
MLR model. Given a predictand (y) and a set of predictors
(P) time series, the model takes the following form:

yi1t 5 bo 1 bPT
i 1 « (1)

where i indicates current time step, t is some lag so that (i1 t)
is a future time, b is a 1 3 m vector of regression coefficients,
PT
i is am3 1 vector of predictors at time step i, bo is the inter-

cept, and « is the residual or the portion of yi1t not explained
by a linear relationship with Pi.

With practical usage of the prospective model in mind, a short
time lag is chosen. It is likely that dynamical predictors from the
previous season are too far removed in time to have predictive
power over the next season. We decide to use predictors that
are averaged over the month of September immediately preced-
ing the winter storm season (November–March). All the data
required to forecast storm-track activity in the upcoming season
would, in practice, be available before the first day of the sea-
son and the time lag is small enough that one can reasonably
expect the dynamics of the system to be relevant for the
storm season.

The set of predictand time series was determined in section 3.
The next step is to define a set of predictors. We expect known
drivers of ETCs to be useful in predicting the storms of interest.
The variables investigated as possible predictors are 2 m air
temperature, 500 hPa thickness, mean sea level pressure,
500 hPa geopotential height, wind at 250 hPa (u component,
y component, and magnitude), and total precipitable water
vapor. These variables are chosen for their relationships
with baroclinic zones, moisture, upper-level divergence, and
vorticity advection, and are drivers known to affect the de-
velopment and propagation of ETCs. In addition, the spatial
gradient of each of these variables was calculated using sec-
ond-order central differencing and added to the pool to
make a total of 16 potential variables.

b. Stepwise regression and cross validation

The potential variable fields each have 3198 grid points
within them. With 16 variables at over 3000 locations, there
are over 50 000 possible predictors pPi in the predictor pool,
PP 5 {pPi |i5 1, 2, …, N}, where i is the predictor index and
N the number of possible predictors in the pool. Each possi-
ble predictor pPi 5 [pPi,1, pPi,2, …, pPi,40] is a 40-yr time series
(1979–2018) of the mean September value of the variable,
p
p
i,k at a specific location, where k indicates the index of the

year. The time series in this set are not independent. In fact,
in some cases they are very highly correlated especially for
possible predictors at proximate locations. Removal of this
correlation will be addressed in the selection process.

With the number of possible predictors being greater than
the number of observations, the MLR problem is underdeter-
mined. It is not possible to develop an MLR using the entire
predictor pool. To solve this problem, cross validation is used to
select an appropriate set of predictors for the model. The pro-
cess of selecting the best predictors for each storm type model
from this broad pool involves three main steps: initial predictor
filtering, MLR training and validation, and final predictor proc-
essing (Fig. 3). These steps are repeated until the addition of
any remaining possible predictors fails to improve the model.

The initial pool of predictors used when building the model
is common to all the subseries of storms (Fig. 4). However,
the pool undergoes an initial filtering process as the first step
of predictor selection for each subseries-specific model. We
remove the correlations between the possible predictors and
all predictors that have already been selected for use in the
model. This prevents the inclusion of redundant information
in the model and makes the final coefficients clearer to inter-
pret. To do so, the linear relationship between the set of pre-
viously chosen predictors (PF) and each possible predictor
(pPi ) is obtained through ordinary least squares regression.
This relationship is then subtracted from the predictor time

FIG. 6. Final predictor processing flowchart.

MONTHLY WEATHER REV I EW VOLUME 1512858

Brought to you by Environment Canada Library, Downsview | Unauthenticated | Downloaded 02/12/24 06:25 PM UTC



series (pPi ) to leave the independent portion of the time series
(pDi ) for possible use as a predictor. This step is only necessary
when selecting the second or greater predictor for the model.
Each predictor time series in the decorrelated pool (PD) is
then correlated with the predictand time series of that subs-
eries model (ytype). Any possible predictor that does not have
a statistically significant correlation with the predictand at a
95% confidence level is removed from the pool. The output from
the initial predictor filtering step is a reduced set of possible
predictors (PS) that are independent of any previously selected
predictors and significantly correlated with the predictand time
series (ytype).

