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SUMMARY

Advances in microfluidics have led to the development of devices which can perform simple oper-
ations on fluids with the aim of developing a fully integrated “lab-on-a-chip”. Of prime importance

to this procedure is the efficient operation of each individual component. Using theoretical predic-
tions and two-dimensional Molecular Dynamics (MD) simulations, we have explored the operation
of two such devices: one which forces a cavity of fluid into rotational motion and one to mix two
different fluid species. For the rotational operation, we have referred to experimental results for
a circular cavity coupled to a microfluidic channel in which a laminar flow is induced. This flow
causes the fluid in the cavity to rotate which we model with MD simulations. We examine the role
of wall-fluid interactions and its effect on enhancing the amount of angular momentum generated
in the cavity. The reduction in wall-fluid interaction allows the fluid to slip along the wall and ac-
quire a greater level of spin. We hope this technique can be applied experimentally to enhance the
rotation in these devices. For the mixing operation, we examined a previously studied theoretical
system where the authors claim obstacles in microchannels increase mixing efficiency for a fluid
composed of two species. We make theoretical predictions to the contrary and demonstrate, using
MD simulations, that our predictions are correct. Our results show that obstacles have two effects.
First, obstacles increase the amount of contact between fluid species which only has a negligible
effect on increasing the mixing efficiency. Second, the obstacles flatten the normally Poiseuille
(quadratic) flow profile over a finite channel length which decreases the distance required for par-
tial but not complete mixing. We demonstrate that all channels of at least a certain length, defined
by the diffusive properties of the channel, will reach full mixing at the same point. Both projects
illustrate the utility of MD simulations in predicting fluid behaviour in microfluidic systems. Our
aim is that these studies can be integrated into the greater body of knowledge pertaining to mi-
crofluidics.



SOMMAIRE

Les récentes avancées dans le domaine de la microfluidique ont mené au développement d’appareils
permettant d’effectuer des opérations simples sur des fluides dans le but de développer des sys-
temes entierement intégrés de type laboratoire-sur-puce (« lab-on-a-chip ») . De tels systemes in-
tégrés sont caractérisés par I'efficacité individuelle de chacune de leurs composantes. A l'aide de
prédictions théoriques et de simulations de type dynamique moléculaire (DM) en deux dimensions,
nous avons exploré le fonctionnement de deux composantes envisagées pour les laboratoires-sur-
puce: une cavité confinant le fluide tout en lui imposant un mouvement de rotation et un canal
microfluidique permettant de mélanger deux types de liquide. Pour le cas de la cavité induisant
une rotation du fluide, nous avons comparé nos résultats de simulation DM a des résultats ex-
périmentaux d’une cavité circulaire couplée a un canal microfluidique dans lequel un écoulement
laminaire avait été induit (faisant ainsi tourner le fluide dans la cavité). Nous avons examiné le
role des interactions entre le mur et le fluide et leur effet sur 'augmentation du moment angulaire
dans la cavité. Nos résultats indiquent que la réduction de linteraction entre le mur et le fluide
permet a ce dernier de glisser plus facilement et ainsi acquérir une plus grande vitesse de rotation.
Nous espérons que cette technique puisse étre appliquée expérimentalement pour augmenter la ro-
tation dans ces appareils. Dans le cas du canal microfluidique permettant de mélanger deux types
de liquide, nous avons examiné une prédiction théorique, jamais testée expérimentalement ou par
simulation, selon laquelle deux types de liquide se mélangeraient plus facilement si des obstacles
étaient ajoutés dans le micro-canal dans lequel se trouvent les liquides. Cependant, les résultats
de nos simulations MD indiquent que les obstacles ne facilitent pas le mélange complet de deux
fluides confinés a un micro-canal. Nous démontrons que la présence d’obstacles a deux effets.
Premiérement, les obstacles augmentent bel et bien les contacts entre les différents fluides mais cet
effet est négligeable en ce qui concerne l'efficacité du processus de mélange. Deuxiémement, les
obstacles aplatissent le profil d’écoulement de Poiseuille (qui est normalement quadratique) sur une
longueur finie, ce qui diminue la distance exigée pour obtenir un mélange partiel mais ne change
en rien la distance nécessaire pour obtenir un mélange complet. Finalement nous démontrons de
facon théorique que tous les canaux dont la longueur est supérieure a une longueur critique définie
par les propriétés diffusives du canal, atteindront un état de mélange complet au méme point. Les
deux projets illustrent I'utilité des simulations de DM pour la prédiction du comportement des
liquides dans les systémes microfluidiques.
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Introduction

Molecular Dynamics simulations are rooted in two basic elements of our physical interpretation
of our surroundings: that the world is inherently atomistic and that matter follows basic kinematic
rules of motion. The proposition that matter is built of atomistic building blocks dates back to
the scholars of antiquity. Kinematic laws of motion were formally expressed in the latter part of
the second millenium, by figures such as Kepler and Newton. If we take the individual compo-
nents of an atomistic view of the world and, combined with some approximations concerning the
interactions between different components, consider them to follow a given set of kinematic rules
then we can develop a model for basic matter itself. The last several decades has seen the level
of computing power rise to the point where it is feasible to perform simulations involving many
thousands of individual, interacting components using such a model.

In modern terms, these simulations involve finding a numerical solution to the many body
problem, to which an analytical solution has eluded researchers for some time. Molecular Dynam-
ics simulations are able to model actual materials, such as water, where the particles of the system
represent molecules and atoms, such as oxygen and hydrogen. These simulations also involve
models which handle interatomic bonds and electric interactions and have been able to predict
amazing things pertaining to actual materials. The downside to this approach is that since it is
highly computationally intensive simulations can only be run for small systems and short times.

We are interested in exploring the generic properties of microfluidic systems, particularly
those pertaining to hydrodynamics and diffusion. In this case we perform what is caleske
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graining, whereas the approach mentioned above (where components of the system represent ac-
tual molecules and atoms) is callatbmistic In coarse grain simulations, the individual particles

do not represent molecules or atoms but a generic element of the material. These simulations pro-
duce generic properties of the systems, such as flow characteristics or thermodynamic properties,
and are much less computationally intensive which allows for the simulation of larger systems over
longer time scales. Clearly, Molecular Dynamics offers a method of simulating matter but it should
be noted that the results can only be interpreted in terms of what general trends experimentalists
should expect to observe in the physics, especially in the case of coarse grain models; the exact
numerical results from Molecular Dynamics should not be taken at face value. Nevertheless, sim-
ulations can be used to point experimentalists in the right direction without needing to perform as
many exhausting and costly experiments.

This thesis presents two different studies on systems involving fluids and solids which are
broken down according to the method described above and simulated using Molecular Dynam-
ics. Both systems have applications in microfluidics and so we will briefly review this field and
summarize several papers that are relevant to our studies. We will also review the hydrodynamic,
capillarity and diffusion theory relevant to our research as well as the implementation of the Molec-
ular Dynamics computational model. Finally, we will introduce the two submitted manuscripts that
form the bulk of this thesis as well as other work performed during the course of this degree.

Microfluidics

Microfluidics, and the closely related field of nanofluidics, is the study of the properties and dy-
namics of fluids on very small scales. It is a field where the assumptions of macroscopic models
are at their most strenuous and the molecular structure of matter may become apparent. Further-
more, wall-fluid interactions often dominate the physics since the ratio of surface contact area to
fluid volume is large. Microfluidics has made much progress in the past few decades and there
are many resources on its history and current state of affairs including recent review articles by
T. M. Squires and S. R. Quaké][and J. C. Eijkel and A. van den Berg][as well as a book by

P. Tabeling B]. It is becoming increasingly possible to create a “lab-on-a-chip” by integrating a
series of microfluidic operations in order to perform a specific experiment or measurement. For
such a device to operate succesfully, each individual operation must be performed properly. This
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FIGURE 1.1 (a) System used by the Chiu group to explore fluid rotation in a micro-
cavity. A pressure difference is created between the two large resevoirs which gener-
ates a Poiseuille flow in a narrow channel (all dimensions ayenr). A small cavity

is coupled to the channel to allow transfer of momentum (via viscous coupling at the
channel-cavity interface) between it and the channel. (b) Streamlines in the rotating
cavity fluid (visualized using fluorescent beads). The scale bar igr®5 Figures
pending permission from authors and jourrgl

thesis will explore methods to perform two such operations: rotation of a microcavity of fluid and
mixing of a binary component fluid, dubbed “spinning” and “mixing”, respectively.

Relevant Examples

The results presented in this thesis build upon and make reference to many previous works. How-
ever, there are several articles in particular that merit a general review in order for the reader to
aquaint themselves with the research and better understand the thesis. The first set of articles
are by a group led by Daniel T. Chiu at the University of Washington, Seattle, USA and concern
the rotation of a cell of fluid which is coupled to a flow in a microchannel. The second set of
relevant research publications concern a hydrodynamics study by &Vahat the Industrial Re-

search Istitute, Swinburne University of Technology, Victoria, Australia on the effects of obstacle
arrangements in microchannels on the mixing characteristics of a binary component fluid.

Fluid Rotation: Microvortices

The Chiu group has demonstrated the ability to generate large radial accelerations of fluid in a
microcavity (which they term a microvortex) by coupling it to the flow in a microchannel. The
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FIGURE 1.2 Results demonstrating a linear dependence of radial acceleration in the
microcavity with flow rate in the channel. Figure pending permission from authors and
journal [4].

basic system geometry can be seen in Eida. There are two large resevoirs on the left- and

the right-hand side connected by a channel of length AB0and square cross-sectional width

30 um. A pressure difference is set up between the large resevoirs which creates a Poiseuille
flow in the channel with flow rates on the order of 10 m/s. A small cavity of diametey:ra0s

coupled to the channel and the fluids in each region are allowed to exchange matter and momentum.
Consequently, the fluid in the cavity is driven by the fluid in the channel into rotational motion.
The streamlines in the cavity have been visualized by injecting fluorescent beads into the fluid and
monitoring their flow path (see Fid..1b) where it is clear that the fluid is undergoing rotational
motion. Chiuet alhave measured the radial acceleration in the cavity as a function of the flow rate

in the channel and observed a linear relationship (seelzy. Furthermore, for the largest flow

rates (~45 m/s) the radial acceleration was measured td dex 10” m/s or1.4 x 10 g! One
interesting aspect of the experiment is the existence of a vortex in laminar flow; vortices are usually
only observed in turbulent flows. Over the course of three published stulis{], this group

has been the first to develop this technique and has used a device operating on the same principle
to study the effect of stress on a biological cell placed in the cavity.
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Our first research study in this thesis is on simulating and extending this project. As the
Chiu group mentioned in their papers, the flow in the channel is damped near the wall, which
is characteristic of pressure-driven flow, and this has a direct effect on the driving force coupled
to the channel. They observe that the maximum fluid rotational velocity is only about 20% of
the average flow speed in the channel. By simulating the system with Molecular Dynamics we
can explore methods of increasing the flow speed at the wall and thus try to increase the level of
spin in the cavity without an significant increase in average flow speed. We have experimented
with modifications to the wall-fluid interaction in order to simulate hydrophobicity. As we shall
demonstrate, reducing the wall-fluid interaction will allow for enhanced spin generation for the
same flow rate. Furthermore, simulating using Molecular Dynamics will allow for explorations of
the system on the nanoscale.

Mixing With Obstacles

Efficient mixing in microchannels has been an open problem in microfluidics for many years now.
In channels of microscale cross section, flows are generally in the laminar regime. Laminar flow
lacks eddies and other instabilaties that allow turbulent flows to mix fluids efficiently (think of
pouring cream into your cup of coffee). The only natural process that remains to mix the fluids
is diffusion, which is quite slow relative to the flow speed. Many methods have been proposed
to increase mixing efficiency in laminar flows including active processes (such as moving parts),
splitting the flow into multiple segments (thus reducing the channel width needed to diffuse) and
channels with significant lateral convection caused by radial acceleration. A recent study has
proposed the use of obstacles placed in the channel to increase the level of mixing.

Wanget alhas studied binary, miscible fluid flow in a microchannel using numerical solutions
to the Navier-Stokes equations for macroscopic hydrodynamjé}.[They operate in the laminar
flow regime and parameters are chosen such that advection dominates over diffusion and so mixing
is very difficult to achieve. A schematic of their system can be seen irlEgand consists of two
arms on the left containing distinct fluid species which, under the influence of a pressure difference,
flow into the main channel and initiate mixing. With the aim to enhance mixing, cylindrical ob-
stacles (isotropic in the direction perpendiulant@ndy) are placed in the channel to disrupt the
flow. These obstacles are arranged in many different schemes (seen In3B)gwith, according
to the authors, the most succesful one being when the obstacles are arranged in a prism-like con-
figuration. Also, in that figure they show a visual representation of the fluids from which we can
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FIGURE 1.3 (a) System used to explore mixing of a binary fluid using obstacles.
Two fluid species enter from the arms on the left into the main channel and commence
mixing. (b) Numerical results for fluid mixing from various obstacle configurations.
Prism-like configurations are the most promising. Figures pending permission from
authors and journal7].
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observe how the obstacles disrupt the streamlines of the fluid. Using a phenomenological function
based on concentration they calculate the mixing at the outlet for each obstacle configuration as
well as the pressure difference required to maintain the same flow rate (sédedkig.he mixing
efficiency, 0% being unmixed and 100% being fully mixed, rises with the number of obstacles.
Their claim is that since laminar flow cannot be turbulent the obstacles induce lateral motion in the
fluid which effectively pushes one fluid species into the other, thus enhancing mixing.

Simulations using Molecular Dynamics of mixing in microchannels can be used to examine
several properties of such systems. Since we can tune the interaction potential, we can easily
simulate fluid with different properties (such as viscocity and density) and even an immiscible
fluids mixture. Also, Molecular Dynamics simulations will allow the testing of mixing properties
of nanoscopic channels. In our second article we test the hypothesis presented kst Aaisgg
Molecular Dynamics simulations.

Theory

We will introduce several theoretical topics that are required for understanding the two projects
presented in this thesis. For the mixing project, we will present the theory of diffusion in both
microscopic and continuum formulations. Both projects, being studies of fluids, will rely on hy-
drodynamic predictions. The relavent subjects include the Navier-Stokes equation and fluid me-
chanics in the laminar flow regime. Finally, for the project relating to the fluid microvotices, we
will make use of capillarity theory in understanding the wall-fluid interactions.

