Marine heatwaves off eastern Tasmania

Eric C. J. Oliver^{1,2}

Neil J. Holbrook^{1,2}, Nathan Bindoff^{1,2,3} Jessica Benthuysen⁴ Sarah E. Perkins-Kirkpatrick^{2,5} Véronique Lago^{1,2,3} Alistair J. Hobday³ Craig Mundy¹, Scott Ling¹

¹ Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
 ² Australian Research Council Centre of Excellence for Climate System Science
 ³ Oceans and Atmosphere Flagship, CSIRO, Hobart, Tasmania, Australia
 ⁴ Australian Institute of Marine Science, Townsville, Queensland, Australia
 ⁵ Climate Change Research Centre, University of New South Wales, Sydney, Australia

- Global marine climate is **warming**
- The SW Pacific (Tasman Sea) is a hotspot of change
- Ocean temperature extremes, or marine heatwaves, are often the first expression of climate change
- Impacts on marine ecology are already being felt
- Ocean dynamics and climate modelling can help us understand historical marine heatwaves:
 - Physical drivers
 - Variability
 - Anthropogenic climate change

- Global marine climate is **warming**
- The SW Pacific (Tasman Sea) is a hotspot of change

- Global marine climate is **warming**
- The SW Pacific (Tasman Sea) is a hotspot of change
- Ocean temperature extremes, or marine heatwaves, are often the first expression of climate change
- Impacts on marine ecology are already being felt
- Ocean dynamics and climate modelling can help us understand historical marine heatwaves:
 - Physical drivers
 - Variability
 - Anthropogenic climate change

Oliver et al., J Clim, 2014

- Global marine climate is warming
- The SW Pacific (Tasman Sea) is a hotspot of change
- Ocean temperature extremes, or marine heatwaves, are often the first expression of climate change
- Impacts on marine ecology are already being felt
- Ocean dynamics and climate modelling can help us understand historical marine heatwaves:
 - Physical drivers
 - Variability
 - Anthropogenic climate change

Poor salmon performance

Long-term change in visible surface kelp canopy (Macrocystis pyrifera)

During 2015/16 event:

POMS in Oysters

Abalone mortality

Tropical fish!

- Global marine climate is warming
- The SW Pacific (Tasman Sea) is a hotspot of change
- Ocean temperature extremes, or marine heatwaves, are often the first expression of climate change
- Impacts on marine ecology are already being felt
- Ocean dynamics and climate modelling can help us understand historical marine heatwaves:
 - Physical drivers
 - Variability
 - Anthropogenic climate change

Poor salmon performance

Long-term change in visible surface kelp canopy (Macrocystis pyrifera)

During 2015/16 event:

POMS in Oysters

Abalone mortality

Tropical fish!

<u>Part I</u>

Extreme marine heatwave off southeast Australia in austral summer 2015-2016

Oliver, Benthuysen, Bindoff, Hobday, Holbrook, Mundy and Perkins-Kirkpatrick, Nat Comms (under review)

Part II

Identifying historical marine heatwaves off eastern Tasmania with a regional ocean model

Oliver, Lago, Holbrook, Hobday, Mundy and Ling, *REGS 2016 Project* + manuscript (in prep.)

What is a Marine Heatwave?

- A marine heatwave (MHW) is defined to be a discrete prolonged anomalously warm water event at a particular location (Hobday et al., 2016)
- Specifically, **SSTs above the seasonally-varying 90th percentile** that persist **for at least 5 days**.
- Definition includes a set of **metrics**, including:
 - Intensity [°C]
 - **Duration** [days]

Software implementation free-ly available in Python here: github.com/ecjoliver/marineHeatWaves and in R here: github.com/cran/RmarineHeatWaves

Western Australia (WA) 2011 Event

- There was a marine heatwave that occurred in Austral Summer 2015/16 off southeastern Australia: 9 Sep 2015 – 16 May 2016
- It is unprecedented in
 - Duration (251 days)
 - Intensity (2.9°C max)
- Impacts: POMS (Oysters), dead abalone, poor salmon farm performace, strange fish intrusions, kelp thinning...