The multiple linear regression model is then built by select-
ing predictors one by one from the filtered pool of possible
predictors (Fig. 5). The process of selecting the best predictors
from our large predictor pool is based on their correlation

with predictands. In the first round of predictor selection, the
model does not yet have any predictors chosen (PF 5 0).
Thus, the process starts by testing each possible predictor (pSi )
in a single variable linear regression. In the second round of
predictor selection, a two variable linear regression model is
used with the previously chosen predictor (PF 5 pF1 ) and the
possible predictor (pSi ) as the independent variables. In subse-
quent selection rounds, the number of independent variables
in the multiple linear regression continues to grow with PF.
The performance of the possible predictor is evaluated based
on the RMSE of the predictions made from the test MLR,
which is the MLR that is generated by including the possible
predictor in question together with any previously selected
predictors. The test model is trained over a 30-yr period
(Fig. 5, training), and then used to forecast storm activity in
the remaining 10 years of our 40-yr study period (Fig. 5,

FIG. 7. Locations of predictors chosen for each seasonal storm count model. Predictand storm
type is shown by color, and predictors are indicated with marker shape.

TABLE 2. Location (lat, lon) and variable type of predictors selected for each type of subseries seasonal storm count model.

Predictand (ytype) Predictor 1 (PFF
1 ) Predictor 2 (PFF

2 ) Predictor 3 (PFF
3 ) Predictor 4 (PFF

4 )

Total Gradient TPWV Gradient TPWV
578N, 3098E 498N, 3278E

Total precip Gradient TPWV Gradient T2M
578N, 3108E 298N, 2588E

Snow count Gradient T2M Gradient V250 Gradient TPWV Gradient TPWV
488N, 3328E 428N, 3318E 538N, 3118E 268N, 2778E

Rain count Gradient TPWV Gradient TPWV Gradient TPWV
378N, 3318E 638N, 2848E 488N, 3218E

Mixed count Gradient T500 Gradient TPWV Gradient T2M Gradient U250
638N, 3138E 298N, 2938E 408N, 3108E 298N, 2778E

No precip count Gradient TPWV Gradient T2M Gradient V250
428N, 2798E 298N, 2648E 408N, 3198E

Wind count T2M Gradient U250 T2M
288N, 2918E 278N, 2818E 498N, 3108E

Bomb count Gradient TPWV Gradient V250 WND250 T500
308N, 2928E 558N, 2988E 328N, 3098E 618N, 3228E
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validation). This process is repeated four times with unique
fitting and prediction periods each time, which allows for the
predicted storm counts for each year in the 40-yr period
(ŷtype) to be obtained without the forecast of any individual
season being informed by the observations from that season
(ytype). It also prevents choosing a predictor that by chance
does very well over one time period, but not over another and
is therefore not a robust predictor. The 40-yr composite of
forecasted storm counts over the validation time periods

(ŷtype), and the observed storm counts over the study period
(ytype) are used to calculate the root mean squared error of
the forecasts for each possible predictor (RMSEi). The possi-
ble predictor (psi ) that combines with the previously chosen
predictors (PF) to form the MLR with the lowest composite
RMSE is chosen as the “best predictor” (pSbest).

The last step is final predictor processing (Fig. 6). In this
step, the algorithm either selects another predictor or finalizes
the model. If the addition of the best predictor improves the

FIG. 8. Model output time series validation for (a) all storms, (b) precipitation storms,
(c) snowstorms, and (d) rain storms. Forecasted storm count time series (dashed black line)
shown with a 66% prediction interval indicated by the dark gray shaded area and a 90% predic-
tion interval indicated by the entire light and dark gray shaded areas. Observed storm counts
(solid) shown for comparison. For each type, dashed gray lines indicate the first and third quar-
tiles of the observed storm tracks per season.
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RMSE of the model, pSbest is added to PF. Regardless of its
usefulness, the best predictor is removed from future consid-
eration in the possible predictor pool, PP. If any possible pre-
dictors remain in the possible predictor pool, the next step is
to return to the beginning of the selection process to choose
another predictor for the model. This process continues, add-
ing new predictors to the model until eventually there are no
possible predictors left. At this point, all original possible pre-
dictors that have not been added to the model cannot de-
crease the RMSE of the model if they are added as another
predictor. The final model parameters can then be deter-
mined. The final set of predictors (PFF) is the set of predictors

that have been selected until this point in the process. The
final regression coefficients (bFF) result from using ordinary
least squares to fit a model with the full time series of PF

as the independent variables and ytype as the dependent
variable.

