Extreme marine heatwave off southeast Australia in austral summer 2015-2016

Eric C. J. Oliver^{1,2} Jessica Benthuysen³, Nathan Bindoff¹, Alistair J. Hobday⁴, Neil J. Holbrook^{1,2}, Craig Mundy¹ and Sarah E. Perkins-Kirkpatrick^{2,5}

> ¹ Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia ² Australian Research Council Centre of Excellence for Climate System Science ³ Australian Institute of Marine Science, Townsville, Queensland, Australia ⁴ Oceans and Atmosphere Flagship, CSIRO, Hobart, Tasmania, Australia
> ⁵ Climate Change Research Centre, University of New South Wales, Sydney, Australia

What is a Marine Heatwave?

- A marine heatwave (MHW) is defined to be a discrete prolonged anomalously warm water event at a particular location (Hobday et al., 2016)
- Specifically, **SSTs above the seasonally-varying 90th percentile** that persist **for at least 5 days**.
- Definition includes a set of **metrics**, including:
 - Intensity [°C]
 - **Duration** [days]

Software implementation free-ly available in Python here: github.com/ecjoliver/marineHeatWaves and in R here: github.com/cran/RmarineHeatWaves

2015-2016 SE Australia MHW

- There was a marine heatwave that occurred in Austral Summer 2015/16 off southeastern Australia: 9 Sep 2015 – 16 May 2016
- It is unprecedented in
 - Duration (251 days)
 - Intensity (2.9°C max)
- Impacts: POMS (Oysters), dead abalone, poor salmon farm performace, strange fish intrusions, kelp thinning...

Oliver, Benthuysen, Bindoff, Hobday, Holbrook, Mundy and Perkins-Kirkpatrick, *Nat Comms* (under review)

2015-2016 SE Australia MHW

- There was a marine heatwave that occurred in Austral Summer 2015/16 off southeastern Australia: 9 Sep 2015 – 16 May 2016
- It is unprecedented in
 - Duration (251 days)
 - Intensity (2.9°C max)
- Impacts: POMS (Oysters), dead abalone, poor salmon farm performace, strange fish intrusions, kelp thinning...

Oliver, Benthuysen, Bindoff, Hobday, Holbrook, Mundy and Perkins-Kirkpatrick, *Nat Comms* (under review)

Nearshore Records

- IMOS Maria Island NRS
 - 20 m temperature
 - Full-depth velocities

IMAS Nearshore Temperature Monitoring

- A number of sites in
 6-20 m depth
- This event was record strength (red) and duration (blue) in the ~10-year coastal records
- Record southward flows, possible indication of forcing mechanism

2

Nearshore Records

- IMOS Maria Island NRS
 - 20 m temperature
 - Full-depth velocities

IMAS Nearshore Temperature Monitoring

- A number of sites in
 6-20 m depth
- This event was record strength (red) and duration (blue) in the ~10-year coastal records
- Record southward flows, possible indication of forcing mechanism

Nearshore Records

- IMOS Maria Island NRS
 - 20 m temperature
 - Full-depth velocities

IMAS Nearshore Temperature Monitoring

- A number of sites in 6-20 m depth
- This event was record strength (red) and duration (blue) in the ~10-year coastal records
- Record southward flows, possible indication of forcing mechanism

Monthly SST anomalies: contour encloses areas that were detected as MHWs for >90% of that month

Monthly surface currents (*u*, *v*) (IMOS OceanCurrent)

Monthly surface Eddy Kinetic Energy (*EKE*) (IMOS OceanCurrent)

- **Upper ocean temperature budget**, following:
 - Benthuysen et al. (*CSR*, 2014) for 2011 West. Aus. MHW
 - Chen et al. (*JGR*, 2015, 2016) for the 2012 NW Atlantic MHW
- Volume averaged temperature tendency equation:

- *Depth: H* = 100 m
- Area: A = "SEAus box"
- Temperature (T) and velocities (u_{μ}) from OceanMAPS
- *Surface heat flux* (*Q*) from NCEP CFSv2 reanalysis

Physical drivers

<u>Temperature budget</u>

- Volume averaged temperature (T_v) since Sep 1st of:
 - 2012/13, 2013/14, 2014/15, 2015/16
- Consider:
 - Temperature avection (T_{H})
 - Air-sea heat flux (T_{o})
- Climatology: by mid-February T_H contributes ~60% of the warming while T_o contributes ~40%
- 2015-2016: by mid-February T_H contributes ~80% of the warming while T_o contributes ~20%
- Marine heatwave primarily driven by anomalous temperature advection

- Event Attribution study following
 - Lewis & Karoly (*GRL*, 2013) on Australia's "angry summer" of 2013
 - King et al. (*ERL*, 2015) on Central England temps. of 2014
- **Calculation:** *Fraction of Attributable Risk (FAR)*:

$$FAR = 1 - \frac{P_{histNat}}{P_{hist}}$$

where P_{χ} is the probability of an the event larger/longer than the event in question based on the modelled climate X.