- There was a marine heatwave that occurred in Austral Summer 2015/16 off southeastern Australia: 9 Sep 2015 – 16 May 2016
- It is unprecedented in
 - Duration (251 days)
 - Intensity (2.9°C max)
- Impacts: POMS (Oysters), dead abalone, poor salmon farm performace, strange fish intrusions, kelp thinning...

Nearshore Records

- IMOS Maria Island NRS
 - 20 m temperature
 - Full-depth velocities

IMAS Nearshore Temperature Monitoring

- A number of sites in 6-20 m depth
- This event was record strength (red) and duration (blue) in the ~10-year coastal records
- Record southward flows, possible indication of forcing mechanism

Nearshore Records

- IMOS Maria Island NRS
 - 20 m temperature
 - Full-depth velocities

IMAS Nearshore Temperature Monitoring

- A number of sites in 6-20 m depth
- This event was record strength (red) and duration (blue) in the ~10-year coastal records
- Record southward flows, possible indication of forcing mechanism

Nearshore Records

- IMOS Maria Island NRS
 - 20 m temperature
 - Full-depth velocities

IMAS Nearshore Temperature Monitoring

- A number of sites in
 6-20 m depth
- This event was record strength (red) and duration (blue) in the ~10-year coastal records
- Record southward flows, possible indication of forcing mechanism

Regional Oceanography

- **East Australian Current (EAC)**, a quasi-steady western boundary current, separates from the coast ~33°S.
- The EAC Extension continues southward transport as far as Tasmania, but as an unsteady, eddy-rich "current"
- The **Zeehan Current (ZC)**, part of a current system extending all the way to WA, runs southward and eastward along the west and south coasts of Tasmania [Cresswell 2000]

http://www.marine.csiro.au/~lband/yacht_races/yyzeecur.html

 Along the southeast coast of Tasmania, the EAC Extension is dominant in summer and the Zeehan Current is dominant in winter

Monthly SST anomalies: contour encloses areas that were detected as MHWs for >90% of that month

Monthly surface currents (*u*, *v*) (IMOS OceanCurrent)

Monthly surface Eddy Kinetic Energy (*EKE*) (IMOS OceanCurrent)

- **Upper ocean temperature budget**, following:
 - Benthuysen et al. (*CSR*, 2014) for 2011 West. Aus. MHW
 - Chen et al. (*JGR*, 2015, 2016) for the 2012 NW Atlantic MHW
- Volume averaged temperature tendency equation:

- *Depth: H* = 100 m
- Area: A = "SEAus box"
- Temperature (T) and velocities (u_{μ}) from OceanMAPS
- *Surface heat flux* (*Q*) from NCEP CFSv2 reanalysis

- How well does OceanMAPS get the temperature?
- Good agreement at surface \rightarrow we can trust OceanMAPS
- Warming evident down to 100-200 m \rightarrow H = 100 m

Physical drivers

<u>Temperature budget</u>

- Volume averaged temperature (T_v) since Sep 1st of:
 - 2012/13, 2013/14, 2014/15, 2015/16
- Consider:
 - Temperature avection (T_{H})
 - Air-sea heat flux (T_{o})
- Climatology: by mid-February T_H contributes ~60% of the warming while T_o contributes ~40%
- 2015-2016: by mid-February T_H contributes ~80% of the warming while T_o contributes ~20%
- Marine heatwave primarily driven by anomalous temperature advection

- Event Attribution study following
 - Lewis & Karoly (*GRL*, 2013) on Australia's "angry summer" of 2013
 - King et al. (*ERL*, 2015) on Central England temps. of 2014
- **Calculation:** *Fraction of Attributable Risk (FAR)*:

$$FAR = 1 - \frac{P_{histNat}}{P_{hist}}$$

where P_{χ} is the probability of an the event larger/longer than the event in question based on the modelled climate X.

