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Marine Heat Waves

 In 2011, a “marine heat wave"” off of Western Australia was documented
(Pearce and Feng, 2013; Feng et al., 2013)
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 Some species experienced range extensions during the marine heat wave which
persisted after the heat wave dissipated (Wernberg et al. 2013)
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Definition: Extreme events are those producing climate anomalies which are
rare and whose magnitudes deviate significantly from the expected value




mAas S  Extreme Value Theory

Definition: Extreme events are those producing climate anomalies which are
rare and whose magnitudes deviate significantly from the expected value

« Consider a series y of annual maxima so that each element of the series is the
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mAas S  Extreme Value Theory

Definition: Extreme events are those producing climate anomalies which are
rare and whose magnitudes deviate significantly from the expected value

« Consider a series y of annual maxima so that each element of the series is the
maximum value of a variable that occurred within a unique year

* The annual maxima can be modeled using an Extreme Value Distribution (EVD),
e.qg., the Type | or Gumbel distribution:

F(yla,b) = exp [_ exp (_y ; a)]

* Given a vector of annual maxima (y), the parameters 8 = (a,b) can be estimated by
Bayesian estimation:
p(8|y) < p(y|0)p(0)

f/\

posterior prior
distribution  '<€'1M%00 " gistribution

L(Bly) = p(y|0) = H f(y:]0)



masE=  Extreme Value Theory

* The fit of the Gumbel distribution can
be compared with the annual maxima
using a return level plot:

Return period [years]
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® observed annual maxima
—— Gumbel fit




The Fit of the Gumbel distribution can
be compared with the annual maxima
using a return level plot:

Return period [years]
1.2 2.0 5.0 10. 25.

Extreme SSTs [ C]

Extreme SSTs [°C]

—1 0 1 2 3
Gumbel theoretical quantiles

® observed annual maxima
—— Gumbel fit

- Return levels z_and return periods T,
are defined using

zr(y) = a—blog|[—log Fi(yla,b)]
T.(y) = [1—Fi(yla,b)]™"

Observed 50-yr extreme SSTs
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Eddy-resolving dynamical downscaling in
Australia region performed by
Chamberlain et al. (2010):

Two ocean model runs using Ocean
Forecasting Australia Model (OFAM,;
70°S-70°N domain, 1/10° resolution
around Australasia)

UTAS

OFAM grid with mean SST
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Eddy-resolving dynamical downscaling in
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Forcings representative of:
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Eddy-resolving dynamical downscaling in
Australia region performed by
Chamberlain et al. (2010):

Two ocean model runs using Ocean
Forecasting Australia Model (OFAM,;
70°S-70°N domain, 1/10° resolution
around Australasia)

Forcings representative of:

- 1990s (CTRL run), and
- 2060s (A1B run)

Control run forced by historical reanalysis

Climate change scenario provided by
CSIRO Mk3.5 GCM with an A1B emissions
scenario

Models represent well general circulation
and temperature distribution around
Australia, including seasonality [Sun et al,
2012; Matear et al., 2013]
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MAS S Model Projected Extremes

Observed 50-yr extreme SSTs
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 The ocean model runs do not fully represent the extremes
 The ocean model runs do represent well the overall climate

« Extremes can be represented using the “climate” alone, e.q.:
- Griffiths et al. (2005), Ballester et al. (2010), Simolo et al. (2011), de Vries at al. (2012)

* So, can we model “observed extremes” = F(“simulated climate”) 2??



Bayesian Hierarchical Model

» Define observed annual maxima at all J locations as a list of vectors Y = {y|j = 1,2,...J}

 We model the extremes using a Bayesian hierarchical model (BHM): a model with several
nested layers:
d p(O]Y . X) x p(Y62) p(62161, X) p(61)

-~ / climate érocess \

posterior distribution ] .
data layer layer prior distribution




Bayesian Hierarchical Model

» Define observed annual maxima at all J locations as a list of vectors Y = {y|j =1,2,...J}

 We model the extremes using a bayesian hierarchical model (BHM): a model with several
nested layers:
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e |i.Data layer. Model the observed annual maxima Yusing the Gumbel distribution:

p(Y|0:) = Hp yjlaj, ;) = HHf yjilag, d;)

where ¢ = log(b) Bg:(a,(,b) a={a;l|j :1,2,...”]} d={0;l1=12,...,J}
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» Define observed annual maxima at all J locations as a list of vectors Y = {y|j =1,2,...J}

 We model the extremes using a bayesian hierarchical model (BHM): a model with several
nested layers:
d p(O]Y . X) x p(Y62) p(62161, X) p(61)
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posterior distribution ] .
data layer layer prior distribution

e |i.Data layer. Model the observed annual maxima Yusing the Gumbel distribution:

p(Y|0:) = Hp yjlaj, ¢;) = HHf Yyjilaz, ¢;)