- **Informs:** change in likelihood of occurrence of an event like the one in question due to anthropogenic influence (*hist*) as opposed to a naturally-forced world (*histNat*)
- Data: Look at SEAus MHWs in CMIP5 historical, historicalNat and RCP8.5 runs

• Need *daily* SSTs, limits the number of available models:

Model	Historical	HistoricalNat	RCP8.5	Bias correction
ACCESS1.3	3	3	1	1.32
CanESM2	1	3	5	1.10
CSIRO Mk3.6.0	10	10	10	1.42
CNRM-CM5	1	5	5	0.80
HadGEM2-ES	4	4	4	0.96
IPSL-CM5A-LR	6	3	4	0.98
IPSL-CM5A-MR	3	3	1	0.91
Total	28	31	30	

- Did a **bias correction** rather than a model selection (so few models):
- Decompose SST time series as follows: $T_t = a + bt + T_t^{\mathrm{S}} + T_t'$
- Isolate linear trend (a + bt) and seasonal cycle (T^s_t) by regression, compare variance of non-seasonal variability (T'_t) between observations and model historical runs as a ratio
- **Bias correct**: *Scale variance of each model run* based on the calculated bias ratio, then add it back to the linear and seasonal component

- <u>Attribution statement</u> made separately around 2nd-largest (intensity) and 2nd-longest (duration) event (1911-1940 base period):
 - 3.1 °C
 - 377 days
- **Duration**: An event of this duration was
 - 4x as likely in 1982-2005 (hist simulations) compared to the "natural world" (historicalNat 1850-2005 simulations) [95% CI: 0.5-53x]
 - 9x as likely by 2006-2020 (RCP8.5 simulations) [95% CI: 2-22x]

- <u>Attribution statement</u> made separately around 2nd-largest (intensity) and 2nd-longest (duration) event (1911-1940 base period):
 - 3.1 °C
 - 377 days
- **Duration**: An event of this duration was
 - 4x as likely in 1982-2005 (hist simulations) compared to the "natural world" (historicalNat 1850-2005 simulations) [95% CI: 0.5-53x]
 - 9x as likely by 2006-2020 (RCP8.5 simulations) [95% CI: 2-22x]
 - Intensity: An event of this intensity was
 - 2x as likely in 1982-2005 (hist simulations) compared to the "natural world" (historicalNat 1850-2005 simulations) [95% CI: 1-6x]
 - 6x as likely by 2006-2020 [95% CI: 3-13x]
- → Virtually certain (>99%) that anthropogenic climate change increased the likelihood of an event of this duration or intensity by 2005-2020

Conclusions

- The 2015/16 Tasman Sea MHW was the longest and most intense ever recorded in this region
- **2. Driven** by anomalous temperature advection (an **EAC Extension event**)
- **3. Anthropogenic climate change** significantly **raised the likelihood** of such an event

Oliver, Benthuysen, Bindoff, Hobday, Holbrook, Mundy and Perkins-Kirkpatrick, *Nat Comms* (under review)

Monthly SAT and 10 m wind anomalies (NCEP CFSv2)

- How well does OceanMAPS get the temperature?
- Good agreement at surface \rightarrow we can trust OceanMAPS
- Warming evident down to 100-200 m \rightarrow H = 100 m

Physical drivers

<u>Temperature budget</u>

- Volume averaged temperature (T_v) since Sep 1st of:
 - 2012, 2013, 2014, 2015
- Consider:
 - Temperature avection (T_{H})
 - Air-sea heat flux (T_o)
- <u>Climatology</u>: by mid-February T_H
 contributes ~60% of the warming while T_o contributes ~40%
- <u>2015-2016</u>: by mid-February T_H contributes ~80% of the warming while T_o contributes ~20%
- Marine heatwave primarily driven by anomalous temperature advection