- **Informs:** change in likelihood of occurrence of an event like the one in question due to anthropogenic influence (*hist*) as opposed to a naturally-forced world (*histNat*)
- Data: Look at SEAus MHWs in CMIP5 historical, historicalNat and RCP8.5 runs

• Need *daily* SSTs, limits the number of available models:

Model	Historical	HistoricalNat	RCP8.5	Bias correction
ACCESS1.3	3	3	1	1.32
CanESM2	1	3	5	1.10
CSIRO Mk3.6.0	10	10	10	1.42
CNRM-CM5	1	5	5	0.80
HadGEM2-ES	4	4	4	0.96
IPSL-CM5A-LR	6	3	4	0.98
IPSL-CM5A-MR	3	3	1	0.91
Total	28	31	30	

- Did a **bias correction** rather than a model selection (so few models):
- Decompose SST time series as follows: $T_t = a + bt + T_t^{\mathrm{S}} + T_t'$
- Isolate linear trend (a + bt) and seasonal cycle (T^s_t) by regression, compare variance of non-seasonal variability (T'_t) between observations and model historical runs as a ratio
- **Bias correct**: *Scale variance of each model run* based on the calculated bias ratio, then add it back to the linear and seasonal component

- <u>Attribution statement</u> made separately around 2nd-largest (intensity) and 2nd-longest (duration) event (1911-1940 base period):
 - 3.1 °C
 - 377 days
- **Duration**: An event of this duration was
 - 4x as likely in 1982-2005 (hist simulations) compared to the "natural world" (historicalNat 1850-2005 simulations) [95% CI: 0.5-53x]
 - 9x as likely by 2006-2020 (RCP8.5 simulations) [95% CI: 2-22x]

- <u>Attribution statement</u> made separately around 2nd-largest (intensity) and 2nd-longest (duration) event (1911-1940 base period):
 - 3.1 °C
 - 377 days
- **Duration**: An event of this duration was
 - 4x as likely in 1982-2005 (hist simulations) compared to the "natural world" (historicalNat 1850-2005 simulations) [95% CI: 0.5-53x]
 - 9x as likely by 2006-2020 (RCP8.5 simulations) [95% CI: 2-22x]
 - Intensity: An event of this intensity was
 - 2x as likely in 1982-2005 (hist simulations) compared to the "natural world" (historicalNat 1850-2005 simulations) [95% CI: 1-6x]
 - 6x as likely by 2006-2020 [95% CI: 3-13x]
- → Virtually certain (>99%) that anthropogenic climate change increased the likelihood of an event of this duration or intensity by 2005-2020

Ecological Impacts

- Pacific Oyster Mortality Syndrome (POMS)
 - Absent in March 2015 but present from mid-Dec 2015,
 - Linked with anomalously warm waters (NSW, France)
- Blacklip abalone
 - 5% mortality rate, normally ~zero
 - Mortality recorded throughout heatwave across most of east coast
- Atlantic Salmon
 - Reduced aquaculture performance
- Out of-range fish
 - More than normal sightings of:
 - Yellowtail kingfish, Snapper, Dusky morwong, Mahi mahi, Blue moki, Moonlighter fish
- Despite the MHW intensity and duration, recorded impacts have been moderate,
 - esp. in comparison to the 2011 WA event

Conclusions

- The 2015/16 Tasman Sea MHW was the longest and most intense ever recorded in this region
- 2. Driven by anomalous temperature advection (an EAC Extension event)
- **3. Anthropogenic climate change** significantly **raised the likelihood** of such an event

Oliver, Benthuysen, Bindoff, Hobday, Holbrook, Mundy and Perkins-Kirkpatrick, *Nat Comms* (under review)

Part I

Extreme marine heatwave off southeast Australia in austral summer 2015-2016

Oliver, Benthuysen, Bindoff, Hobday, Holbrook, Mundy and Perkins-Kirkpatrick, Nat Comms (under review)

<u>Part II</u>

Identifying historical marine heatwaves off eastern Tasmania with a regional ocean model

Oliver, Lago, Holbrook, Hobday, Mundy and Ling, *REGS 2016 Project* + manuscript (in prep.)

- Global marine climate is warming
- The SW Pacific (Tasman Sea) is a hotspot of change
- Ocean temperature extremes, or marine heatwaves, are often the first expression of climate change
- Impacts on marine ecology are already being felt
- Ocean dynamics and climate modelling can help us understand historical marine heatwaves:
 - Physical drivers
 - Variability
 - Anthropogenic climate change

Poor salmon performance

Long-term change in visible surface kelp canopy (Macrocystis pyrifera)

During 2015/16 event:

POMS in Oysters

Abalone mortality

Tropical fish!