Diffusion

Molecular Dynamics deals with motion of matter on the molecular scale and of particular impor-
tance to dynamics is diffusion, the process by which matter is transported across a system through
random molecular motions. The idea began with Brbwimo, when examining pollen grains

in solution, determined that the random motions he observed “arose neither from currents in the
fluid, nor from its gradual evaporation, but belonged to the particle itsél]. [Between the time

of Brown and that of Einstein, it was conjectured that the individual particles of a fluid are knocked

1 Robert Brown (1773-1858) was a British botanist who collected samples in Australia during the late 19th century. He is well
known for is work in botany as well as his contributions to what would be known as Brownian motion and the theory of Diffusion.
He is commemorated in Australia with the herb geBusnoniaand many Australian species suchEagalyptus browni[9].
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in random directions by a series of collisions with other fluid particles. Eirfstaier presented an
expression for the average tingg,) a particle would take to diffuse a distanédrom its starting
point: P

(tn) = IND’ (1.1)

where D is the diffusion coefficient which can be related to viscosity and measures the rate of
diffusion and N4 is the number of dimensions we are considering the diffusion to be constrained

to. This shows that for a given diffusing particle, the distance it has travelled goes like the square
root of the time which it has been diffusing.

Einstein’s relation can also be deduced from the one-dimensional diffusion equation:

oc  9:C

a — Dw7 (1-2)

whereC' is concentration. From this equation we can deduce that concentration will tend to even
out over time, with a net flux from regions of high concentration to those with low concentration.
With initial condition of all concentration condensed at the origin (a delta funct©f, t) =
Mé(x)), the solution to this equation is

2

M T
_ exp (- ) 13
Jir Dt Xp( 4Dt> (13)

where M is the total amount of whatever substance we are considebihe: [ C(x,t)dx [12).

C(z, 1)

If we treat this expression as a Gaus$iprobability distribution then we can extract the standard
deviation as a function of time to be = /2Dt which is equivalent to the earlier expression at-
tributed to Einstein in one dimension. If more dimensions are considered in the diffusion equation,

one can recover the general version given Ef.

2 Albert Einstein (1879-1955), a German-Jewish theoretical physicist, is one of the most celebrated scientists in History. In his
“wonderful year” (1905) alone he published seminal works on Brownian motion, the photoelectric effect and special relativity.
Ten years later, he would formulate the theory of General Relativity which was a cornerstone of twentieth-century physics. After
leaving Nazi Germany and under fears of Nazi use of nuclear weapons, he urged US president F. D. R. to look into sponsoring
research on nuclear fission. This eventually grew into the Manhattan projégct [

8 Carl Friedrich Gauss (1777-1855), sometimes known as “the prince of mathematicans” was a prolific German mathematician and
scientist born in Brunswick (now a part of Lower Saxony, Germany). He contributed to many fields, including number theory,
analysis, differential geometry, geodesy, magnetism, astronomy and optics, and is considered one of history’s greatest mathemati-
cians. And so, for good reason, his name appears on many mathematical and scientific items including the Gaussian probability
distribution and the physical unit of magnetic flux densitg][
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Macroscopic Hydrodynamics

The vast majority of the fluid modelling in this thesis has been done using Molecular Dynamics
to explicitly represent the fluid particles as interacting beads. However, for miscible fluids with
wetting walls it is possible to recover the predictions of macroscopic hydrodynamics given by
the Navief-Stokes (NS) equation within only a few particle layers. For example, in simulations

of Poiseuille and Couette flow, the velocity and stress fields are in complete agreement with NS
for systems with channel width larger than about 10 bead diameté}s Therefore, we will

on occasion make reference to macroscopic predictions and it is worth discussing some of these
topics.

The Navier-Stokes Equation

The Navier-Stokes equation describes the motion of a fluid (such as a liquid or gas) by expressing
momentum changes in terms of pressure gradients, viscous forces and external fields. This equa-
tion is derived from laws of conservation (such as mass and momentum) and for incompressible
fluids and can be expressed as

du

pr =P (- V)u==Vp+pg+nV'u, (1.4)

whereu = ux + vy + wz is the velocity vectory is the fluid densityy, is the shear (or kinetic)
viscosity, p is the pressure angdg is an external force per unit volumé7. The Navier-Stokes
equation, along with the continuity equation

V-u=0, (1.5)

determines the flow properties of Newtonian fluids. In this work all modelling is done in two
dimensions and as such it is possible to simplify the system for numerical purposes by using the

4 Claude-Louis Navier (1785-1836) was a French physicist and engineer born in Dijon, France. He studied at the Ecole polytech-
nigue and the French Academy of Science in Paris. He is best known for his contributions to fluid mechanics, which along with
George Stokes, led to the Navier-Stokes equatidgh [

® Sir George Gabriel Stokes (1819-1903) was an Irish scientist born in Skreen, County Sligo. He studied at schools in Skreen,
Dublin and Bristol and went on to hold a position at Pembroke College, Cambridge. He made significant contributions to the fields

of mathematical physics (Stoke’s theorem), optics (theory of diffraction, the Stokes line) and fluid mechanics (Stokes flow). He is

most remembered for his contributions to fluid mechanics, which along with those of Claude-Louis Navier, led to the Navier-Stokes

equation, a cornerstone of hydrodynamic thedsyj.[
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vorticity-streamfunction formulation of the problem. The streamfunctiois defined as constant
along streamlines which are everywhere tangent to the velocity field. This can be defined in the
following way:

o9 _, 9_

_ . 1,
oy ' ar ¥ (1.6)

The vorticity w, which can be thought of as a measure of circulation per unit area along stream-
lines, is defined as the curl of velocity field. In two dimensions this vector will always point in the
z direction and so we use only the magnitude of the curl:

w=Elw||=— - —. (1.7)

If we take the curl of Eql.4and note thaV -« = 0 andV - w = 0 (since the divergence of a curl
is always zero) we can reduce the incompressible Navier-Stokes equation (ignoring the pressure
gradient and any external forces) to

WV = I, (1.8)
ot P

Also, if we substitute the definitions for the streamfunction into the the vorticity equatioril(Bqg.
we get
— V) = w. (1.9)

Together, Eqs1.8 and 1.9 form the vorticity-streamfunction formulation of the Navier-Stokes
equation previously defined in terms of velocities by Elgdand1.5. We will use this formulation
to compute macroscopic predictions for our MD simulations.

Dynamic Similarity and Nondimensional Parameters

We are working with MD simulations whose exact dimensions and values such as flow speed are
not precisely defined since, in coarse-grain MD, there is always some freedom in the choice of
parameters. However, under certain conditions, two systems with very different dimensions and
parameter values can still lwynamically similar meaning their basic flow characteristics will

be the samel[7]. Two systems are dynamically similar if the value of a certain nondimensional
parameter is the same in both cases. The form of the nondimensional parameter depends on the
nature of the problem and what effects one considers relevant (such as viscosity, diffusion, velocity,
etc.).
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For a given problem, the nondimensional parameters can be found either by nondimension-
alizing the governing equation(s) (such as NS) or by simple dimensional analysis on the relevant
parameters involved. For example, if we nondimensionalize the parameters in the Navier-Stokes
equation (Eql.4) by scaling as follows:

! € ! u ! t ! p

= — = — t = —— .
(Y ) u Y L/U’p 77(/‘*/1;7

- (1.10)

where L andU are the characteristic length and velocity of the system, then we have

pULdu  pUL pUL gL
oA (u'-Vu' =-Vp + 2 + V7. (1.11)

Now we can create two nondimensional parameters: the Reynuldsber and the Froud@aum-

ber which are defined as UL
Re = e , Fr
n

and measure the effects of viscous and external forces, respectively, relative to the characteristic

-
=~

(1.12)

inertial force in the system. Thus, the Navier-Stokes equation becomes

d /
Re ( v (u'- V') u'> =-V'p + Re + V™. (1.13)

dt’ Fr?
The Reynolds number is of particular importance, as will be seen in the following section, since

it allows one to differentiate between the regimes of laminar flow (where viscous forces are domi-
nant) and turbulent flow (where inertial forces are dominant).

If we have diffusion in the presence of flow then the concentration profiles are governed by
the the advection-diffusion equation
oC 0*C oC
Dty 1.14
ot~ oz "o (1.14)
whereu is the velocity of the flow. This is formulated by adding an advection term td EqThis

equation has the result of transporting the solution to the diffusion equation alahtpe constant

¢ Osbourne Reynolds (1842-1912) was a fluid dynamics engineer born in Belfast, Ireland. He studied mathematics at Cambridge
and later became a professor in Manchester. He is best known for his studies on fluid flows in pipes, particularly the transition from
laminar flow to turbulent flow. From his observations on the ratio of inertial to viscous effects in his experiments he formulated the
Reynolds number to characterize the fla/g][

" William Froude (1810-1879) was born in Dartington, Devon, England and worked as an engineer, hydrodynamiscist and naval
architect. Educated at Oxford, he formulated laws on water resistance to ships and predictions on their stability. The Froude number
is named after him19].
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speedu (simply make the substitution — = — ut in Eqg. 1.3). Now if we apply the methods of
nondimensionalization described above with the following substitution

! T / U / t OI O

—_ — = — t = —— —_
T YT U Lju "’ Co’

where L, U, and(C|, are the characteristic length, speed and concentration of the system then we

(1.15)

have the following equation
oc' 1 09*°C"  ,oC'
o~ Peoa? " or
We have recovered the Pééletumber (orstirring number[21]): Pe = UL/D. This number
measures the relative effects of diffusive motion and advective (inertial) motion. If it is large then

(1.16)

advection dominates and the concentration profile will be transported with little deformation due
to diffusion and if it is small then diffusion dominates and we can reduce the equation 102Zq.
where the concentration profile spreads with little advective transportation. This distinguishes
between regimes where fluid is transported predominantly as a result of external forces or by
internal Brownian motion.

Laminar Flow

As discussed above, the Reynolds number measures the relative effects of viscous and inertial
forces. Generally speaking, most flows on the macroscopic scale are dominated by inertia and
turbulent effects are easy to generate (such as the eddies as smoke billows through air). However,
when viscous forces dominate, for approximatBly < 103, the flow is referred to as laminar and

such instabilities cannot occur.

Consider Eql.13for small Re and Fr (i.e., viscous forces dominate and there is significant
external forcingpg). Since the Reynolds number is small we can neglect the left-hand side and
since the Froude number is also small we can leave the term proportional to the external force and

we have R
0=V + FTGQ V2 (1.17)

which is the governing equation for steady state laminar flows. If we consider a two dimensional
channel (parallel to they-plane, with walls at+y,) with no pressure gradienMp = 0) and

8 Jean Claude Eugéne Péclet (1793-1857) was a French physicist born in Besancon, France. He taught physics widely in France
during his time, including schools in Paris (Ecole Normale) and Marseilles (Colleége de Marseilles). The Péclet number is named
in his honour P0Q].
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FIGURE 1.5 Fluid confined between two plates parallel to the-plane under the
influence of either a gravity-like force or a pressure gradient. With no-slip at the wall
the fluid will flow in the z direction with a quadratic Poiseuille flow profile across the
channel.

an external force densityg in the z-direction then the fully developed flowo(/0x = 0) is

described by
_ 9, 0%u

0 -,
n  0y?

(1.18)

If we enforce no slip boundary conditions (i.e.(+y,) = 0), this differential equation has the

solution,

u(y) = gf} (5 — ) (1.19)

which is known as the Poiseuiflflow profile (see Figl.5). Note that a pressure gradient alang
would create a similar quadratic flow profile with the substitutign= —dp/dx:

uly) = — dpQ/ ndm (6 — ) (1.20)

If both a pressure difference and external acceleration exist, then the resulting flow profile will be
the sum of Egsl.19and1.20

9 Jean Louis Marie Poiseuille (1799-1869), a French mathematician and physicist, was born in Paris and studied at the Ecole
polytechnique. With interest in human blood flow in capillaries, he is best known for his formulation of Poiseuille’s law. This law
described the laminar flow of Newtonian fluids in cylindrical tubes of constant cross sez#on [
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We have enforcedo-slip boundary conditions, which ensures that the fluid does not move
along its contact point with the stationary walls. However, there are situations where this condition
will not hold, such as water in contact with hydrophobic wall§][ and there will be a finite
positive fluid velocity at the walls. We can characterize #tig by theslip length §: the distance
outside the walls at which the fluid velocity is extrapolated to zero. A common measure of the slip
length is through the following condition at the wall:

du Uwall
— = 1.21
i , (1.21)

Ywall

wherey,.; IS the position of the wall. Another measure would be to applylEtPwherey, no
longer represents the position of the wall but the position at which the velocity is zero (since the
two are no longer the same). In both cases, the slip length is definee-ag.; — vo.

We can generalize the equation for Poiseuille flows in the case of slip. Assume the slip at the
upper wall G-y,) is equal tos, and the slip at the lower walK{y,) is equal tos_, in other word
u(yp — d04) = 0 andu(—y, + d_) = 0, then the solution to Eq..17.

P9

u(y) = b (Yo + 0+ —y) (Yo + - +y). (1.22)

The profile retains its quadratic nature but now is nonzero at the walls and can be assymetric if
d_ # 6.. We will observe such a phenomenon in our studies.

Capillarity Theory

In our MD simulations we will be experimenting with the interaction between solid and fluid
phases of matter and will be measuring properties of interfaces between such phases. Therefore,
it will be necessary to have an understanding of the physics under such conditions which can
be found under the field of capillarity theory and draws on fields such as fluid mechanics and
thermodynamics.

Between two phases of matter there exists an interface and an energy can be associated with
this interface: the interfacial energy surface tensionlf we consider three phases of matter (solid,
liquid and gas) in coexistence, then there are three interfaces, each with its own surface tension,
and if the solid surface is flat, then the liquid-gas interface will make a specific contact angle with
the solid surface (see Fid.6for a schematic representation). The three surface tensions, denoted
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by ~i;, wherei andj are two phases, and the contact anglecan be related through Yound’s
equation p5]:
Ysg = Nis + TNg COS 6. (123)

We will consider materials to interact via the Lennard-Jones potential (or 6-12, as it is some-

U(Tij) = 4¢ <0> — Cij <O’> (124)

Tij Tij

times known):

wheree and o are constants which set the energy and length scaldsahd i and j refer to

two interacting materials. The two terms in the potential arise as follows: (a) the attractive term
is due to the fact that induced dipole-dipole interactions, which scalg/ids are the dominant
attractive force on the molecular scale, and (b) the repulsive term is an empirical fit to experimental
results where the repulsion is believed to arise predominantly from the Pauli exclusion principle
[27]. We will use the constant;; to tune the strength of the attractive portion of the potential (the
pure Lennard-Jones (LJ) potential normally takgs= 1). For LJ materials where the fluid-solid

and fluid-fluid interactions use the parametegsand ¢ respectively, it has been shown that the
contact angle can be calculated using

PsCts
43¢

cosf =2 -1 (1.25)

)

where p; and p; are the densities of the solid and liquid, respectivély] [see Fig.1.6). This is
done through the use of LaplacE'sstimate of surface tensiodd], which states that if one knows
the interaction energy between two phases, let them be A and B, then the surface terzsipn is |

1

YAB = —gpApB/ rUag(r)dr, (1.26)
o

19 Thomas Young (1773-1829) was an English scientist who is sometimes referred to as “the last person to know everything”. A
master of languages, by the age of fourteen he knew Greek, Latin, French, Italian, Hebrew, Chaldean, Syriac, Samaritan, Arabic,
Persian, Turkish and Amharic and introduced the térdo-European Languagéds characterize the super-family of related lan-
guages that stretch from Europe to India. His many contributions to science include the double-slit experiment, experiments on
material stiffness and colour theory and he is commemorated by Young’s modulus and Young’s equation, amoritfipthers [

1 pierre-Simon, Marquis de Laplace (1749-1847) was a French mathematician and astronomer who applied the study of mechanics
(pioneered by figures such as Newton) to the celestial bodies in hisM@écknique célesteHe also made contributions widely
in other fields of mathematics, physics and probability theory and has his namesake on many items including the Laplace equation
(which he discovered), the Laplace transform and the Laplacian differential operator. His minor discovery of capillary action was
integral in the development of the theory of fluid-solid interactici$.
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FIGURE 1.6 (a) Schematic showing a three-phase system and how the contact angle
6 is defined. (b) Contact angle of a three-phase system wyith pr andcg = 1 as

a function ofcg, . Also shown is the surface tension of a fluid-solid interface in a two-
dimensional system with; = p; = 0.8/02 as a function ofcg . In two dimensions

we are not dealing with a surface tension but actualip@tension energy per unit
length. Clearly, we can see in both cases that the properties of the solid-fluid system
can be changed significantly by tuning .

wherer is the collision radius/(ry) = 0. The integral is performed over all dimensions of space
over the radial range specified. In this fashion, for Lennard-Jones interactions, only the attractive
portion of the potential contibutes to the surface tension. If we consider the fluid-solid interface
in a two-dimensional system, with the Lennard-Jones constgrthen the surface tension can be

calculated to be 5
T
Vs = jpspfea?’c?s/z. (1.27)

In other words, the surface tension increases with the congtanwhich controls the attractive
portion of the Lennard-Jones potential. We use a two-dimensional model since that is what we will
be working with in the papers presented in this thesis. SeelFsgor a graphical representation

of the dependence of, on c.