The set of predictors (PFF) chosen for each subseries model
are given in Table 2. The models range in size from having two
to four predictors. The most commonly selected predictor is gra-
dient of total precipitable water vapor and the second most
common predictor field is the gradient of 2 m air temperature.
The frequency of these predictors is not surprising. The pattern
of total precipitable water vapor in the atmosphere is a

FIG. 9. As in Fig. 8, but for (a) mixed precipitation storms, (b) storms without precipitation,
(c) wind storms, and (d) bomb storms.
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reflection of upper-level flow and integrates many atmo-
spheric fields. This makes it a likely choice in the prediction
model since it combines the effects of many predictive fea-
tures, such as temperature, moisture, vorticity, and midlevel
winds into a single predictor. Recalling that the primary en-
ergy source of ETCs is baroclinicity explains the prevalence
of 2 m temperature gradient among the final predictors. Bar-
oclinic zones exist where there are strong spatial differences
in temperature which is represented in the 2 m temperature
gradient field. The locations of the predictors are quite vari-
able, but many are located downstream from Halifax in the
climatological storm track (Fig. 7).

c. Model fitting and validation

To assess the performance of the final models (Table 2), we
evaluate the composite predicted time series (ŷtype). For each
prediction, two prediction intervals are also calculated (66%
and 90% intervals). A prediction interval (PI) gives the range
within which a predicted value is expected to fall based on the
uncertainty of the model’s ability to predict a specific value
rather than simply predict the mean. It incorporates the sam-
ple uncertainty typically expressed by a confidence interval
(CI) associated with the prediction of the mean in addition to
the uncertainty associated with the new prediction. Due to
this difference, a PI is always wider than a CI. In this model,
PI is calculated for a given significance level (a) and time step
(i) according to the following equation:

PIŷ 5 ŷ 6 tadfŝ ŷ i
, (2)

where ŷ is the predicted value of storms in the season; tadf is
the critical t value for the specified significance level and
the degrees of freedom (df) of the model; and ŝ ŷ is the

standard error of the ith predicted value (Helwig 2017).
The standard error is defined mathematically as follows:

ŝ ŷ 5

�������������������������������������������������
MSE{1 1 (PFF

i )T[(PFF)TPFF]21PFF
i }

√
(3)

where MSE is the mean squared error and PFF
i is the set of

predictor values at the ith time step.
To validate the model, the 40-yr forecasted storm activ-

ity time series and prediction intervals are compared with
the observed storm activity over those 40 seasons (Figs. 8
and 9). We use RMSE, normalized root mean squared er-
ror (NRMSE), and cross correlation are used to quantify
the fit of each subseries prediction model (Table 3). All
predicted model time series are correlated with their cor-
responding observation time series at a value of at least
0.78. Our best model as determined by cross correlation is
the snow storm model at a correlation of 0.86. The lowest
RMSE is recorded by the mixed storm model. However, to
compare RMSE across models, the value should be nor-
malized. The NRMSE is calculated by dividing the RMSE
by the standard deviation of each subseries (stype). When
this is taken into account, one can see that while results
are comparable across models, the snow storms model is
best with the NRMSE equal to 0.58. Overall, the models
forecast seasonal storm activity with some skill showing
the chosen predictors have predictive value.

For future use of these models, we produce eight final equa-
tions for forecasting winter seasonal storm activity in the Hali-
fax area. The regression coefficients are obtained from fitting
the predictors and predictand time series over the whole 40-yr
study period (Table 4). For six of the eight MLRs, the inter-
cept (bFF

0 ) is similar to the mean storm activity value for that
storm type. The value of the intercepts for the wind and
bomb storms, however, are much lower to account for the
positive trend in these time series.