ETAS Model

- We modeled the eastern Tasmania continental shelf using the Sparse Hydrodynamic Ocean Code (SHOC) model [Herzfeld, 2006]
- <u>Domain</u>: South Cape to ~Eddystone
 Point and seaward out to shelf break
- <u>Bathymetry</u>: Australian Geological Survey^{42°S}
 Organisation (AGSO) 2002 + SETAS
- <u>Resolution</u>: ~1.9 km resolution
- 43 <u>z-levels</u> in the vertical
- <u>Surface forcing:</u> NCEP CFSR, CFSv2 <u>Boundary forcing</u>: BRAN, OceanMAPS <u>Time period</u>: 1993-2015, daily output
- <u>Publication</u>: Oliver et al. (*CSR*, 2016)

BRAN = Bluelink ReANalysis OceanMAPS = Bluelink Ocean Modelling, Analysis, and Prediction System CFSR = Climate Forecast System Reanalysis CFSv2 = Climate Forecast System version 2 (operational forecast system)

ETAS Model

- We modeled the eastern Tasmania continental shelf using the Sparse Hydrodynamic Ocean Code (SHOC) model [Herzfeld, 2006]
- <u>Domain</u>: South Cape to ~Eddystone
 Point and seaward out to shelf break
- <u>Bathymetry</u>: Australian Geological Surve Organisation (AGSO) 2002 + SETAS
- <u>Resolution</u>: ~1.9 km resolution
- 43 <u>z-levels</u> in the vertical
- <u>Surface forcing:</u> NCEP CFSR, CFSv2
 <u>Boundary forcing</u>: BRAN, OceanMAPS
 <u>Time period</u>: 1993-2015, daily output
- <u>Publication</u>: Oliver et al. (*CSR*, 2016)

BRAN = Bluelink ReANalysis OceanMAPS = Bluelink Ocean Modelling, Analysis, and Prediction System CFSR = Climate Forecast System Reanalysis CFSv2 = Climate Forecast System version 2 (operational forecast system)

Regional Oceanography

- **East Australian Current (EAC)**, a quasi-steady western boundary current, separates from the coast ~33°S.
- The EAC Extension continues southward transport as far as Tasmania, but as an unsteady, eddy-rich "current"
- The **Zeehan Current (ZC)**, part of a current system extending all the way to WA, runs southward and eastward along the west and south coasts of Tasmania [Cresswell 2000]

http://www.marine.csiro.au/~lband/yacht_races/yyzeecur.html

 Along the southeast coast of Tasmania, the EAC Extension is dominant in summer and the Zeehan Current is dominant in winter

Surface Climatology

Oliver, Herzfeld and Holbrook (Cont. Shelf. Res., 2016)

ETAS Regions

- Domain was divided up into 12 sub-regions:
 - 3 deep (D) regions (H>200m)
 - 3 shelf (S) regions (50m<H<200m)
 - **Split** in the along-shelf direction based on dominating influence of the **EAC** or the **ZC**, or in their **confluence**
 - 6 nearshore regions, defined by bays and estuaries
 - → 12 spatially averaged daily
 SST time series covering
 1993-2015
 - MHW def'n applied to each

EAC+ = East Australian Current, ZC+ = Zeehan Current, C+ = Confluence
+D = Deep (H>200m), +S = Shelf (50m<H<200m)
NEC = Northeast coast, OBMP = Oyster Bay & Mercury Passage
FHNB = Frederick Henry and Norfolk Bays, SB = Storm Bay
DC = D'Entrecasteaux Channel, HE = Huon Estuary

- Event 35 (of 35) in Region 1 (EACS = EAC Shelf)
- Also calculate regional SST, currents, air temp., wind averaged over event duration

- Event 6 (of 37) in Region 5 (ZCS, roughly the "Bruny Island bioregion")
- Also calculate regional SST, currents, air temp., wind averaged over event duration

- Event 5 (of 36) in Region 8 (Oyster Bay Mercury Passage)
- Also calculate regional SST, currents, air temp., wind averaged over event duration

Average MHW conditions

• Grey dots/arrows/± indicate statistical significance (95% confidence)

TARCTIC STUDIES

Average MHW conditions

• Grey dots/arrows/± indicate statistical significance (95% confidence)