Molecular Dynamics Simulations

In order to model fluids and rigid walls, which we will use to contruct our nanochannel simulations,
we will use the Molecular Dynamics (MD) algorithm. Molecular Dynamics allows one to examine
the behaviour of an assembly of particles on the molecular scale as a collection of interacting
particles. This is at the base of the MD method: we model fluids and solids as collections of many
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beads that interact through a pair potential. We will not take the beads as individual molecules
or atoms of a particular material but rather they will be general representations of an element of
the material (fluid or solid). This type aarse-grainedviD allows for the study of systems on
larger length and time scales thatomisticMD. Our beads will interact through the Lennard-
Jone$? potential (presented above in the section on Capillarity Theory). For appropriate choices
of the free parameters (which includes the mass of the particles addition toc ande), MD
simulations using this potential have reasonably predicted the liquid properties of Ao ¢r
computational efficiency, we will cut off the potential such tliatr > r¢) = 0 and shift the
remaining potential up by a constaftso that it is continuous:

4e |:([lf.)12 — Cij (7"2)6:| +€ if Tij S Te

0 ,ifTZ'j>TC

(1.28)

whereeq, = —U(r.) [26] (see Fig.1.7). This is done for two reasons. First, it limits the number

of particles involved in each force calculation to a limited region. Second, usually systems in MD
simulations have periodic boundary conditions and so an infinite potential that wraps around the
boundary would be problematic. Essentially, we ignore long-range interactions. There are two
common choices for the cutoff radius; = 2!/ ¢ andr. = 2.5 0. The former choice cuts off

the potential at its minimum so all that remains is the repulsive core. This essentially models the
beads as soft spheres but is inadequate if properties involving the attractive nature of the beads
are required. The latter choice cuts the potential along its attractive tail and allows the model to
retain both repulsive and attractive properties of the system. Throughout this work we have chose
r. = 2.5 o as our cutoff radius. For systems where both the attractive and repulsive portions of the
potential are considered, Meieral. have shown that the particle ensemble exhibits phase changes
as well as the expected interdependence of density, pressure, temperature, viscocity and diffusion
coefficient B2, 33, 34] (see Fig.1.7 for details on the LJ potential with different cutoffs).

The MD algorithm consists of calculating the trajectories of the participating particles, taking
into account all internal and external forces. This is done by integrating Newton’s equations of
motion in the presence of the internal forces, induced by the LJ potential, and externally applied

12 Sir John Edward Lennard-Jones (1894-1954) was a mathematician who held prominent chairs in Bristol and Cambridge, England.
He was mainly interested in atomic and molecular structure about which he published celebrated works regarding intermolecular
forces and valency. Some regard him as the father of computational chemistry and the Lennard-Jones potential, often used in
Molecular Dynamics and Monte Carlo simulations, is named in his horaalr [
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FIGURE 1.7 The Lennard-Jones potential is shown on the left with no cutoff (solid
line), r. = 2/% & (dashed line) and, = 2.5 o (dotted line). We can clearly see that

if the potential is cut off a2.5 o it is very close to the full LJ. On the right we see
the full LJ potential for various values @f; ranging from 1 to 0.5. As we decrease
c;; (the strength of the attraction) we raise the minimum of the potential and move it

outwards. This can be used to simulate hydrophobicity between solids and fluids or
immiscibility between fluids.

forces:
or; D
5 E (2.29)
op;
aI; = —VU + Fext. (1.30)

wherer; andp; are the position and momentum of 18 particle andm; is its mass.U,; is the

total effective potential felt by particlé, calculated from all other particles within the interaction
range andF,,; is an external force. These equations are integrated by approximating the time
derivatives with finite differences. The equations of motion are initialized by placing the particles
according to some lattice structure and intitializing the momentum randomly according to the
Maxwell distribution such that the mean corresponds to a desired thermal energy (temperature).

The system is allowed to equilibrate for several steps before external forces are applied. After, the
system has reached a steady state data collection is commenced.

Oftentimes, keeping the temperature constant at the desired value can be a problem. This can

be particularly problematic if, as in our case, one is pumping energy into the system by applying an
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external force which is then dissipated into heat. There are various methods used to thermostat the
system such as coupling the particles to an additional degree of freedom that acts as a heat resevoir
(the Nosé-Hoover thermostetd, 36]) or by coupling the system to friction and stochastic forces
through the Langeviti equations (the stochastic dynamics Langevin thermostat (S1)) [n this

study, we have opted to use a thermostat based on the principles of Dissipative Particle Dynamics
(DPD) [39]. This thermostat adds two forces to Elg30, a damping force F°, and a random

force, F*. These forces are expressed as follows:

FP =% F] , F]=—Cufy uy)iy (1.31)
j#i
j#i

whered is a Gaussian white noise variabte,; = u; —u;, w is a weighting function (equal to one
for r < r. and zero otherwise) angdand s represent the strengths of the forces and are related by

2 = 2kpTC. (1.33)

In a similar fashion to the SD thermostat, the random and damping forces act along the axis be-
tween particles and functions by slowing down particles that are too “hot” and speeding up particles
that are too “cold”. Furthermore, this method helps stabilize the numerical method by damping
instabilities and also retains Galilean invariance and correct hydrodynamics, which the SD ther-
mostat lacks. It should be noted that the DPD thermostat in its originally proposed form contained
errors due to a finite timestep. It has been shown that these errors can be compensated by scaling
the applied random force by a factor dependent on the temperature, timestep and parameters of the
thermostat40].

In our review of capillarity theory we mentioned that we can control the interaction between
various Lennard-Jones materials by tuning the constggt(where A and B are two different
species of Lennard-Jones material). We will present two examples that will serve as demonstrations
of this mechanism. First, we can simulate fluid immiscibility if we have two fluid speciesnd
B, with the following property:cag < caa = cggp. Since the constant controls the attractive
portion of the LJ potential (see Fif).7for details), this situation results in fluid particles preferring

13 paul Langevin (1872-1946) was a French physicist who studied in Paris and later at Cambridge under J. J. Thompson. He is
remembered for his work on paramagnetism and diamagnetism and their modern interpretations in terms of electrons and atoms.
He also worked on ultrasonic sounds using Pierre Curie’s piezoelectric effect. He and Marie Curie supposedly had an affair in 1910

[37).
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FIGURE 1.8 Molecular Dynamics simulations of two fluid specie$ &nd B, blue
and red respectively) and fixed wall particles (shown in black) in a 75 by 75 particle
channel. There are periodic boundary conditions alongittddrection, all particles
interact with the LJ potential, the densities are@l- 0.8/0% and the temperature is
kept constant akgT = 1 €. All interactions except between unlike fluid species has
the constant = 1 and we setag < 1. The first frame shows the initial state for all
simulations and the other frames are the final state for various simulations. We see that
ascap is decreased from a value of one, the two fluid species become less miscible
until there is nearly no mixing between them at all.
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FIGURE 1.9 Molecular Dynamics simulations of two fluid specie$ énd B) and

fixed wall particles in a 75 by 75 particle channel. There are periodic boundary con-
ditions along ther direction, all particles interact with the LJ potential, the densities
are all p = 0.8/02 and the temperature is kept constantg’ = 1 ¢. The fluids

are immiscible withcaa = cgg = 1 andcap = 0.5. The wall has a preferential
attraction to fluid A with the parameterse,a = 1.2 and c¢y,g = 0.8. The frames
show different points in time during the simulation. We see that the droplet of fluid
type A finds the wall through random motion and proceeds to wet it. The final state is
fluid A completely adsorbed to the wall and wrapping around the periodic boundary
conditions.
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to be near particles of the same type since the attraction will be larger than for a particle of unlike
type. Simulations were performed on a small channel of 75 by 75 particles at dgnrsity8 /o>

and were run forl x 10° timesteps at\t = 0.005 7. Figurel.8shows that as,p is decreased

the fluids become more immiscible. Using this technique it would be possible to study the mixing
properties of immiscible fluids (such as oil and water) in microchannels.

A second example shows the preferential wetting of wall particles by a fluid species. We have
two immiscible fluids,A and B, with parameterg s = cgg = 1 andcag = 0.5. Furthermore,
fluid type A is preferentially attracted to the wall with wall-fluid interactions, = 1.2 and
cws = 0.8. The channel properties (size, density, etc.) are the same as those used above and the
simulation is run run fos x 10° timesteps withA¢ = 0.005 7. The results, shown in Fid..9,
clearly show that fluidA wets the wall after it makes contact and in the steady state results in
the fluid completely adsorbed to the wall. We can control the degree of wetting by the value
of the wall-fluid interaction constants. This technique will be used to control fluid slip along
microchannel walls.

Presentation of the Thesis

The main chapters of the thesis, Chapters 2 and 3 (affectionately dubbed “spinning” and “mixing”,
respectively), are manuscripts for articles that have been submitted to journals. These articles are
the culmination of most the work | have done during the course of my M. Sc. studies. Here is a list
of the articles along with abstracts:

* 1)E. C. J. Oliver and G. W. Slatdfprced Rotational Motion of Fluid in a Cavity: A Molec-
ular Dynamics Studysubmitted tolrhe Journal of Chemical Physic3duly 14 2006.

We have performed Molecular Dynamics simulations of microscale laminar flow in a cou-
pled channel-cavity system in order to explore forced rotation of the fluid in the cavity
by the flow in the channel. These simulations have reproduced experimental observations
well. We have extended our treatment to explore how modifying the surface tension (hy-
drophobicity) along the walls of the channel affects the slip length. By applying this to the
coupled channel-cavity system we can affect the effeciency of spin generation in the cavity
fluid. For a constant flow rate, we find that we can generate a larger spin in the cavity
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by increasing the hydrophobicity of the walls (using two possible schemes) by about 80%
using this method.

» 2)E. C. J. Oliver and G. W. Slated, Theoretical and Molecular Dynamics Study of Mixing
in Microchannels with Obstaclesubmitted taJournal of Micromechanics and Microengi-
neering July 26 2006.

A system consisting of two miscible fluids in a microchannel under laminar flow has been
examined with theoretical techniques and simulated using Molecular Dynamics (MD). We
have applied the theory of diffusion to predict the displacement of particles as they diffuse
across a channel perpendicular to a Poiseuille flow. Using MD simulations, we have studied
the presence of obstacles in the flow path and shown, contrary to what has been proposed
recently, that they do not significantly increase mixing efficiency in microchannels. Their
effect is such that (i) the flow profile becomes flattened within a certain range of the ob-
stacles and (i) the fluid flow acquires lateral components and so follows a sinuous path
through the channel. From our theoretical predictions and numerical simulations, we show
that the former results in increased levels of partial mixing when compared to a system
lacking obstacles. However, obstacles do not reduce the length required for full mixing.
Furthermore, the second effect increases contact between the fluids but the mixing increase
is negligible.

Statement of Originality and Research Performed

As far as | am aware, excepting portions of the review presented in this introduction, the material
presented in this thesis is original. It is the product of my own research with the supervision and
input of my supervisor. | have not reproduced or taken other’s work without giving credit where it
is due.

| have contributed to the following presentations during the course of my Master’s degree:
» E. C. J. Oliver. Forced Rotational Motion of a Fluid in a Nanocavity: A Molecular Dy-

namics Study Ottawa Carleton Institute for Physics Spring Graduate Student Seminar,
Ottawa, ON, May 2006
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* G. W. Slater, Frédéric Tessier and Eric C. J. Olivd®olymers, electrophoresis and elec-
troosmotic flows in nanochannels: A molecular dynamics st@d@yst American Chemical
Society National Meeting, Atlanta, GA, March 2006.

* E. C. J. Oliver and G. W. SlaterEnhanced Fluid Mixing in Nanochannels: A Molecular
Dynamics Studyposter). American Physical Society March Meeting, Baltimore, MD,
March 2006.

* E. C. J. Oliver and G. W. SlaterMixing of Fluids in NanochannelsAmerican Physical
Society March Meeting, Los Angeles, CA, March 2005.

In addition to research relating to what is presented here, during my Master’s degree | have
also worked on the following side projects and interests:

Fluid immiscibility and mixing of immiscible fluids in Molecular Dynamics simulations by
tuning the Lennard-Jones interaction potential.

» Preferential wetting and droplet formation of binary fluid mixtures in Molecular Dynamics
simulations inside a microchannel by tuning the Lennard-Jones potential (simulations of
results presented by Balagsalin Ref. [41]).

» Enhanced fluid mixing in microchannels by modifications to the channel geometry (bumps,
ridges, etc.) and chemistry (hydrophobicity, hydrophilicity) using Molecular Dynamics
simulations.

» Dependence of polyelectrolyte electrophoretic mobility on confinement in capillaries. This
work was in response to recent experimental observations by Bernard Tinland, CNRS,
Marseilles, France (personal communication with the Slater research group).