5. Forecast application and results

a. Probabilistic forecast framework

A forecast made directly from the output of the MLRs has
considerable uncertainty as shown by the prediction intervals
on the model outputs. While this precludes the use of the
models for deterministic forecasting, the model outputs can
still be utilized for a probabilistic forecast. The framework for
such usage is outlined in this subsection. Rather than forecast

TABLE 4. Model parameters for each type of subseries forecast model.

Predictand Intercept (bFF
0 ) Coef 1 (bFF

1 ) Coef 2 (bFF
2 ) Coef 3 (bFF

3 ) Coef 4 (bFF
4 )

Total 142.0 210.9 23.48 } }

Total precip 129.1 213.8 29.02 } }

Snow 120.9 220.4 24.13 13.24 11.42
Rain 18.86 23.77 14.04 22.00 }

Mixed 111.3 20.0350 21.36 13.37 10.966
No precip 16.86 12.60 24.34 22.57 }

Wind 21825.00 14.96 12.43 11.23 }

Bomb 2176.00 12.35 22.95 20.547 10.003 57

TABLE 3. Validation results for all eight predictand models.

Predictand RMSE NRMSE Corr(obs, pred)

Total 2.53 0.76 0.79
Total precip 2.65 0.72 0.81
Snow 1.76 0.58 0.86
Rain 1.61 0.74 0.78
Mixed 1.09 0.62 0.84
No precip 1.72 0.68 0.80
Wind 1.98 0.72 0.79
Bomb 1.53 0.61 0.84
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an exact number of storms, we create categories of storm-track
activity that give context to the forecast outputs. These
categories are “above-average,” “average,” and “below-
average” activity (Table 5). The threshold values that sepa-
rate these categories are defined based on the quartiles of
the observed storm time series for each storm type. The up-
per threshold is the third quartile (Q3

type) and the lower
threshold is the first quartile (Q1

type; illustrated with dashed
lines in Figs. 8 and 9). The above-average storm season
range lies above the upper threshold and the below-average
category lies below the lower threshold. The range consid-
ered average lies between the first and third quartiles, i.e.,
the interquartile range.

The probabilistic forecast determines the likelihood that
the number of storms in a given season falls within each of
these three ranges. To do so, the prediction interval (PI) is
utilized. The PI follows a Student’s t-distribution probabil-
ity density function, which is centered on the forecasted
value (ŷtype) and dependent on the degrees of freedom of
the model. To determine the likelihood that the number of
storms in a storm season will fall within each of the three
activity categories, we assess the percent of the forecast
distribution that falls above, between, and below the thresh-
olds. This gives the probability as a percentage for each

possible activity level (Fig. 10). The numerical probabilities
are also categorized. The language of our proposed proba-
bilistic forecast follows the IPCC (2014) probability lan-
guage (Table 6).

The resulting language of the forecast would be, for ex-
ample, it is very unlikely that Halifax has a below-average
number of rain storms this season. The italicized text indi-
cates the parts of the forecast that would change based on
the model output each season and the predictand being ex-
amined. Mathematically, the example above is stating that
90% of the probability density function of the forecast lies
above the third quartile of rain storms recorded over the
40-yr study period.

b. Halifax winter storm forecast

This probabilistic framework is applied to forecast the like-
lihood of above-average, average, and below-average storm
activity in the 2019/20 and 2020/21 storm seasons, which were
not used in any step of the model development process
(Tables 7 and 9). The forecasts are also compared with the ob-
served storm activity in those seasons (Tables 8 and 10). The
probabilistic forecast shows some skill with an accurate activ-
ity category being predicted half the time. For three of the
forecasts categorized as misses (2019 total precip, 2020 precip,
and 2020 snow), the worded forecast said the probability was
“about as likely as not” for two activity categories. The ob-
served activity did fall within one of these two categories;
however, it was not numerically the most probable of the two.
Even though the observed activity category was not the cate-
gory with the highest numerical probability, the probabilistic
framework communicated an accurate forecast.

6. Discussion

We have proposed a probabilistic forecast model for winter ex-
tratropical cyclones that affect a given location of interest

FIG. 10. Probabilistic forecast schematic for an example storm season. The probability density
function of the forecast is illustrated with a normal distribution curve and compared with the
storm activity categories. The percentage of the area under the curve that lies within each cate-
gory is used to make the written forecast statements to the top left of the curve.