7=11=1

whereﬁb:lOg(b) 92:(9*:(}5) a':{aj'j:lQan} qb:{(bj‘?:]-azaa*]}

* ji. Climate process layer. The parameters of the Gumbel distribution are modeled as a
function of the ocean model marine climate X:

a:X}Qa+Ea p(a|/8a:T0«aX):NJ(XﬁmTu_ll)
®=XPBy+ € p(B|By, 7a, X) = Nj (X Bg, 7, 1)

where Bs and ts are parameters of the regression model

- Since the models for aand b are independent, we can factor the climate process layer as

p(62|917 X) — p(a"/ﬁaa Tas X) p(qb'ﬂqba Tqﬁa X)



IMAS & Bayesian Hierarchical Model

 The marine climate statistics (mean SST, SST
variance, eddy kinetic energy, etc) are collected
together into the covariate matrix X, e.qg.,

X=[1|p|lo*| K]
and the linear regression takes on the form:

a = I,Lf))ajg -+ I,Lf))ajlﬂ -+ I,Baﬁgd'z -+ .IBG,,BK + €,

qﬁ — I,Lf))q;)?() -+ ,-Bq'),lﬂ -+ I,Lf (;')120'2 -+ .,Lf ¢,3K -+ €y




IMAS & Bayesian Hierarchical Model

» Define observed annual maxima at all J locations as a list of vectors Y = {y|j =1,2,...J}

 We model the extremes using a bayesian hierarchical model (BHM): a model with several

nested layers:
d p(O]Y, X) < p(Y |62) p(62]6,, X) p(6,)
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- iii. Priors. Assume that the parameters 6, are independent
p(01) = p(Ba)p(Bg)p(Ta)p(74)

and with no prior knowledge regarding how the Gumbel parameters are related to the
climate variables we choose diffuse non-informative priors.

« Samples from the posterior distribution are estimated numerically using Markov chain
Monte Carlo, Metropolis rule and Gibbs sampling methods



IMAS & Bayesian Hierarchical Model

» Define observed annual maxima at all J locations as a list of vectors Y = {y|j =1,2,...J}

 We model the extremes using a bayesian hierarchical model (BHM): a model with several
nested layers:
d p(O]Y . X) x p(Y62) p(62161, X) p(61)
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posterior distribution ] .
data layer layer prior distribution

- iii. Priors. Assume that the parameters 6, are independent
p(01) = p(Ba)p(Bg)p(Ta)p(74)

and with no prior knowledge regarding how the Gumbel parameters are related to the
climate variables we choose diffuse non-informative priors.

« Samples from the posterior distribution are estimated numerically using Markov chain
Monte Carlo, Metropolis rule and Gibbs sampling methods

e Procedure:

— Fit the model using the 1990s model climate (X

1 990)

- Use fitted model and 2060s model climate (X, ) to estimate future extremes

- Assumes model stationarity
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IMAS = BHM Extremes: 2060s

-

« BHM extremes model applied using fitted model parameters 2060s

climate statistics as predictors (Xzoso)
CTRL 50-yr extreme SSTs A1B 50-yr extreme SSTs Difference
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« However, the power of the technique allows for

- significance testing, use as toy model, etc...



Confidence

 The extremes model is probabilistic  Bydrawing independent samples

in nature (Bayesian) and so we can of Y from the posterior for the
put confidence limits on our 1990s we can test if the projected
projections change in the 2060s is statistically
, , o significant, when compared to the
* This type of information is very change possible in an unchanged
helpful yvhen making statements 1990s climate (i.e., due to random
about climate change variations)
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East of Tasmania (152°E, 43°S) with 75% confidence a projected change of 1.78°C is significant (compared
to randomness in an unchanged climate) but with 90% confidence a a change of 0.67°C is not significant.




IMIAS &= Confidence

Probability of A1B-CTRL increase of annual maxima by specnﬂed amount
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Toy Model

Use the extremes model as a “toy model” to test the response of the extremes to
specified changes in climate:

LN
&a

We can specify a particular climate (Xspec), such as the 1990s climate plus a 2°C
warming of the mean SST

Change in z

Then drawing from the posterior distribution given the specified climate we can
test what the response of the extremes are to large-scale changes in the climate

(c)

xS
©

]

v

145°E 150°E 155°E 160°E

165°E

for 25% change in SST variance

1.8

1.6

1.4

1.2

1.0

10.8

10.6

10.4

10.2

0.0



Toy Model
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T>> along shelf break NW of Tasmania
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Summary

The BHM extreme model provides a technique to improve

estimates of extremes from global ocean and climate models - .. -

can be applied to other variables (precipitation?)

The basic approach is to model observed extremes as a

Function of the historical climate statistics, assume
stationarity, and then use climate projections or specified

climates to estimate extremes for other climate scenarios

The method allows for an estimation of statistical significance fzﬂjﬁ 3
(by comparing against randomness in an unchanged climate) and e
can also be used as a toy model to test the response of the

extremes to prescribed climate changes
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Model Stationarity

Fundamental relationship

We posit that there exists a relationship between the extremes and climate
parameters X:

“extremes” = f(X)

This relationship expresses fundamental aspects of the climate system which do

not change with time.
Role of 3s and 7s

Effectively, we have performed a linear approximation to f(X):
f(X) = XB + O(X?)

Therefore, the Bs (and 7s) are stationary since f(X) is stationary

E.C.J. Oliver Projected ocean warming and extremes off southeast Australia in the 21st cen
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