» Dependence of polyelectrolyte electrophoretic mobility on conformation. Generally, mo-
bility is assumed to be conformation independent although there have been no studies de-
mopnstrating it. Molecular Dynamics simulations have produced promising results and
will hopefully result in a publication. (This work is in collaboration with fello Masters in
Physics student Martin Bertrand, also of the Slater Group).
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Abstract

We have performed Molecular Dynamics simulations of microscale laminar flow in a coupled
channel-cavity system in order to explore forced rotation of the fluid in the cavity by the flow in
the channel. These simulations have reproduced experimental observations well. We have extended
our treatment to explore how modifying the surface tension (hydrophobicity) along the walls of
the channel affects the slip length. By applying this to the coupled channel-cavity system we can
affect the effeciency of spin generation in the cavity fluid. For a constant flow rate, we find that we
can generate a larger spin in the cavity by increasing the hydrophobicity of the walls (using two

possible schemes) by about 80% using this method.
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I. INTRODUCTION

The miniaturization of fluidic systems to the micro- and nano-scale is proving its usefule-
ness across the laboratory spectrum and there is much research on the physics occuring on
these scales'. Recent developments are progressing towards the point where all operations
on microfluidic systems will be done “on-a-chip” and laboratories will use micro-devices that
can perform operations such as chemical reactions, mixing, molecular separations and other
basic functions.

An example of one such function we consider is the centrifugation of a small quantity of
fluid. An experimental situation has already been devised by Shelby et al.? where a small
fluid-filled cavity approximately 50 pum across has been forced into rotation by coupling it
to pressure-driven flow in a channel of similar cross-section dimensions and a length of 150
pum. With average fluid velocities of up to 45 m/s in the channel, rotational velocities as
high as 12 m/s at a distance of 12 pym from the core of the resulting vortex were observed.
This corresponds to a radial acceleration of 1.4 x 10% g! It was also observed that the rate of
fluid rotation in the cavity increases with the flow rate in the channel. In later experiments,
this group has demonstrated a practical use for a device operating on this principle by
placing a biological cell in the cavity and using the rotational flow to test the effects of
stress on the cell®*. Other uses for such a device that will be practical in microfluidic
systems are apparent. Such applications could include the centrifugation and separation
of a multi-component fluid mixture and the possibilities of mixing or dilution of a solution
using rotating cavity fluid and possible mass exchange between the cavity and the channel.

In this paper, we simulate this experimental system using a Molecular Dynamics compu-
tational algorithm. The basic physics that were observed experimentally are reproduced in
our simulations. In addition, we explore avenues to enhance the efficiency of spin generation
in the cavity fluid by changing the surface tension between the solid wall and the fluid.
To maximize the radial acceleration in the microcavity, surface tension was minimized and
thus the fluid slips along the wall near the coupling region with the cavity. We also look to
predictions from macroscopic hydrodynamics in situations where experimental results give
no indication of what is expected.

This paper is organized in four sections. First, we will present the fluidic system along

with the relavent hydrodynamic theory. Then, we will review our Molecular Dynamics sim-
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FIG. 1: Schematic of the coupled channel-cavity system. The channel is W = 55.9 ¢ in width
(including the walls of thickness w = 2.23 ¢) and L = 134.16 o in length. The circular cavity has a
radius R = 12.3 o and is offset from the position of the channel wall by 11.18 o. A Poiseuille flow is
generated in the channel which is coupled to the cavity and drives rotational motion of the fluid in
the cavity. Also presented here are representations of the wall and fluid in terms of interacticting

particles which are used in the Molecular Dynamics simulations.

ulation method and how we apply it to our system. The last two sections deal with the
simulation results. In the third section, we discuss the channel alone, such as its hydrody-
namic properties and measurements of slip length. Finally, we present the cavity results,

including measurements of its spin and how we can increase the efficiency of spin generation.

II. SYSTEM

The system we are modelling is a simplified version of the experimental setup used by
Shelby et al.>* and consists of a narrow channel with flow driven by a pressure gradient
which is coupled to a small circular cavity situated along one of the channel walls (see

Fig. 1 for details). Viscous coupling is achieved through a small opening in the upper wall
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which allows contact and thus transfer of momentum between the fluid in the channel and
the cavity. The problem essentially consists of the classic lid-driven cavity®® but with the
driving lid replaced by coupling the cavity to the fluid flow in the channel. The width of the
opening which serves as the coupling region is chosen to be on the order of the radius of the
cavity so that there can be substantial channel-cavity coupling but not reduce the cavity to
a mere indentation along the wall. If the channel flow is nonzero along the upper wall, then
the fluid in the cavity will be dragged along its outer edge and driven into rotational motion.
A simple property of the system is that the tangential velocity, u;, in the cavity, and thus
the radial acceleration, a,, is limited by the fluid flow in the coupling region: wu; < Uyan,
where g,y is the fluid velocity at the wall. With a circular vortex generated in the cavity
of radius R this implies a maximum radial acceleration a, < u2,/R.

We will model the system in two dimensions for the following reasons: efficient computa-
tion and simplicity without loss of essential physics for comparing the results to experiments
and three-dimensional simulations. Essentially, we are implying that our results should hold
for systems which are very large in the z-direction (perpendicular to the figure) such that
we are observing the physics of a single slice parallel to the zy-plane. The physics within
each slice will be very similar if not identical and thus by modelling in only two dimensions
we can recover the dynamics within one of these slices.

As is well known, flow is laminar in systems with low Reynolds numbers (for Re < 10°).
If the fluid is confined by two plates parallel to the zz-plane positioned at +y, and is driven
by an external acceleration g in the z-direction then the resulting Poiseuille flow assumes

the following quadratic profile:

u(y) = 29 (2 —y?), (1)

where 7 is the shear viscosity (or dynamic viscosity, sometimes denoted by p) of the fluid
and py is the average density of fluid. Note that more commonly, Poiseuille flow is generated
by applying a pressure gradient dp/dz. In this case, the form of the flow profile will be the
same as Eq. 1 except with the substitution of pgg = —dp/dzx.

The Poiseuille velocity profile is such that the velocity vanishes at the walls. This is called
the no-slip boundary condition, a common assumption used in continuum fluid dynamics. In
reality, depending on the wall-fluid interaction and the external force or pressure difference,

there can be a small amount of slip at the wall. We can characterize the extent of the
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slip using the slip length, which is the distance from the wall where the velocity profile is

extrapolated to zero.

III. SIMULATION METHOD

In order to simulate the system described in Section II, we use Molecular Dynamics (MD)
computer simulations which allow us to resolve the processes that occur on the molecular
scale; in this regime the precepts of macroscopic fluid dynamics may no longer hold. As a
side note, it has been shown that the predictions of continuum hydrodynamics are recovered
from MD within a few particle layers®, a claim upheld by the smooth Poiseuille-like flow
we generate. However, due to the inherently coarse-grained nature of the MD model, we
are studying a generic fluid and cannot make claims to the exact system dimensions and
parameter values. As will be seen, we observe the structure of the fluid to be based on finite
particles and so we are very close to the nanoscale; however, a large portion of the system
exists in bulk conditions and reproduces the predictions of macroscopic hydrodynamics. It
is possible to reduce the system dimensions so that we observe only the finite structure of
the fluid but we will remain in a regime that exhibits both this nanostructure as well as bulk
properties.

We model the fluid and wall constituents by using Lennard-Jones (LJ) beads (see Fig. 1

for an example) which interact through the pair potential:

12 6
4e {(%) — Cjj (%) ] +e if ry; <
Usj = (2)

0 if Tij > Tes

between any two particles ¢+ and j, where o and € are constants which set the length and
energy scales, respectively. For computational efficiency we have cut off the potential for
rij > re = 2.5 0 and shifted the potential up by a small amount ¢y = —U(r.) to ensure that
U is continuous. This is a common choice and retains both the repulsive core and most
of the attractive tail of the potential®. All parameters herein are quoted in natural MD
units: m = € = 0 = 1 (m is the particle mass) and the unit of time is 7 = \/W. The
particles are initialized on a square lattice with an average density (for both the fluid and
the wall) of py = 0.8/0%. The temperature is set by initializing the fluid particle velocities

about a mean of kg7 = 1 € according to the Maxwell distribution and it is kept constant
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through the use of a thermostat based on the principles of dissipative particle dynamics
(DPD)'. Care was taken to avoid known timestep issues with this thermostat''. The factor
c;j in Eq. 2 is a constant, of order one, which controls the strength of the attractive tail
of the LJ potential, and we will use it to tune the strength of the wall-fluid interactions.
The Newtonian equations of motion for the particles are integrated using the velocity-Verlet
algorithm with a timestep of A7 = 0.01 7. The wall particles are kept fixed in position.
In many other models the wall particles are kept in a deep potential well and allowed to
exchange momentum and energy with the fluid particles. While our choice is less realistic,
we are confident it has no effect on the object of this study other than having the thermostat
exercising larger influence since the wall particles are unable to cool the fluid by extracting
energy. The walls confine the fluid in the y-direction and we impose periodic boundary
conditions in the z-direction.

Two types of channels are considered: one with only fluid and channel walls and another
with a cavity placed along one of the walls. The size of the channel-only system is L =
111.8 o by W = 55.9 o (with two layers of wall particles taking a width w = 2.23 o of that
on each side). This system is used to measure the effect of both the wall-fluid interaction
strength and the fluid flow rate on slip length. The size of the system with the cavity extends
to L. = 134.16 o long with the ‘spin-cavity’ placed halfway along down the channel at the
upper wall. It is circular with a radius of R = 12.3 ¢ and its centre is offset by 11.18 ¢
from the fluid-wall interface (see Fig. 1). This allows the cavity to have a localised section
of its perimeter open to the flow in the channel. In order to simulate a Poiseuille flow
which is created experimentally by a pressure drop along the channel we applied a constant
acceleration to all particles in the channel (but not to the particles in the cavity). As will
be demonstrated, this creates a flow profile that varies quadratically across the channel as
expected according to Eq. 1.

Technically speaking our simulations consist of N = 5000 particles for simulations in
Section IV (consisting of 4600 fluid particles and 400 wall particles) and N = 8400 particles
for simulations in Section V (consisting of 5898 fluid particles and 2502 wall particles). The
MD algorithm is executed on two 3.4 GHz Intel Pentium 4 CPU with 1 and 2 GB of RAM

each. Each simulation takes aproximately one to three days to complete.
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FIG. 2: Particle distribution profile across the channel. Note the presence of the two fixed layers
of wall particles at y = 26.27 o and y = 27.39 o as well as the layering of the fluid induced by
the rigid wall (layers shown peak at y = 23.24 0, y = 24.30 0 and y = 25.31 ). The distribution
profile is normalized such that it goes to 1 in the central region of the channel (about y = 0, see

Fig. 3). The geometric position of the wall, denoted by a1, is shown in the figure at y = 25.71 o.

IV. RESULTS I: THE CHANNEL PROPERTIES

A. 'Wall Position

In order to analyse the slip length and measure the velocity at the wall, it is necessary to
determine the effective position of the wall surface. Since we have a rough, molecular wall
this is not a trivial task. A simple measure is to say that the wall begins at the centre of the
first particle of the wall but this is not a robust measure of the wall position as there will be
a finite region around the centre of the wall particles where no fluid will ever exist. This is
clear from the particle distribution function taken near the wall (see Fig. 2). We opt instead
for an unambiguous measure rooted in a sound geometrical argument!?. The area the fluid

occupies can be computed as the number of fluid particles N divided by the mean density,
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po- The area is also equal to the total length of the system (since it is periodic along z),
L, times the width of the channel, which can be expressed as twice the distance to the wall

2Ywan, and so we have the relation 2 Lywan = N/po, from which we can find the wall position:

N
2L,00

(3)

Ywall =

Using N = 4600, L = 111.8 ¢ and py = 0.8/0? we find the result: yy.n = 25.71 o (which is
noted on the particle distribution profile in Fig. 2).

B. Hydrodynamic Properties

We can use the wall position to predict some of the hydrodynamic properties of the fluid.
For a basic channel with straight walls and an external acceleration of g = 0.025 o /7% we
recover a nearly quadratic flow profile (see Section IV D for more discussion on this). Using
Eq. 1 with the parameters py = 0.8/0? and yy = ywan = 25.71 o, we can perform a fit to the
flow profile data and recover the shear viscosity n = 7.08 £ 0.02 \/me/o. Furthermore, the
Reynolds number is defined as

poad
= 4
n ( )

where u is the fluid velocity averaged over the cross section of width d. Using d = 2y and

Re

u ~ 1 o/7 (which is appropriate for what we observe) we can calculate the Reynolds number
for our flow to be Re ~ 6 < 103. This demonstrates that our MD fluid flow simulations are

certainly in the laminar regime of the predictions from macroscopic hydrodynamics.

C. Fluid-wall Surface Tension

In order to vary the interaction between the fluid and the wall particles, and conse-
quently the slip length, it is important to have a physical representation for this variation.
Essentially, what characterises the fluid-wall interface is the effective interaction energy Uty
between the wall and the fluid. From Laplace’s formulation for surface tension'® we can use
this to calculate the surface energy density or surface tension. The surface tension, g, can

be expressed as'*

Ve = ——pwpf/ rUsy (7)dr (5)
d
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where Ugy,(r) is the Lennard-Jones interaction energy between the fluid and wall particles,
pw and pg are the wall and fluid densities and d is the point at which Ug,(r) = 0. In two
dimensions we have dr = rdfdr where we integrate 6 over a full circle. From Eq. 2 we can
calculate d = a/c%v/vﬁ, and by substituting this and the interaction energyinto Eq. 5, we can

derive the surface tension of our interface:

2m 3.3/

3/2
Viw = 5 PuPIET Cpy (6)

Thus, the surface tension is expected to increase monotonically (but not linearly) with the
strength of attractive interaction, cg,. It should be noted that since we are working in 2D,
this is not technically a “surface” tension but actually a “line” tension with units of energy

per unit length.

D. Slip Length

As described in Section II, the maximum radial acceleration inside the cavity is limited
by the fluid velocity at the channel-cavity interface. If the applied acceleration, g, of the
fluid is increased we would expect the velocity at the wall to increase accordingly. Thus,
as is observed experimentally, the rate at which cavity fluid rotates should increase with
flow rate’* and thus g (according to Eq. 1). However, rather than use g to achieve larger
radial accelerations in the cavity, we are proposing that one can simply modify the surface
tension at the wall and achieve a larger fluid velocity than for an unmodified wall at the
same acceleration (or flow rate).

In order to vary the slip length and thus the velocity at the wall, we tune the ¢;; parameter
in Eq. 2 for fluid-wall interactions. Reference simulations were performed in a test channel
with no cavity (as described in Section III). The lower wall always has fluid-wall interactions
with ¢p, = 1 (the pure LJ, or wetting!®, case) while the upper wall is varied in separate
simulations from cg, = 0.5 to ¢y = 1 in steps of size Acy, = 0.05. The resulting velocity
profiles, taken as an average after the system has reached a steady state velocity, is shown
in Fig. 3. For ¢, = 1 we recover a quadratic Poiseuille flow profile which vanishes in the
vicinity of the wall. As expected, we see that decreasing the value of ¢g, on the upper wall
increases the velocity of the fluid near the wall and thus the slip length. Similar phenomena

have been observed by Koplik et al.'®. Furthermore, and as a comparison, we have performed
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FIG. 3: Equilibrium velocity profiles for various levels of interaction between the fluid and the wall
particles (with g = 0.025 ¢/72). Included in the figure is the particle distribution profile (arbitrary
units) for the cg, = 1.0 case. The domain of the fit is limited to where this density profile is
approximately constant and the fluid should resemble bulk conditions. For these simulations the

system size is L = 111.8 0 and W = 55.9 ¢ and there is no cavity (just plain walls at ywan.)

simulations with ¢;, = 1 at both walls and varied ¢ in order to see the slip produced by
increasing the acceleration.