TABLE 5. Classifications of storm activity. The upper threshold
(Q3

type) separating above average and below average is the 75th
percentile of the observed storm time series or the third quartile
and the lower threshold (Q1

type), which separates average and
below average is the 25th percentile of the or the first quartile.

Storm-track activity category Range

Above average ŷ .Q3
type

Average Q1
type , ŷ ,Q3

type
Below average ŷ ,Q1

type
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separated into categories based on precipitation type, wind speed,
and deepening rate. Due to the high degree of spatial and tempo-
ral variability of winter ETCs, the predictand field was simplified
to be regionally focused on Halifax, NS, allowing the temporal
variability in the field to be quantified and predicted without
complications of spatial variability. We developed eight MLR
forecast models, one to forecast all storms and one each for the
seven subsets of unique storm types. Using the September mean
values of known ETC drivers, the most skilled predictors were
methodically selected for each model. Most often, the best pre-
dictors were found to be the gradient of total precipitable water
vapor and 2 m air temperature and its gradient field. The best
model as determined by R2 is the snow storm model (R2 5 0.73).
The seasonal forecast is built upon this set of eight moderately
skilled, storm-type-specific MLR models. Through the whole de-
velopment process, the intent was to create a forecast that com-
municates information of value to the general public. This was
ultimately achieved with probabilistic descriptions that compare
projected activity and the uncertainty in the projections to usual
winter storm season activity in clear, digestible statements. While
this project focused on Halifax, the framework presented could,
in principle, be applied at any location.

The ETC research field is currently lacking in regionally nu-
anced seasonal forecasting of ETCs and in forecasts that spec-
ify storm characteristics, such as precipitation type or severity.
Existing seasonal forecast models based on climate models,
EOF-based predictions, and teleconnection-based predictions

have limited spatial resolution and limited information about
storm characteristics. This makes it difficult to deliver results
that are meaningful to the public when applying them to a
specific location or region. The regionally specific, multitype
probabilistic forecast model presented here addresses the need
for a focused and digestible ETC forecast by providing skillful
and detailed forecasts of ETC activity differentiated according
to storm impacts. Existing models make broad sweeping state-
ments such as, “The storm track will experience a northward
shift this winter season.” Our model adds spatial and impact-
related detail to make more specific and applicable forecasts
such as, “It is likely to be an above-average storm season this
winter. It is highly likely to be above average in terms of snow
storms, likely to be below average for rain storms, and highly
likely to be average in numbers of wind storms and bomb cyclo-
nes.” Focusing the spatial extent of the predictand and subtyp-
ing storms according to impacts has allowed for increased detail
and enhanced usefulness for the general public.

Accurate and timely seasonal forecasting of ETCs can increase
disaster preparedness and mitigate human and economic loss.
Our probabilistic forecast gives a practical projection of likely
winter storm season characteristics one month ahead (October)
of the upcoming season (November–March) to allow for ample
preparation to minimize losses. The possible predictors were cho-
sen based on atmospheric variables that are known to drive
storm-track activity through concurrent temporal relationships.
However, the relationships are applied in this MLR at a specified
lag. This was a practical choice made primarily on the basis of us-
ability. The skill exhibited by the predictors demonstrates that a
nonconcurrent relationship does exist; however, the physical basis
for the mechanisms or processes underpinning those relationships
are not developed. A further investigation into the predictor–
predictand relationships at the lag used in the forecast model
would give better insights into the mechanisms at play and build a
stronger theoretical basis for the model. Such an analysis might re-
veal that predictors at a slightly different time lag have a stronger
physical connection or that spatial averaging or other filtering of

TABLE 6. Relationship between probability language and
statistical likelihood.

Probability terminology Numerical probability

Very likely $90%
Likely 67%–89%
About as likely as not 34%–66%
Unlikely 11%–33%
Very unlikely #10%

TABLE 7. Probabilistic forecast of 2019 winter storm activity for eight subseries. The most probable activity category for each type is
italicized. Boldface indicates when the observed storm activity falls within the forecasted highest probability category.