RCTIC STUDIES

MHWs in the southeast tend to co-occur with:

1. Anomalously strong southward (EAC?) flow

2. An anticyclonic eddy of the SE of Tasmania

3. Warm air over the SE of Tasmania

4. Weak anomalous NE-erlies

Average MHW conditions

• Grey dots/arrows/± indicate statistical significance (95% confidence)

MHWs in the southeast tend to co-occur with:

1. Anomalously strong southward (EAC?) flow

2. An anticyclonic eddy of the SE of Tasmania

3. Warm air over the SE of Tasmania

4. Weak anomalous NE-erlies

Significant linear trends in <u>SST</u>, <u>MHW duration</u>, <u>Cum.</u> <u>Intensity</u>, <u>Depth</u>

- Annual time series' of **maximum and mean intensity** of MHWs
- No consistent trend in MHW intensity

- Annual time series' of **maximum depth** of MHWs
- Significant trends in half of the regions

Time (years)

Total MHW days (days)

- Annual time series of **Total MHW days** i.e. "the count of MHW days in each year"
- Spatial variation in linear trends

Total MHW days (days)

- Annual time series of **Total MHW days** i.e. "the count of MHW days in each year"
- Spatial variation in linear trends and variability → (two modes?)

- Principal Component Analysis of Total MHW Days (linear trend removed)
- Two modes of variability, spatially separated
 - Mode 1: Interannual mode picks 2001, 2007, 2010, 2014 for most regions excl. SE nearshore
 - Mode 2: Lower frequency mode (~*decadal*) picks up 2004-2011 low and 2012-2014 high for nearshore southeastern Tasmania & opposite for northern regions

- Principal Component Analysis of Total MHW Days (linear trend removed)
- Two modes of variability:
 - Mode 1: Interannual mode picks 2001, 2007, 2010, 2014 for most regions excl. SE nearshore
 - Mode 2: Lower frequency mode (~*decadal*) picks up 2004-2011 low and 2012-2014 high for nearshore southeastern Tasmania & opposite for northern regions

Summary

- **ETAS** model can be used to identify and characterise all MHWs off eastern Tasmania over 1993-2015 period, including
 - MHW properties (intensity, duration, etc...)
 - Concurrent oceanographic and atmospheric and conditions
- Averaging across events in all years or in a single year tells us
 - **1.** Typical ocean and atmosphere forcing conditions
 - Clear role of the EAC Extension, possibly offshore eddies also
 - 2. Long-term trends (strong increases in the southeast, "canary in the coalmine" for climate change?)
 - MHWs getting more frequent, longer, deeper but not more intense*
- Modes of variability indicate two modes with different time scales (interannual, decadal), with Mode 1 picking up the EAC signal
- Looking into Self Organising Maps to detect MHW "typologies"
- Data: IMAS Data Portal (data.imas.utas.edu.au):
 - "Eastern Tasmania Marine Heatwave Atlas"
 - Complete 1993-2015 ETAS data files²

¹ http://data.imas.utas.edu.au/portal/search?uuid=20188863-0af6-4032-98f8-def671cdaa58 ² http://thredds.imas.utas.edu.au/thredds/catalog/IMAS/catalog.html

2017-?

Farewell Tassie

Monthly SAT and 10 m wind anomalies (NCEP CFSv2)

Forcing

- <u>Boundary conditions</u> used the recently-developed Dirichlet boundary condition of Herzfeld and Andrewartha (2012)
- <u>Lateral boundaries</u> were forced by velocities, temperature and salinity from **Bluelink** reanalysis and analysis fields
- <u>Surface was forcing</u> was provided from the NCEP Climate Forecast System (CFS) Reanalysis and Reforecast
- <u>Coverage</u>: 1993-2015

Herzfeld, M. and J. R. Andrewartha (2012), A simple, stable and accurate Dirichlet open boundary condition for ocean model downscaling, Ocean Modelling, 43-44, 1-21

BRAN = Bluelink ReANalysis

OceanMAPS = Bluelink Ocean Modelling, Analysis, and Prediction System CFSR = Climate Forecast System Reanalysis

CFSv2 = Climate Forecast System version 2 (operational forecast system)