The speed of the fluid at the wall, uwan = u(ywan), which will be related to the slip length,
is likely to be a significant factor in driving the rotation of the fluid in the cavity. Thus,
we explore how the slip length depends on the fluid-wall interaction. The slip length, §,
for Poiseuille flow can be determined in two ways: by linear extrapolation or by quadratic
fitting. The first method involves extrapolating the velocity linearly using a slope taken
from the flow profile at the wall and determining at what value of y the velocity goes to
zero. This can be expressed as a boundary condition:

d_U Uwall

dy -5 (7)

Ywall

The second method involves fitting the velocity profile data set with a quadratic and then
finding the point at which the function vanishes. In both cases the slip length is defined as the

difference between the position of the wall, yyan, and the position at which the extrapolated

10
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FIG. 4: Slip length ¢ at upper wall as a function of fluid-wall interaction for both the linear
extrapolation and the quadratic fit methods. The magnitude of slip length increases with decreasing
crw (Interaction strength) or ~yg, (surface tension). The inset shows the distribution profile for
particles near the wall. The rightmost curve corresponds to ¢y = 1.0 and each neighbouring curve
decreases by Acgy = 0.05 until the last curve at cry = 0.5 (always with a constant g = 0.025 o/72).
As cpy is decreased the position of the peak of the distribution moves further from the wall.
Interestingly, we note that for the smallest surface tensions, the slip length is on the order of the

size of the cavity which will be placed along that wall (i.e., 6 ~ R).

velocity goes to zero, yp: 6 = Ywan — Yo. Lhe former method benefits from simplicity whereas
the latter is more consistent with quadratic nature of pressure-driven flow profiles. Clearly,
both methods will yield a different result, and in that sense the quantitative value of the
slip length becomes a matter of definition.

To extract the slip length we fit the velocity profile using one of the above methods,
for each value of ¢, and g. We expect the velocity profile to be fit well by a quadratic in
accordance with macroscopic Poiseuille flow, with the exception that the velocity does not

go to zero at the walls. Also, near the wall the fluid particles exist in layers and thus in

11
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FIG. 5: Slip length ¢ as a function of applied acceleration g using the linear extrapolation method.
The parameter cgy, is always constant at a value of 1.0. The quadratic method yields nearly identical
values so we have left them off this figure for simplicity. As expected, the slip length becomes more
negative as g increases. When g — 0 the slip length corresponds to the position of the first layer

of fluid near the wall.

that region we cannot expect the macroscopic prediction of hydrodynamics to hold (since
the predictions were all derived assuming constant density, viscosity, etc.). Therefore, the
quadratic fit to the data is restricted to the subset of points that lie within the region of
the channel where the particle distribution is approximately constant rather than across the
whole channel which would include the layered fluid seen near the wall (see Fig. 3). For
the simulations where g is varied, the data is fit with a fourth order polynomial (ignoring
the linear and cubic terms) to better capture the form of the flow profile. This is because
as ¢ becomes large we may generate viscous heating in the fluid and induce variations in
the fluid viscosity, which will appear as higher nonlinearities in the spatial dependence of
velocity!'”. We observe remarkable agreement between this fit and the data points which lie
outside the fitting domain. The average relative errors between the fit and the data outside

the domain is 6.4% (for the ¢, data) and 7.8% (for the g data).

12



Project I: Spinning 41

The calculated slip lengths as a function of cg, and ¢ can be seen in Figs. 4 and 5. It is
clear that a reduced wall-fluid interaction results in a larger slip length. We also observe that
as Cry is increased the slip length crosses from the negative region (outside the wall position
that we defined in Section IV A) to the positive region (inside the walls) at c¢g, ~ 0.85. This
is intuitive as we expect that, as cg, increases, the first fluid layer begins to immobilize and
behave almost as if it were another layer of wall particles. As the acceleration is varied we
also observe an increase of slip with ¢ as well as the crossover from positive slip to negative
slip (which has been observed in similar MD simulations by others'®).

Note that the first fluid layer in Fig. 2 is approximately %a from the wall position and
also that the slip lengths in Figs. 4 and 5 go to approximately this value for ¢, = 1 and
g — 0. If the first liquid layer is immobile, which should be the case under conditions of
pure LJ interaction and low acceleration, then it is intuitive that the slip length should
equal the position of this monolayer. The value of cg, also affects the layering of the particle
distribution function near the wall. We can see in the inset of Fig. 4 that the first layer
of fluid is further and further from the wall particles as c¢g, increases. From Eq. 2 we can
derive that the position of the minimum in the potential, and thus the point of zero force,
where a pair of equilibrium particles would prefer to sit is given by ry, = (2/ch)é o.
However, this fluid layer will still feel pressure from fluid inside the channel. Nevertheless,
the observed increase in 7y, with decreasing cg, is indeed expected. The fluid pressure
causes this shift to be less than 1% whereas the calculated shift in 7,,;, should be 12%. Note
that as the attractive interaction is reduced, the first fluid layer moves away from the wall
but its probability distribution broadens. This reflects the fact that these particle layers are
increasingly acting like bulk fluid, as opposed to tightly packed layers.

V. RESULTS II: THE CHANNEL PLUS CAVITY
A. Angular Momentum in the Cavity

Surprisingly, it takes very few MD timesteps to accelerate the cavity fluid into equilibrium
rotational motion. However, to err on the conservative side and ensure the data represents
equilibrium, we neglect data for a significant early portion of the simulation. To quantify

the level of “spin” in a given simulation we have calculated the total angular momentum

13
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FIG. 6: Time-averaged velocity field and streamlines computed from the velocity field for cg, = 0.5

and g = 0.025 0/7% using scheme B. (a) shows the rotation of the fluid in the cavity. Closed

streamlines, of course, represent circulation of fluid particles. The thick black line represents the

approximate location of boundary between the fluid and the cavity walls. (b) shows the continuity

of velocity across the coupling region. The solid gray lines denote the approximate location of the

fixed wall and the dotted gray line shows the coupling region between the cavity and the channel.
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FIG. 7: Average angular momentum per particle in the cavity for various accelerations with no
modification of wall-fluid interactions (i.e., ¢y = 1). As expected, the average angular momentum
of the fluid inside the cavity increases as a function of g. The empirical fit {(J) = ag(1 + g/go) is
shown with parameters a = 1.77 £ 0.130 \/e/im and go = 0.0353 £ 0.0026 o/72. The latter value

is thus an estimate of the critical acceleration which indicates the onset of nonlinearity.

of the cavity particles (those particles whose positions lie above the position of the upper
wall) with respect to the point of zero rotation. This point, rg, is determined from velocity
fields and streamlines such as those shown in Fig. 6 and the total angular momentum per

particle (i.e., mass-averaged since all particles have the same mass, m = 1) is calculated as

a sum over each using the basic relation J = HZZ\LI r; X pi|| /N, where r; is the position
of the *® particle from r¢ and p; is its momentum. For better statistics, we have used the
time-averaged angular momentum per particle: {.J).

The angular momentum is calculated from several simulations with varying interaction
strengths and accelerations. We observe that as g is increased (with a constant ¢, = 1)
there is a corresponding increase in (.J) since the slip at the wall becomes significant (Fig. 7).
In order to explore how ¢, influences the rotation of the cavity fluid, we use two different

schemes. In the first scheme (hereafter referred to as scheme A), only the particles along
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FIG. 8: Average angular momentum per particle in the cavity for various wall-fluid interaction
strengths (acceleration is constant at g = 0.025 o/72). Results are shown from simulations where
only the channel walls have modified interaction and those where both the channel and cavity
walls are modified. The average angular momentum of the fluid inside the cavity increases when
crw increases. We also observe that the two schemes differ from each other as cp, decreases.
The empirical fit (J) = Jo(1 + ¢*2/c}?) where ¢* = 1 — cg is shown. The parameters are Jy =
0.0824 £ 0.0055 a\/% and cgy,0 = 0.593 £ 0.040 for scheme A and Jy = 0.0771 & 0.0065 J\/e/im
and cpy,0 = 0.662 £ 0.051 for scheme B.

the upper channel wall have a reduced interaction strength (0.5 < ¢ < 1). In the second
scheme (scheme B), both the channel wall and the cavity wall particles have been modified.
In scheme A, the effect should be that observed above: the slip length and thus the fluid
velocity increases at the wall. This will result in a larger force coupled to the cavity fluid
and thus we would expect an increase in angular momentum with increasing slip length
(i.e., a decrease in ¢gy). Scheme B will compound the previous effect with a simultaneous
reduction in friction between the fluid and the cavity wall. In both schemes we have used

the same values of ¢g, as those used in Section IV D and the results can be seen in Fig. 8 (for
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a constant g = 0.025 0/7%). We see a clear increase in angular momentum with decreasing
surface tension.

We would expect the system to behave simply (perhaps linearly) in well understood
regimes where we use parameter values commonly seen in the literature (i.e., pure Lennard-
Jones with c¢g, = 1, low acceleration g). As we move away from this regime we should start
to observe the onset of nonlinearity at some critical value of these parameters. We estimate
this critical value by performing the following empirical fits: (J) = ag(1 + g/go) for varying
g and (J) = Jo(1 + ¢*?/c}) for varying cg,, where ¢* = 1 — ¢g,. We have chosen to fit ¢*, as
defined, rather than cg, directly since the system should exhibit “normal” properties about
the pure LJ regime which is ¢f, = 1 and thus ¢* = 0 (the origin). The results are shown in
Figs. 7 and 8 and yield the critical values of go = 0.0353 +0.0001 0/72, Crw,0 = 0.593 £0.001
for scheme A and cgy o = 0.662 £ 0.001 for scheme B. The critical value of gy matches well
with the data seen in Section IV D as it represents the point at which the slip length begins
to level off to § ~ /2 in Fig. 5. The critical values of ¢, are also relavent as they indicate
where the slip length becomes highly nonlinear in Fig. 4.

We would expect that since scheme A has a weaker wall-fluid interaction overall, it will
be less effective than scheme B at spinning the cavity fluid. It is not clear that we observe
this as a generality across all parameter values. For low surface tensions, where the cavity
is being driven hard, scheme B is clearly more effective than scheme A but not by much (at
most there is a 19% increase, at ¢, = 0.5). However, for higher values of surface tension
where the cavity is being driven less hard (i.e., the slip at the wall is smaller) the difference
between the two schemes is no longer systematic and is on the order of the noise in the data.

We can visualize the fluid motion in the cavity by looking at the two-dimensional velocity
field. This can be seen in Fig. 6 for a simulation with ¢g, = 0.5 using scheme B. Figure 6a
demonstrates the rotational motion of the fluid in the cavity with streamlines, found by
integrating the velocity field. It should be noted that the stagnation point of the flow is not
in the centre of the circular cavity and is in fact closer to the coupling region: presumably,
this is dependent on the fluid properties, such as viscosity, the cavity size and offset although
we are not exploring this in the current work. Also presented in Fig. 6b is a higher resolution
velocity field focussed on the coupling region of the channel-cavity system illustrating the
continuity of the velocity field across the interface and clear coupling between the cavity and

channel fluids.
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FIG. 9: The dependence of average angular momentum (J) from the MD simulations on average
forcing velocity (uavg = (tchan +ucav)/2). The wall-fluid interaction is kept constant with cg, = 1.0.

The fit is linear with zero intercept: (J) = (0.83£0.01)u,y,. The inset shows the linear relationship

between ucay and ucha, With a slope of 0.63 4+ 0.01.

B. Velocity Dependence of Angular Momentum

In order to predict how the angular momentum of the cavity fluid should depend on the
properties of the system we performed calculations based on the predictions of macroscopic
hydrodynamics. The 2D incompressible Navier-Stokes equation for a Newtonian fluid” can

be expressed in terms of vorticity w and the streamfunction ¢ as

Ow I
o turVe = IV, 8)
V4 = w, (9)

where u = ux + vy, 0¢ /0y = u, 90 /0xr = —v and w = ||V x u]|. To model our system we
use a circular boundary with a piece cut out by intersecting a horizontal straight line near
the lower edge. The boundary conditions are zero velocity around the circular edge and a
constant tangential velocity u = VX at the straight edge. This latter condition emulates

the external forcing at the coupling region we see in our MD simulations (at equilibrium).
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FIG. 10: The dependence of average angular momentum (J) from the MD simulations on average
forcing velocity (uavg = (Uchan + Ucav)/2). The acceleration is constant at g = 0.025 o/72 and the
wall fluid interaction ranges from cg, = 0.5 to cpy = 1.0. The fit is linear with zero intercept:
(J) = QUavg With proportionality constants aa = 0.92 & 0.01 and g = 1.02 & 0.01. The inset
shows the linear relationship between v,y and tchan. The slopes are 0.63 + 0.01 for scheme A and

0.62 & 0.01 for scheme B.

The total angular momentum is calculated, as before, by finding the stagnation point rq
and integrating (r — r9) X pou over the area of the cavity. Equations 8 and 9 are solved
using finite difference (FD) methods, with parameters chosen so that Re = O(1). We will
not explicitly show the results of these calculations as they simply suggest that the average
angular momentum (J) should increase linearly with V such that (J) = aV (where « is
some proportionality constant).

We will use this prediction to help explain our MD results and so must first determine
how to relate the parameters from MD to those in the FD calculations. Clearly, the mass
averaged angular momentum from the FD calculations is equivalent to the average angular

momentum per MD particle: (J). We will make the correspondence between the forcing

speed V' and the average speed of fluid at the wall in the vicinity of the cavity in the MD
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simulations. This velocity, w,y,, is defined as the average over the region along x adjacent
to the coupling interface and over two layers of fluid particles (both inside and outside the
cavity, Ucay and Ucgnan respectively). From the FD predictions, we should observe a linear
relationship between the velocity of two layers of fluid particles we average over and thus the
average should not disrupt the linear relationship between angular momentum and velocity.

We present the average angular momentum plotted versus the average forcing velocity
about the coupling region in Figs. 9 and 10 (for varying ¢ and cg, respectively). Also,
the linear relationship between the two velocities is shown in the insets. For the angular
momentum, each data set is fit with the expected relationship (J) = Uy, With good
agreement especially using scheme A. It is not clear whether the results for scheme B should
be linear in any case. The predictions from macroscopic hydrodynamics were for a system
with zero velocity at the cavity walls but, as we observed in Section IV D, when the wall-fluid

interaction is modified (as it is in scheme B) there exists a non-zero slip and thus the zero

velocity boundary condition should not hold.