Probability of above average Probability of average Probability of below average

Total Unlikely About as likely as not Unlikely
0.2847 0.5930 0.1223

Total precip About as likely as not About as likely as not Very unlikely
0.6038 0.3789 0.0173

Snow Unlikely Likely Very unlikely
0.1437 0.8006 0.0557

Rain Unlikely About as likely as not Unlikely
0.1114 0.6081 0.2804

Mixed Very unlikely Very unlikely Very likely
0.0018 0.0820 0.9162

No precip Likely Unlikely Very unlikely
0.8827 0.1147 0.0026

Wind Very likely Very unlikely Very unlikely
0.9960 0.0040 0.0000

Bomb Likely Unlikely Very unlikely
0.8008 0.1981 0.0010
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the predictor field gives more robust predictor–predictand rela-
tionships. Here we chose a purely statistical approach which lever-
ages lagged relationships between storm activity and large-scale
predictor fields. Another promising avenue for future work is
combining dynamical and statistical modeling. Incorporating, for
example, a dynamical seasonal forecast could allow for a model
that instead leverages concurrent (zero lag) predictor–predictand
relationships, which may be stronger than lagged relationships
and therefore lead to a more skilled model. Though this technique
was considered, we opted for a purely statistical model 1) to
preserve simplicity and maintain usability, and 2) because a pre-
liminary lagged cross-correlation analysis shows no significantly
different predictor–predictand correlations at seasonal lags.

Another limitation can be found in the lack of intermodel
relationships. Since by definition there are mathematical rela-
tionships between the categories of storms (e.g., precip 1 no
precip 5 total storms), the models could be constrained to
preserve these relationships. This might mean letting the total
storms forecast simply be the sum of the precipitation and no
precipitation forecasts, rather than forecasting total storms by
its own individual model. Because the actual use of the model
outputs is in a probabilistic forecast, the outputs do not need
to be perfectly congruent. However, if an exact quantitative
forecast of the storm types was derived from the MLRs, the
number of storms in an aggregate category (e.g., precip
storms) should be equal to the sum of its constituents (e.g.,

snow, rain, and mixed storms). If this is the desired result, a
logistic regression may be a more appropriate technique.

Finally, the base of the forecasting framework is a set of
MLRs that have room for improvement. Efforts toward fur-
ther refinement of the predictor pool, more sophisticated pre-
dictor selection techniques, or even an alternative base model
to the MLR could be expected to improve the deterministic
forecast component of the system. Since our storm time series
are counts (i.e., positive integers) an alternative model that
one might consider is Poisson regression. We find that the use
of Poisson regression does not in general provide improved
predictions over linear regression (not shown) and also that
the likelihood of our model producing nonsense predictions
(i.e., negative storm counts) is small. Further, the calculation
of a prediction interval for Poisson regression, which is critical
to the outcomes of this study, presents a major challenge as
there is no unique way to do so and those that exist are cum-
bersome to implement (Kim et al. 2022). Though we acknowl-
edge the potential of a superior alternative, we have checked
the assumptions of linear regression and confirmed they hold
for our data making linear regression a suitable choice (see
the appendix). For both ease of use and practicality we found
that linear regression worked well for us in this study.

Model improvement could also come in the predictor selec-
tion. Here we used stepwise regression with cross-validation
in order to select our predictors. Stepwise regression, in par-
ticular classic forward selection, is known to have some unde-
sirable properties including, e.g., small standard errors of the
parameter estimates making CIs on the parameters too nar-
row and R2 values that are biased high (Harrell 2001). For-
ward selection is known to be especially problematic with
high levels of collinearity in predictors. We took care to avoid
this pitfall by removing correlations between predictors al-
ready chosen for the model and any potential predictors being
considered for addition. Further, the use of cross-validation
was incorporated to protect against overfitting, which is an-
other known downfall of the forward selection process. Our
resulting model predictions have good correlations (;0.8 on

TABLE 8. Validation of 2019 winter season predictions.
Comparison of predicted (yhat) and observed (yobs) storm counts
for each type with accuracy of the prediction given in the
bottom row. The observed storm counts must fall within the
most probable predicted activity category for the forecast to be
considered a hit.

