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Marine Heat Waves
● In 2011, a “marine heat wave” off of Western Australia was documented 

(Pearce and Feng, 2013; Feng et al., 2013)

March 2011 surface temperature anomaly

Wernberg et al (2013)

● Some species experienced range extensions during the marine heat wave which 
persisted after the heat wave dissipated (Wernberg et al. 2013)
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● Given a vector of annual maxima (y), the parameters θ = (a,b) can be estimated by 
Bayesian estimation:

posterior
distribution

likelihood prior
distribution
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● Return levels z
T
 and return periods T

z
 

are defined using
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Model Projections

● Eddy-resolving dynamical downscaling in 
Australia region performed by 
Chamberlain et al. (2010):

● Two ocean model runs  using Ocean 
Forecasting Australia Model (OFAM;    
70OS–70ON domain, 1/10O resolution 
around Australasia)

OFAM grid with mean SST
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– 2060s (A1B run)

● Control run forced by historical reanalysis

● Climate change scenario provided by 
CSIRO Mk3.5 GCM with an A1B emissions 
scenario

● Models represent well general circulation 
and temperature distribution around 
Australia, including seasonality [Sun et al, 
2012; Matear et al., 2013]
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Model Projected Extremes

● The ocean model runs do not fully represent the extremes

● The ocean model runs do represent well the overall climate

● Extremes can be represented using the “climate” alone, e.g.:

– Griffiths et al. (2005), Ballester et al. (2010), Simolo et al. (2011), de Vries at al. (2012)

● So, can we model “observed extremes” = f(“simulated climate”) ???



  

Bayesian Hierarchical Model
● Define observed annual maxima at all J  locations as a list of vectors

● We model the extremes using a Bayesian hierarchical model (BHM): a model with several 
nested layers:

posterior distribution
data layer prior distribution

climate process
layer
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function of the ocean model marine climate X:

where βs and τs are parameters of the regression model

– Since the models for a and b are independent, we can factor the climate process layer as

posterior distribution
data layer prior distribution

climate process
layer● The marine climate statistics (mean SST, SST 

variance, eddy kinetic energy, etc) are collected 
together into the covariate matrix X, e.g.,

and the linear regression takes on the form:



  

Bayesian Hierarchical Model
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1
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and with no prior knowledge regarding how the Gumbel parameters are related to the 
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● Define observed annual maxima at all J locations as a list of vectors

● We model the extremes using a bayesian hierarchical model (BHM): a model with several 
nested layers:

● iii. Priors. Assume that the parameters θ
1
 are independent

and with no prior knowledge regarding how the Gumbel parameters are related to the 
climate variables we choose diffuse non-informative priors.

● Samples from the posterior distribution are estimated numerically using Markov chain 
Monte Carlo, Metropolis rule and Gibbs sampling methods

● Procedure:

– Fit the model using the 1990s model climate (X
1990

)

– Use fitted model and 2060s model climate (X
2060

) to estimate future extremes

– Assumes model stationarity

posterior distribution
data layer prior distribution

climate process
layer



  

BHM Extremes: 1990s

● BHM model provides 
improved representation 
of observed extremes

● Selected model was with 
X

1990
 including SST mean, 

variance, and skewness 
and eddy kinetic energy



  

BHM Extremes: 2060s

● BHM extremes model applied using fitted model parameters 2060s 
climate statistics as predictors (X

2060
)

● However, the power of the technique allows for 

– significance testing, use as toy model, etc...



  

Confidence
● The extremes model is probabilistic 

in nature (Bayesian) and so we can 
put confidence limits on our 
projections

● This type of information is very 
helpful when making statements 
about climate change

● By drawing independent samples 
of Y from the posterior for the 
1990s we can test if the projected 
change in the 2060s is statistically 
significant, when compared to the 
change possible in an unchanged 
1990s climate (i.e., due to random 
variations)

East of Tasmania (152OE, 43OS) with 75% confidence a projected change of 1.78OC is significant (compared 
to randomness in an unchanged climate) but with 90% confidence a a change of 0.67OC is not significant.
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in nature (Bayesian) and so we can 
put confidence limits on our 
projections

● This type of information is very 
helpful when making statements 
about climate change

● By drawing independent samples 
of Y from the posterior for the 
1990s we can test if the projected 
change in the 2060s is statistically 
significant, when compared to the 
change possible in an unchanged 
1990s climate (i.e., due to random 
variations)

Off eastern Tasmania (152OE, 43OS) there is a 95% chance that the change in annual maxima will be positive, 
a ~70% chance that the change will exceed 2OC, and a 25%  chance that the change will exceed 2OC



  

Toy Model
● Use the extremes model as a “toy model” to test the response of the extremes to 

specified changes in climate:

– We can specify a particular climate (X
spec

), such as the 1990s climate plus a 2OC 

warming of the mean SST

– Then drawing from the posterior distribution given the specified climate we can 
test what the response of the extremes are to large-scale changes in the climate
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SST Mean and Variance



  

Eddy Kinetic Energy

● Sea level variance 
(~eddy kinetic energy) 
consistent between 
model and observations

● Significant increase in 
eddy kinetic energy in 
EAC Extension region, 
where flow is not steady 
but in fact consists of a 
train of mesoscale 
eddies...
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