C. Effeciency of “Spin” Generation

To demonstrate that we are in a similar regime as that existing in previous experiments? 4
we will formulate a nondimensional parameter to characterize the system based on the cavity
spin, dimension and channel flow. Let us define the dimensionless pin number, S, as the
ratio between the product GR, where G is the radial acceleration in the cavity and R is its

radius, and the square of the average fluid velocity in the channel u:
=—. (10)

The values observed experimentally are G = 1.4 x 107 m/sQ, R ~ 50 pm and 4 = 45 m/s?
which yield a dimensionless Spin number of S = 0.345. From our simulation data for
¢t = 0.5 and g = 0.025 0 /7% we have G = 0.00559 0 /72 (the maximum radial acceleration,
which is observed just inside the coupling region), R = 12.3 0 and u = 0.819 o/7. Using
these values we calculate the Spin number to be S = 0.103 which is of the same order of
magnitude as that observed experimentally.

In Figs. 9 and 10 we observe approximately the same range of angular momentum in the

cavity over the same range of forcing speeds for all of the various schemes we have employed
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to spin the cavity fluid. In fact, our results indicate that by keeping ¢ at a reasonable
value and modifying the wall-fluid interaction we can achieve cavity spin comparable to
that achieved by pushing the fluid harder. As an example, let us take simulations from all
three cases with approximately the same flow rate in the channel: @ ~ 0.728 4+ 0.005 o /7.
If we keep the wall-fluid interaction as pure wetting (cg, = 1) then we need an acceleration
of g ~ 0.029 o /7% to achieve this flow rate and it results in an average angular momentum
in the cavity of (J) = 0.0904 oy/e/m. For the cases where the wall fluid interaction is
modified we use an acceleration of g = 0.025 o/7% and to achieve the above flow rate we
require cg, = 0.6 which results in average angular momenta of (J) = 0.1573 o4/¢/m for

scheme A and (J) = 0.1679 ov/¢/m for scheme B. This is effectively an increase of 71% in

scheme A and 82% in scheme B for a 54% decrease in surface tension.

VI. CONCLUSIONS

Shelby et al. have performed exciting experimental research and we have reproduced
and expanded upon their basic idea. Ssing Molecular Dynamics, we have simulated spin
generation in a coupled cavity-channel system which is in the same physical regime as that
seen in experiments. From these simulations we observed the finite structure of the fluid
and have shown that its hydrodynamic properties are laminar. We were able to make the
connection between surface tension of the wall-fluid interface and the hydrophobicity of the
wall by analysing the fluid slip along the wall. In particular, we can simulate systems with
hydrophobicity without making assumptions about boundary conditions. These principles
can be applied to a coupled cavity-channel system to control the angular momentum in the
cavity. We were able to increase the level of spin in the cavity by over 80%. Predictions from
macroscopic hydrodynamics were succesfully reproduced, showing that even when the finite
structure of the fluid is observable these predictions can still hold. Molecular Dynamics
has shown itself to be useful for exploring systems that would be difficult using traditional
means (i.e., modelling hydrophobicity with hydrodynamics).

We are exploring how the spin depends on the size of the coupling region between the
cavity and the channel. It is clear that there must be an optimal coupling length if we
consider the extreme cases: if the length is very large (i.e., the cavity offset is less than

zero), the channel fluid will simply stream into the cavity and back out again, producing no
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spin and if the length is very small, the coupling between the channel and the cavity will
be weak and therefore spin will be very low. Between the two extreme cases there must be
an optimal length for inducing spin with the least amount of input energy. Our simulations
use an intermediate sized coupling region and so we believe the results to be representative
of the physics near the optimal system. This study could be extended to explore the system
as the width of the channel W or the cavity radius R are reduced to the nanoscale. (In
other words, how do the physics scale as the system dimensions approach the nanometre
regime.) Molecular Dynamics allows us to explore fluid layering which would be dominant
on nanoscopic length scales. Also, there must be some exchange of mass between the channel
and the cavity and so it would be interesting to explore this and how it might impact the use
of the cavity as a centrifugation cell, particularly the centrifugation of polymeric substances

which can be easily implemented in our Molecular Dynamics model.
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Abstract. A system consisting of two miscible fluids in a microchannel under laminar
flow has been examined with theoretical techniques and simulated using Molecular
Dynamics (MD). We have applied the theory of diffusion to predict the displacement
of particles as they diffuse across a channel perpendicular to a Poiseuille flow. Using
MD simulations, we have studied the presence of obstacles in the flow path and shown,
contrary to what has been proposed recently, that they do not significantly increase
mixing efficiency in microchannels. Their effect is such that (i) the flow profile becomes
flattened within a certain range of the obstacles and (ii) the fluid flow acquires lateral
components and so follows a sinuous path through the channel. From our theoretical
predictions and numerical simulations, we show that the former results in increased
levels of partial mixing when compared to a system lacking obstacles. However,
obstacles do not reduce the length required for full mixing. Furthermore, the second
effect increases contact between the fluids but the mixing increase is negligible.
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1. Introduction

The essential problem with efficient mixing on small scales is that, in general, flow
is laminar and thus the instabilities produced by turbulent flow that accelerate the
fluid mixing on macroscopic scales (such as stirring cream into coffee) are no longer
present. In the absence of these mixing accelerants, diffusion is the only natural
drive to mixing. Laboratories would like to develop methods to enhance the effects
of diffusion or introduce other phenomena into the system in order to facilitate efficient
mixing at low Reynolds numbers where viscous effects dominate over inertial ones. This
problem has been well studied recently and there have been many successful attempts
which involve processes such as vortices induced by curved flow [1], electroosmosis [2],
electro-hydrodynamics [3], chemically and geometrically patterned channel walls [4, 5],
hydrodynamic focussing (nanojets) [6] and chaos [7]. A nice review of work in this
field (as well as other fields in microfluidics) can be found in a recent publication by
T. M. Squires and S. R. Quake [8].

In a recent study, Wang et al. investigated how the presence of obstacles in a
microchannel might enhance the mixing level at the output [9, 10]. They claim that
certain obstacle configurations modify the fluid flow laterally and force one species into
the other and thus promote an increase in mixing. We will demonstrate, however, that
this claim is contrary to what one expects from laminar flow and in actuality what they
are observing are the effects of flow profile distortion and increased contact area between
the two fluid species on the dynamics of diffusion in the presence of flow.

This paper is organized in three main segments. First, we will present the
fluidic system along with the relavent hydrodynamic theory outlining laminar flow, the
behaviour of diffusion in channels and the concept of mixing in channel flows. Then, we
will review the simulation method and how it is applied to our system. Following that,
we present the results in three sections. First, we explore the laminar hydrodynamic and
diffusive properties of the system. Next, we examine the mixing properties in channels
without obstacles. Finally, we will introduce obstacles into the system and show that
their presence affects the mixing characteristics of the system by lenghtening the mixing
interface as well as deforming the flow profile. It is this last effect that will be the focus
of our claim that obstacles do not increase mixing efficiency in channels where complete
mixing is required.

2. System and Theory

Consider a fluidic system such as the one shown in Fig. 1 consisting of two miscible
fluid species (labelled A and B) confined between two parallel plates spaced a distance
W apart. We are examining only a section of length L in the z direction. The fluid is
moving in the z direction with a Poiseuille flow profile. The channel dimensions are on
the order of micrometres and the flow is laminar.
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Figure 1. Schematic of the fluid-channel system. The two miscible fluid species (A
and B) are seperated along the midplane of the channel and travel through the channel
with a Poiseuille flow profile. The fluids are allowed to mix via diffusion which produces
a mixing front between the mixed and unmixed fluid. Also shown here is an example
of the finite bead structure of the channel walls and fluid used in our simulations.

2.1. Laminar Flow

The Reynolds number determines the basic hydrodynamic behaviour when considering

fluid flow confined in channels and can be expressed as
potth
Re = , 1
p (1)

where @ is the average fluid velocity (the flow rate) over the channel cross-section of

width h, 7 is the shear viscosity (or dynamic viscosity, sometimes denoted by u) and
po is the average fluid density. The transition from laminar to turbulent flow can be
indicated by the Reynolds number, laminar flow ocurring for Re < 10 and turbulent
flow for Re 2> 103. For hydrodynamic flow in channels whose cross section is on the order
of or less than micrometers, then for reasonable # the system is firmly rooted in the
realm of laminar flow. In the laminar flow regime, the flow is smooth and predictable
and lacks any of the instabilities and rich eddy structure that is found in turbulent flow.
The dynamics are dominated by the viscosity of the system rather than by inertial forces
and the dynamics of all flows are reversible (if we neglect diffusion, which is topic of the
next section).

Consider a fluid confined between two plates parallel to the xz-plane with the origin
of the coordinate system midway between them. For low Reynolds numbers, the flow
profile generated by a pressure difference, p’, along the z-direction in a channel is of the
Poiseuille type and has the quadratic form

uly) = ug (1 - y—2> : (2)

v



Project IIl: Mixing 56

Theoretical and MD Study of Mixing in Microchannels with Obstacles 4

where ug = —y3p'/2n and +y, are the positions of the two channel walls. Note that
we are assuming no-slip at the boundaries, which will be sufficient for our studies (see
Refs. [11, 12, 13, 14] for explorations of slip length in Molecular Dynamics simulations
of laminar flow). In practice, Poiseuille flow is usually generated by a pressure gradient
along the channel but it can also be generated by a gravity-like acceleration g in which
case we can make the substitution —p' = pgg in Eq. 2.

2.2. Diffusion

Since turbulence does not exist in a laminar flow environment, we cannot rely on it to
mix the fluids as we would in a turbulent system. Therefore, the drive behind fluid
mixing is the relatively slow diffusion of one fluid into the other. The Peclet number,
Pe, is a measure of the relative influences of advection and diffusion for flows in channels
and is defined as

_ UY%

Pe = o (3)
where D is the diffusion coefficient. We use the length scale yo = h/2 (half the cross-
sectional width) since it is the largest distance in our system that particles need to
diffuse in order to initiate mixing. Large Pe implies that fluid motion is dominated by
advection (flow) rather than diffusion. When Pe is large, it is difficult to mix fluids by
diffusion alone as a long channel (i.e., much longer than its width) is required to allow
diffusion to take its course.

The average time, (tp), needed for molecular diffusion to transport fluid a distance
d in one dimension is given by the Einstein relation
d2

{to) = 55 (4)
If the fluid is being transported along the channel at a constant velocity u then we can
deduce the average distance ([) the fluid travels along the channel in the flow direction
while diffusing a distance d in the perpendicular direction:

ud?

(1) = ultn) = 5. )
Given channel geometry and flow speed and using Eqgs. 4 and 5 we can calculate both
the time required (tp) and the total distance travelled (I) along the channel for particles
diffusing a distance d from the channel centre. The choice of the initial position is
important since the result shown above will be dependent on the velocity which itself
is position dependent. We choose the original position to be the centre since, as we
will see later, the mixing interface originates as particles in the channel centre diffuse
towards the wall). Let Ly be the channel length where the particles have diffused the
full width required: yo. From Eq. 5 this length is given by Ly = uy2/2D from which we
can derive the Peclet number to be Pe = Ly/yy. This interpretation of Pe is such that
it represents the aspect ratio of a channel whose length Lg is the minimum required for
particles to diffuse all the way to the wall (d = y).
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It should be noted that the above expression relating (I) and d (Eq. 5) only applies
for a constant velocity profile (i.e., u(y) = u = const.). We will be examining diffusion
in a channel where the flow is not flat but spatially dependent, namely a Poiseuille flow
profile. The equivalent expression to Eq. 5 becomes

(1) = 2032 <1 _ ;Z;) . (6)

The first term is identical to Eq. 5 and the second term involves a correction due to the

quadratic nature of the flow profile. The derivation of this expression can be found in
Appendix A and a graphic representation of Eqs. 5 and 6 can be found in Fig. 2. The
phenomena presented in this figure will be discussed in the following section. We will
refer to curves showing the average length along the channel a particle has travelled,
(1), while diffusing a distance d (such as those deduced from Equations such as Eq. 5
and Eq. 6) as flow-diffusion profiles. Note that this entire discussion assumes that the
diffusion coefficient D is independent of spatial position. In reality, due to the presence
of the rigid walls, there may be some spatial dependence [15, 16] but we will assume its
effect to be negligible.

2.83. Mizing

Diffusion is inherently linked to mixing in laminar flow systems of multiple fluid species.
As mentioned above, due to the lack of instabilities caused by turbulence, diffusion is
the only mechanism that can mix fluids in simple laminar channel flows. As fluids of
different species diffuse into each other we can qualitatively describe the level of mixing
to have increased, until the point where both concentrations are equal and we would
consider the fluid to be fully mixed. Later we will present a quantitative mixing function
to be used with our numerical simulations, but for the following discussion consider a
hypothetical measure that is maximized when the fluids are fully mixed and zero when
they are completely separated. If we examine the flow-diffusion profiles due to various
flow profiles we can think of the curves as roughly corresponding to the position of the
mixing front. By mixing front we refer to the division between unmixed fluid and mixed
fluid (the region containing the latter widens as the fluids flow along the channel). In
practice this front is not clearly defined since diffusion is a process which results in a
wide distribution of particle positions; however this expression would correspond to the
mean position of the front.
Now, consider different flow profiles, u(y), but with the same flow rate, @ =
fzo u(y)dy/2yo. Equations 5 and 6 predict that if the average flow rate is the same
then a particle diffusing from the centre of the channel (where we are considering the
initial interface between different fluid species to be) will travel the same length down
the channel, Ly = uy2 /2D, when it reaches the position of the wall, yo. This is intuitive
as the time taken to diffuse that distance is always the same (simply Einstein’s relation
(tp) = y2/2D) and so if the average velocity felt is always the same then the average
distance travelled will be the same (there is no coupling between the motion in z and
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Figure 2. The flow-diffusion profiles for various flows. The results are shown for
both a flat profile, u(y) = uo/2, and a Poiseuille profile, u(y) = uo(1 — y*/y3), as
well as a general “flattened” Poiseuille flow profile lying somewhere in between. For
flow profiles with the same average velocity, @, particles will on average take the same
channel length, Ly, to reach the channel wall, yo, by diffusion.

y). As a demonstration we have shown a hypothetical “flattened” Poiseuille flow profile
(with the same average flow rate), whose d-vs-(I) curve should lie somewhere between
the flat profile and the pure Poiseuille profile (as seen in Fig. 2). (A numerical method of
determining this curve from the flow profile data is outlined in Appendix B.) Therefore,
as long as the channel length, L, is greater than Ly then the measured level of mixing at
the channel outlet will always be 100%. However, if the channel length is less than Ly
then the measured level of partial mixing will depend on the shape of the flow profile.
A flat profile will yield a higher level of mixing than a Poiseuille profile. Similarly, so
will a flattened Poiseuille profile.