Total
Total
precip Snow Rain Mixed

No
precip Wind Bomb

yhat 32.78 27.97 11.01 4.96 5.9 11.23 16.09 14.37
yobs 32.0 22.0 10.0 5.0 7.0 10.0 8.0 7.0

Hit Miss Hit Hit Hit Hit Miss Miss

TABLE 9. As in Table 7, but for the 2020 winter season.

Probability of above average Probability of average Probability of below average

Total Unlikely About as likely as not Unlikely
0.1437 0.6007 0.2555

Total precip Very unlikely About as likely as not About as likely as not
0.0136 0.3416 0.6447

Snow About as likely as not About as likely as not Very unlikely
0.5567 0.4395 0.0037

Rain Very unlikely About as likely as not About as likely as not
0.0769 0.5437 0.3794

Mixed Very unlikely Very unlikely Very likely
0.0001 0.0178 0.9820

No precip Unlikely About as likely as not Unlikely
0.1486 0.6363 0.2151

Wind Likely Unlikely Very unlikely
0.7919 0.2040 0.0041

Bomb Very unlikely About as likely as not About as likely as not
0.0160 0.5679 0.4161
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average) but these are not suspiciously high such that they
would indicate overfitting. The number of predictors selected
for the models is at most four which, considering the size
of the potential predictor pool (O; 10 000), suggests the
method is appropriately selective. Other methods could be
used to alleviate these issues in different ways, such as Least
Absolute Shrinkage and Selection Operator (LASSO) regres-
sion which minimizes the residual sum of squares with one
key constraint placed on the model. The constraint is a pen-
alty term which dictates the sum of the coefficients must be
less than a constant. This effectively eliminates predictors
by forcing some coefficients to zero (Tibshirani 1996). While
the LASSO technique is a powerful tool, we decided that ex-
ploring its use was outside the scope of this study. Future
work focused on improving the predictor selection process or
the base model could significantly improve the forecast sys-
tem as a whole. Nonetheless, the larger framework presented
here is well designed.

We established the structure of a probabilistic forecast that
delivers estimates of storm type and frequency for the upcom-
ing winter season with 1 month of lead time. It uses publicly
available ERA5 data, has a practical lead time, can be readily
applied at any location, and gives contextual, probabilistic
forecast statements in a manner that is digestible for the gen-
eral public. By leveraging the probability distribution of the
model output and the typical characteristics of a winter storm
season in delivering our forecast, we demonstrated a valuable
method of incorporating both context and mathematical uncer-
tainty in an accessible way. Publishing such a forecast before an
upcoming winter season has great potential to mitigate losses, im-
prove financial planning, and enable better overall preparedness
for the impending trials of the winter ahead.
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APPENDIX

Assumptions of Linear Regression

We have checked assumptions of linear regression as
follows:

(i) Linearity: there exists a linear relationship between the
independent variable x and the dependent variable y.
We have plotted each predictor against the predictand.
We visually assessed that linear relationships are present
(not shown).

(ii) Independence of errors: there is no correlation between
consecutive residuals.
Autocorrelation functions for residuals in all models fits
show no statistically significant correlations at nonzero
lags (a 5 0.05).

(iii) Homoskedasticity: the residuals have constant variance
and do not depend on the value of the predictor.
This was assessed using the White test (White 1980). The
null hypothesis (that the errors are homoskedastic) could
not be rejected for all subseries (p5 0.05; Table A1).

(iv) Expectation of errors is zero.
We used a t test to assess this and the null hypothesis
(that the expected value of the sample is equal to zero)
was not rejected for all subseries (p5 0.05; Table A2).

TABLE 10. As in Table 8, but for the 2020 season.

Total
Total
precip Snow Rain Mixed

No
precip Wind Bomb

yhat 31.46 20.98 13.27 4.53 5.11 7.15 11.02 9.35
yobs 41.0 27.0 10.0 6.0 11.0 14.0 15.0 10.0

Miss Miss Miss Hit Miss Miss Hit Hit

TABLE A1. Results of White test for homoskedasticity for each
storm series.

Storm type p value

Total 0.5149
Total precip 0.9855
Snow 0.0619
Rain 0.381
Mixed 0.9318
No precip 0.5443
Wind 0.7406
Bomb 0.9888
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