We will show that the primary effect produced by placing obstacles in the flow path,
which is what was studied in Refs. [9, 10], is to flatten its quadratic flow profile so that
the level of partial mixing observed at some measuring length, Ly < Ly, is greater than
that observed by a perfectly quadratic flow profile. However, as demonstrated above, if
Ly > Ly then the measured level of mixing for any profile will be 100%.

3. Simulation and Measurement Method

In order to substantiate our claim in Section 2.3 we will explore the mixing properties
of channels with and without obstacles by explicit simulation of the fluid and solid
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walls. We consider the size of the system presented in Section 2 to be very large in the
z direction. All forces and geometries will be isotropic in z and so we will make the
approximation that the flow in any two-dimensional slice of the system parallel to the
zy-plane will be identical. Therefore, we will confine our simulations to two dimensions
which will both retain the essential physics as well as increase computational efficiency.

3.1. Molecular Dynamics

We model the system described in Section 2 as an ensemble of interacting beads and
simulate their dynamics using the Molecular Dynamics (MD) computational algorithm.
The beads obey the Lennard-Jones (LJ) potential that acts between a pair of particles
7 and j

12 6

U, = 4e [(;‘]) — Cjj (&) ] +e Lifry < (7)

0 , ifTij > T
where € and ¢ are constants that set the energy and length scales for a particular
substance. All particles in the system interact with the LJ potential except for wall-
wall interactions since the positions of the wall particles are fixed (their interactions
with each other are ignored). For efficient numerical operation, we do not consider the
pure LJ potential up to r = oo but instead neglect long range interactions. We do this
by cutting it off at a certain radius r. so that the potential is zero for r > r. and a
constant ¢g = —U(r.) is added to ensure continuity [17]. We choose r. = 2.5 ¢ which
retains the repulsive core and most of the attractive tail. The parameters of the system
were chosen as follows: € = 1, o = 1, the average density of the fluid is py = 0.8/0?, the

thermal energy is kg1’ = 1 € and all particles have mass m = 1.

The Molecular Dynamics algorithm consists of integrating Newton’s equations of
motion for each particle in the system using finite difference methods. Methods such
as linked neighbour and cell lists are used to facilitate the efficient operation of the
algorithm [17]. It should be noted that in order to keep the temperature of the system
constant a thermostat is employed and since the system we are studying is not in
equilibrium we must choose a thermostat that can be applied to nonequilibrium MD.
The thermostat used here is based on the method of dissipative particle dynamics (DPD)
which conserves momentum and reproduces hydrodynamic interactions [18]. Care has
been taken to ensure that known time step effects when using DPD are avoided [19].

As mentioned earlier, we have chosen to work in two dimensions (zy) for the
simplicity of the algorithm. This can be justified as follows: if the channel size in the
dimension perpendicular to the two dimensions considered (z) is much larger than its
width in y then any xy slice we take should be identical. Therefore, by simulating this
slice independently we can recreate its flow characteristics. The channel we consider
is rectangular in zy with walls containing the fluid along y and periodic boundary
conditions along x. Three system lengths were used: L = 55.9 o (for a small test system
demonstrating laminar flow), L = 447.21 ¢ (for mixing in channels with obstacles)
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and L = 559.02 o (for mixing in channels without obstacles) and the width is always
W = 55.9 o with the wall particles taking up a width w = 2.2 40 (two particle layers)
on each side. The total number of particles in these three systems are N = 2500,
N = 20000 and N = 25000, respectively. Simulations were performed on two 3.2 GHz
Pentium 4 workstations with one and two GB of RAM each. Each simulations took
between 2 days and one week to complete.

3.2. Mizing Value: A Per-particle Quantification of the Mizing Level

Mixing is a highly qualitative state; qualitatively fluids can be mized or unmized but
mixing does not have a rigid scientific definition. In the past, measures have been
proposed to quantify the level of mixing between two fluids inlcuding those based
on concentration in slices across the channel [9, 10] or entropy [20]. We propose an
expression that will quantify the local level of mixing associated with each particle in
a system of binary fluids. From there, one is free to average in many different ways in
order to represent the mixing of the bulk fluid.

Our model is composed of discrete particles that have a type associated with them
which defines which fluid species that particle belongs to. The method we have employed
is to associate a level of mixing with each individual particle based on its surrounding
environment. Consider all the particles contained within a radius rny; about a given
particle (particle i) ignoring the centre particle. In a binary mixture, we will have Ny,
particles of the same type as particle 2 and Ny, particles of different type from particle ¢
such that N; = Ny, + Ny, is the total number of particles contained in 7mix. We propose,
as the expression to quantify the local level of mixing, M;, associated with particle 7,
the product of Ny,/N; and N, /N; (both of which run from 0 to 1) and normalized to
equal 1 at NUi = NLi = NZ/Q
B 4NUZ.N

L;
M; = 4=, (8)

[3

So, M =1 when the fluids are perfectly mixed and M = 0 when they are completely
unmixed. This produces a function that is quadratic in Ny, (or Ny, since they sum to
the constant N;) with zeros at Ny, = 0 (N, = N;) and Ny, = N; (N, = 0) and a value
of 1 at Ny, = Np, = N/2. Note that we ignore the centre particle in these calculations,
otherwise there is an error on M; of the order N[Q. Clearly, M; is a function of rp;
(since the number of particles will be a function of 7, ) and so it is necessary to choose
rmix larger than the average interparticle spacing but smaller than the bulk features of
the system such as fluid spacing or obstacle sizes. If ;. is too small then we will have
poor statistics but if it is too large it will no longer be local.

The utility of the expression presented above can be illustrated with a few test cases.
Consider a particle ¢ surrounded by particles of the same type. We would consider this
particle to be completely unmixed and thus the expression gives us M; = 0. Next,
consider a case less obvious than the first, that the same particle is surrounded by
particles all of a different type. The fluid is definitely not mixed as both species are not
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Figure 3. Velocity data taken as averages along 50 slices in the z direction (circular
data points) and a fit to the data using Eq. 2 (solid black curve) with yo and 7 as free
parameters yielding yo = 24.83 £ 0.20 0 and n = 12.20 &+ 0.10 \/me/o. The force on
each particle is mg = 0.005 mo /72. Also shown, with arbitrary units, is the particle
distribution profile demonstrating the positions of the fixed wall particles (black vertical
lines) and the fluid layering near the walls (grey oscilating curve which levels off in the
centre, demonstrating bulk properties there). We can see that the first layer of liquid
is essentially immobile.

present in equal amounts. Therefore, our mixing function also gives a value of M; = 0.
Finally, consider half the particles surrounding particle ¢ to be of like type and the other
half to be of unlike type. Conceptually, this particle would be considered to be fully
mixed and appropriately we obtain a mixing value of M; = 1. The function M;(ryy)
will blur the mixing level at an interface over a distance ry. Particles at an interface
between two segregated fluids will have M > 0 when they are clearly not mixed but this
is a minor point.

4. Results I: Hydrodynamic Properties

In order to generate a Poiseuille flow we have applied a constant force on each particle in
the system. In a similar fashion to a pressure difference, and due to friction at the walls,
this method has been shown to reproduce the desired Poiseuille flow characteristics in
MD simulations [21]. For a basic channel with straight, molecularly smooth walls, no
obstacles (so L = 559.02 ¢), an external acceleration of g = 0.005 /7% or force myg
applied to each fluid particle, and periodic boundary conditions along x we recover a
nearly quadratic flow profile (see Fig. 3). Using Eq. 2 we can perform a fit to the
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20 e

Figure 4. Streamlines demonstrating laminar flow around post of radius R = 3.77 .
Flow is generated by applying a force of mg = 0.025 mo /72 to fluid in a W = 55.9 o by
L =55.9 o channel. Streamlines were found by taking contours of the streamfunction
1 which itself was found by integrating the velocity field according to the definitions
0 /0y = u and 9v¢/0x = —v where u and v are the z and y components, respectively,
of the fluid velocity. The simulation was run for 4 x 107 steps (t = 4 x 10° 7) in order
to get smooth data.

flow profile data and recover the position of the wall (which is indeterminate due
to the soft nature of our MD beads) yo = 24.83 4+ 0.20 0 and the shear viscosity
n = 12.20 £ 0.10 v/me/o. We have defined the position of the wall as the position
of no fluid slip (i.e., u(yy) = 0). Furthermore, with the viscosity we can determine the
Reynolds number from Eq. 1. Using h = 2y and @ ~ 0.1 o/7 (which is appropriate
for what we observe, see Fig. 3) we can calculate the Reynolds number for our flow to
be approximately Re ~ 2.84 ~ (1), which is clearly in the laminar flow regime. This
demonstrates that our MD fluid flow simulations are certainly in the laminar regime of
the predictions from macroscopic hydrodynamics.

As a further demonstration of laminar flow, we have performed simulations of
fluid flow around a single obstacle. These simulations were on a system of dimensions
W = 55.90 by L = 55.9 ¢ and with an applied force of mg = 0.025 mo /72 (which is
larger than that used above to calculate Re and so this system will have a slightly larger
Reynolds number). In the centre of the channel a circular post of radius R = 3.77 o is
placed (consisting of 32 LJ beads fixed in position) and the fluid is forced to flow past
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the post. According to laminar flow, we should see smooth streamlines around the post
as well as identical streamlines at the input and output, indicating that the presence of
the post has not disrupted the flow before and after the post (this has been observed
previously in 2D MD simulations [22]). We observe exactly this in Fig. 4 where the
streamlines are presented (calculated from the time-averaged velocity field). It is due
to this property that we believe posts will not enhance mixing in channels (contrary to
what has been reported previously [9, 10]).

From a simulation of a system similar to the one above but lacking the solid
post the diffusion coefficient D was calculated from the Einstein expression [17]. For
diffusion in one dimension across the channel in the y-direction the diffusion coefficient
is D, = (3.25 + 0.14) x 1072 0y/e/m. From this value we can calculate the Peclet
number from Eq. 3 (again, using @ ~ 0.1 o/7 and y, = 24.83 4+ 0.20 0) which yields
Pe ~ 75 > 1. This clearly demonstrates that advection is dominant over diffusion in
this system and mixing will be slow.

5. Results II: Purely Diffusive Mixing With No Obstacles

As a benchmark result, we ran simulations of two physically identical fluid types
(A and B) in a channel with a Poiseuille flow profile (generated by a uniform force
mg = 0.005 mo/7? in the x direction). The fluids are initially separated along the
midplane of the channel (type A for y > 0 and type B for y < 0) and they are bounded
by walls at y = +y9. We have applied periodic boundary conditions in the x direction
with the modification that particles flowing past the boundary on the right side have
their type (A or B) reset so that the two fluids are always entering the channel in a
completely unmixed state (again, type A for y > 0 and type B for y < 0). The channel
length is L = 559.02 o and we have y, = 24.83 £ 0.20 0.

The flow is purely laminar and thus, as described in Section 2.1, the only drive
for mixing is the diffusion of one fluid species into the other. We calculate the mixing
associated with each particle using Eq. 8 (with rpix = 6 0, a value we found to strike
a balance between computational efficiency and good statistical averaging) and take
averages both in small xy bins as well as in slices along x and these data can be seen
in Fig. 5. We can see that as the fluid travels further down the channel its mixing level
rises (Fig. 5a) as the two fluid species diffuse into each other. Furthermore, we can
visualize the mixing front in two dimensions in Fig. 5b which exhibits an initial \/x
form and then displays an inflection point about midway along the channel, the same
qualitative structure as the flow-diffusion profile for Poiseuille flow given by Eq. 6. This
is expected since the mixing front should roughly correspond to the average position of
the diffusing particles in Poiseuille flow. Clearly, with our channel we do not achieve
100% mixing but we can use the Peclet number in order to obtain an estimate on the
length of channel Ly required in order to obtain full mixing, Ly = Pe -y >~ 1850 o,
which is about three times the channel length we use.
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Figure 5. Mixing levels (using rmix = 6 o) for a channel with no obstacles and smooth
Poiseuille flow. (a) demonstrates average mixing level along the length of the channel
in one hundred 5.590-wide slices. We observe the mixing level increase as the fluids
flow along the channel and diffuse into each other. Note that M # 0 at z = 0 since
there will be a finite level of mixing measured due to the contact between fluids at
the initial interface (rpix is finite). (b) demonstrates the mixing level averaged in a
one hundred by ten 5.590-a-side square bins in a2y and over time once the system
has reached equilibrium. White represents M < 0.5 and black represents M > 0.68
with a grayscale continuum in between (therefore, white does not represent unmized
nor does black represent mized). The values are chosen so that we can best observe
the qualitative inflected shape of the mixing front which matches what is expected
from the flow-diffusion profile for Poiseuille flow (see Fig. 2). The data contributing to
this image has been modified by applying a Gaussian blur and increasing the image
resolution.

6. Results ITI: Mixing With Obstacles

6.1. Prism-like Obstacle Configurations

Now, we take the previously mentioned system and place arrays of obstacles in the
channel to explore their effect on the mixing efficiency of the channel. We have
considered prism-like obstacle configurations (similar to those used by Wang et al.
[9, 10]) as well as deconstructions of these configurations in order to test the effect
of prisms versus simplified obstacle placement. The exact configurations used as well
as their dimensions can be found in Fig. 6. Due to the reversibility of laminar flows
the streamlines will be identical at the inlet and outlet of the channel whether or not
obstacles are present (for a good discussion on this point, see the recent microfluidics
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Figure 6. Schematics of the 5 obstacle configurations used in the MD simulations.
Configuration 0 is used as the base and has two prism like structures inverted from
each other. The centre of the first prism is a distance d; = 67.08 ¢ from the channel
inlet and the centre of the second prism is a distance d» = 100.62 ¢ from the centre of
the first. The obstacles are placed dy = 16.77 ¢ apart along x and dy, = 15.09 o apart
along y and have a radius of R = 3.77 0. Each configuration following configuration
0 is formed by succesively removing some obstacles: First, the second prism. Then,
obstacles from each end of the prism (so that configuration 3 is symmetric in the y
direction). The final configuration is produced by reducing the radius of the circular
obstacles in configuration 1 (radius is now R = 2.26 o). Also shown here is the exact
Lennard-Jones bead configuration for each obstacle size.

book by Tabeling [23]). This concept was mentioned in the discussion of the Reynolds
number in Section 2.1 and demonstrated for a single post in Section 4. The flow
obstruction by the presence of obstacles has two effects: (i), a local disruption (i.e.,
flattening) of the flow profile that decays back into a parabolic profile eventually well past
the obstacles, and (ii), increasing the contact region between fluid species by inducing
a weak and localized lateral component to the flow.

6.2. Mizing Levels

We performed simulations on channels similar to those in Section 5 except with a shorter
length (L = 447.21 0) and a stronger force (mg = 0.01 mo/7%). As before, fluids
enter the channel separated and diffuse as they flow down the channel except that now
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Figure 7. Mixing levels for all channels simulated (“Poiseuille flow” refers to the
channel with no obstacles). The inset shows the raw data for each simulation averaged
in 5.590-wide slices along x. The grey area shows the region affected by the presence
of the obstacles (region defined as x € [33.54,201.24] o, the maximum extent of the
obstacles in configuration 0). The main figure compensates for different flow rates
and the data for the obstacle-laden channels are scaled as if they have the same flow
rate as the pure diffusion case. This is done for each case by the transformation:
x* = x - (Gp/a) where @ is the average flow rate for the simulation in question and @
is the average flow rate for the Poiseuille case. The inset shows the data without this
transformation.

there is an additional contribution to the flow characteristics due to the presence of
the obstacles. Average mixing values along the length of the channel were computed
and are presented in Fig. 7 along with the data for the channel with no obstacles (pure
diffusion). The inset shows the raw data which demonstrates larger mixing for channels
with obstacles. However, each simulation does not have the same flow rate since we
are keeping ¢ constant, not @, and different obstacle configurations and numbers will
result in different flow rates. In general, a stronger acceleration is needed as the number
of obstacles increases since they will pose as barriers to the fluid flow. In fact, some
flow rates are over 50% smaller than the pure Poiseuille case due to the hydrodynamic
resistance created by the obstacles.

From Eq. A4 (or Eq. 6), the average length along the channel a particle travels
while diffusing a certain distance (or equivalently, achieving a certain level of mixing) is
proportional to the average velocity: (l) o u; therefore we will scale the mixing data so
that each obstacle-laden channel has the same flow rate as the channel with no obstacles
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Figure 8. Inset: The difference between the mixing curves for the obstacle-laden
channels and the purely Poiseuille flow channel. We can see a maximum of about
10%-20% difference in partial mixing about z* € [200, 300] o for obstacle configuration
1. For large z* the difference decreases and we speculate that they will converge
when (M) ~ 1 for all cases. Main plot: convergence to full mixing for large z*
using the transformation 1/v/z*. We see the convergence to (M) ~ 0.98 for obstacle
configuration 0 (the thin dashed line shows (M) = 0.98)

(in absence of turbulence, such a rescaling can be done without changing the physics).
This normalization operates as follows: z* = z - (4y/u), where u is the velocity in an
obstacle laden channel and wu is the velocity in the Poiseuille case. We observe that the
channels with obstacles have a higher level of mixing for about z* > 150 o which is after
the obstacles will begin affecting the mixing. However, since this difference decreases
after about z* = 350 o the enhanced level of mixing is merely due to the fact that we
are measuring before the natural point of 100% mixing (i.e., Ly < Lo).

This theory suggests that if all we are doing is deforming the flow profile then all
mixing curves should converge when (M) ~ 1. Our channels are too short to observe
total convergence (since Pe > L/2y,) but there seems to be an onset of convergence for
large x* especially if we look at the normalized difference between the mixing curves in
the obstacle-laden cases ((M(z*))) and the Poiseuille case ((My(z*))):
AM (M) — (My)

M 5 (M) + (My))

2

A]\4n0r11r1 = (9)

This can be seen in inset to Fig. 8 for each of the obstacle configurations.
The mixing curves will converge eventually. However, our theory is that they should
all converge at the same point and that should correspond to when they reach (M) = 1.
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The mixing level seems to saturate around (M) = 0.98 rather than 1.0 which we believe
is due to the presence of the walls and the finite nature of 7. To examine this closer
we transform the position by taking ¢ = 1/y/x*. This will allow us to extrapolate
for large z* (the square root is used to filter the first order behaviour of diffusion
which is of that form, see Section 2.2 for details). Convergence can clearly be seen
in Fig. 8 for configuration 0. If we take (M) = 0.98 as the measure of full mixing, then
configurations 0 reaches the maximum at x* ~ 937.5 0. For the other configurations we
will extrapolate using an empirical fit to a saturating function constrained to the last
~15% of the transformed data. The fit follows the equation:
(M) = £M1(§0 —_f)

1+ (& =98
where My, M, & and & are the fitting parameters. The fits predict full mixing at
¥ ~ 920.00, z* ~ 898.6 0, z* ~ 917.20, 2" ~ 93240 and z* ~ 856.0 o (for
configurations 1, 2, 3, 4 and the purely diffusive case respectively). The fits can be seen as
light dashed curves in Fig. 8. All of these values lie near the position z* = 896.8 0 +4.5%
and thus all reach full mixing around the same point.

+ M,, (10)

6.3. Lengthening of Mixing Interface

An aspect of the system that may affect the mixing characteristics is the effective amount
of contact between the two fluid species, the contact length: Lg. In a plain channel
with no obstacles the interface between the fluids (effectively the streamline that passes
through (z,y) = (0,0)) is straight and thus the contact length is equal to the length of
the channel: Lo = L. However, if the fluids are perturbed laterally, then this streamline
will follow a sinuous path down the channel and L¢ will be the contour length of this
streamline which will have the property: Lo > L.

In the presence of an assymetric (in y) configuration of obstacles we observe that
the fluid in the channel acquires a y component that is not present in absence of these
obstacles (see Fig. 9a). Furthermore, by looking at the calculated mixing values in
two dimensions we determine that the fluid follows a sinuous path down the channel
(indicated by the white line in Fig. 9b). If we estimate where the interface is (by
following the maximum in the mixing function) we can determine the contour length
of the interface and thus L¢. For obstacle configuration 1 (which is representative of
the others) we find Lg = 451.43 0 which is ~1% longer than the channel length L.
From Eq. 6, d and thus the position of the mixing front should scales (to first order)
as m and thus the difference in contact length we observe will result in the mixing
front (approximately determined by d in Eq. 6) being closer to the wall by less than
one percent. Therefore, the lengthening of the mixing interface we observe will not
significantly affect the mixing properties.
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Figure 9. (a) The z and y components of the fluid velocity for obstacle configuration
1 (averaged over the regions in the vicinity of the prism and immediately after the
prism, respectively). We clearly see that the obstacles resist the flow in regions (i.e.,
slices in y) containing more obstacles resulting in an assymetric flow profile. Also,
we see that after the prism the fluid velocity has acquired a nonzero y-component.
(b) The mixing observed in two-dimensions shown for z between 0 and L/2 and with
the same averaging bins as in Fig. 5. The white line shows the central streamline
(determined by eye) which exhibits sinous flow behaviour. The contour length of this
line is ~1% longer than the length of the system: Lo ~ 1.01L. The sinuous flow is
damped out far from the obstacles and begins to return to a Poiseuile-like flow profile
with no transverse component.

6.4. Flattened Flow Profile

We measure the average flow profile over the range 67.08 0 < x < 186.34 0 immediately
after the position of the obstacles configuration 3 (the symmetric obstacle configuration)
in order to compare it with the flow profile from the Poiseuille case (see Fig. 10, where
the flow has been normalized by @ for comparison). It is clear by comparing the profiles
that the presence of obstacles flattens the flow profile in the centre of the channel.
This observation is less clear from the other obstacle configurations (not shown) as
the assymetric obstacle placement (in the y direction) produces an assymetric flow
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Figure 10. Flow profiles for the channel with no obstacles and for obstacle
configuration 3. The each velocity profile has been normalized by its flow rate, u.
This representation allows us to see how the flow deforms in the presence of obstacles
in comparison to the Poiseuille case. We can see that the obstacles deform the flow
profile with repect to the quadratic Poiseuille case by flattening it. The solid grey line
shows the average value of the flattened profile and the dashed grey line is a quadratic
fit to the Poiseuille profile, both constrained to the region z € [—10,10] o.

profile. Furthermore, as we saw in the previous section, the flow profile also varies along
the length of the channel and recovers a Poiseuille-like profile far from the obstacles.
Essentially, the flow deformations are damped as the fluid travels farther from the
obstacles and we would expect to recover a Poiseuille flow far from the obstacles.

Since the flow profile is flattened in the centre of the channel, we expect this to affect
the mixing. According to the theory outlined in Section 2.3, this effect should increase
the level of partial mixing we observe. Clearly, the mixing levels we measured in Section
6.2 rise in the presence of obstacles, compared to the Poiseuille case, immediately after
the position of the obstacles. Also, we observe that the configurations with assymetric
profiles (not shown) also appear to increase the level of mixing. Overall, these profiles
are also “flatter” than the Poiseuille case. If the channel length is such that the outlet
is immediately after the obstacles, then it would give the impression that the presence
of obstacles increases mixing efficiency, when in fact only the partial mixing will have
been improved. Both flattened and non-flattened flow profiles will reach full mixing at
the same point.
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7. Conclusions

We have presented a basic theory for diffusion (and thus mixing) in channels with both
flat and Poiseuille flow profiles. Under conditions where the flow rate is the same then
all channels of length greater than L, (which has a universal value for channels with
the same flow rate) will achieve 100% mixing by the outlet. We have also proposed
a function to quantify the level of mixing in a fluid and associate a unique value to
each element in a system consisting of an ensemble of particles (such as a Molecular
Dynamics simulation of Lennard-Jones beads). In macroscopic models (or experimental
observations) this expression can be generalized in terms of densities or concentrations
of the individual species.

We have predicted using theory and demonstrated with MD simulations that the
presence of obstacles in channels with fluid flow will disrupt the flow by flattening the
profile across the channel (at least over a finite channel length) and introduce a lateral
component to the velocity. In systems where the flow is composed of two identically-
interacting species, the former effect causes the measured mixing to be larger if the
point of measurement is less than Ly and the latter effect lengthens the contact between
fluids but does not contribute much to mixing. It is the former effect, the flow profile
flattening, that has led to obstacles being considered as mixing enhancers in previous
studies. This is true if one is aiming to enhance partial mixing but that is not usually
the case. Normally one wishes to shorten the distance and time required to attain
complete mixing and we have demonstrated that it cannot be accomplished by obstacles
in microchannels.

At the present time, we are exploring modifications to the relative strengths of the
attractive and repulsive components of the Lennard-Jones potential in order to simulate
immiscible fluids. This technique can also simulate hydrophobicity and various degrees
of wall wetting. We are also exploring the mixing properties of very small channels where
the nanoscopic structure of the fluids becomes apparent and will affect the physical
properties of the system. Furthermore, since we have used Molecular Dynamics to
model ths system it is trivial to simulate complex fluids, such as those composed of
dimers, oligomers and polymers, a task that is difficult using traditional macroscopic
models.
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Appendix A. Probabilistic Derivation of the Poiseuille Flow-diffusion
Profile

From the solution of the one-dimensional diffusion equation we have that the probability
distribution for finding a particle in space and time is

p(y,t) = \/EeXp <—4y;t> : (A1)

For some parameter 7(y,t) we can find its average value () over all space and in the
range t € [0, 7] from the following [24]:

Sy Py )y (y, tydedy
I [y, tydtdy

Let us define the distance along the channel a particle has travelled while diffusing a
distance d across the channel as [. The average distance can be expressed as () = (u)tp
where (u) is the average velocity and tp = d?/2D is Eintein’s relation for the average

(7

(A.2)

time taken for a particle to diffuse a distance d. We are assuming a Poiseuille flow profile
that varies only in space given by

) = (1-5).

Using the probabilistic arguments outlined above (with the temporal range t € [0, tp)])
we can calculate the average velocity to be

ugD 1d?
(u) = ug — ;7151) = g (1 - y2) . (A.3)

This is as expected: the average speed at d = 0 should be the peak of the flow profile
(up) since this is the centre of the channel and thus the maximum velocity and it reduces
to up/2 at the wall (d = yo) which is expected for Poiseuille flow. For particles starting
in the centre (y(t = 0) = 0) we calculate (I) by multiplying Eq. A.3 by ¢p:

U0d2 1 d2

l) = (u)tp = 1-=-—= A4

=t = (1-3%). (A4

which demonstrates the correction to Eq. 5 due to the quadratic nature of Poiseuille

flow.

Appendix B. Discretized Derivation of the Poiseuille Flow-diffusion Profile

Given a generic flow profile which varies as a function of y, v = u(y), we derive a
numerical as well as analytic method of finding the average position along the channel
a particle has travelled, (), while diffusing a distance d across the channel. We will
discretize the profile y > 0 into IV slices. We will define the following: Ah is the width
of the slices and h; is the distance to the i*" slice from the centre of the profile. The
distance h; can be expressed as h; = iAh where i = 0,1,...,N — 1, N and hy = y,.
The velocity profile is discretized as u; = u(h;).
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It can be useful to express the distance across the channel that a fluid particle
diffuses as a function of the distance along the channel fluid has travelled due to imposed
flow. This expression can give us an idea of the channel length required to mix two
fluids when we rely solely on diffusion. We have discretized the velocity profile along
y and consider each slice to have a constant velocity of u;. Starting from the centre
(y = hy = 0) the average time taken to diffuse to the end of the i'" slice can be found
from Eq. 4:

h?

(tp,) = 3D
Therefore, the average time a particle spends in the ith slice, (¢;), is the time taken to
diffuse to the end of that slice minus the time taken to diffuse to the beginning of that
slice (or to the end of the previous slice): (t;) = (tp,) — {tp,_,). Now, we can write the
average distance travelled along the length of the channel (in the direction of the flow)
while a particle is in the i*" slice, (\;), as this time multiplied by the velocity in the slice

(\i) = wilts) = wi ((tn,) = (to._,)) -
Therefore, the average distance travelled along the channel after diffusing to the n'®

slice is
n n

(L) =Y ()= ui ({tn,) = (tp,_,))

i=1 =1

1 n
i=1
We can rewrite the inner portion as follows
h? — h1271 - (hl + hz—l)(hz - hi—l) == Ah(hl + hi—l)

and so the sum is now
1 n
i=1

This equation represents a numerical method of solving (I) as a function of d (where
d = h,) by discretizing the spacial coordinate and the velocity profile.
If we take the limit of Eq. B.1 as Ah — 0:

0= gy 3l ) (52

then we can turn it into an integral over h:

2D/ )(h + h)dh

- /0 w(h)hdh. (B.3)

This expression can give an analytic result but may not be useful in all cases (such
as if u(y) cannot be integrated or is only known numerically). Note that this entire
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treatment is for a particle diffusing from the centre of the channel towards the wall at
y = 1. However, due to the symmetry of the velocity profile the result will hold for a
particle diffusing from the centre in the negative y direction as well.
As an example, we substitute the Poiseuille profile for u(h) (from Eq. 2) and
evaluate the integral in Eq. B.3:
g d h2
(l>—5 i <1—2)hdh

Yo

2 2
_ud LAy (B.4)
2D 28

which demonstrates the correction due to the quadratic nature of the profile. We can see

that the method derived here gives the same result as the probabilistic method derived
in Appendix A.
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Extra Material

This chapter will present material relating to both projects that was not included in the article
manuscripts. The reasons for the fact that the material was not included are due to limitations on
article length, it was completed after submission of said manuscripts or that it did not flow properly
with the rest of the material.

Project I: Spinning

The nondimensional Spin numbe¥, presented in the first manuscript as Eq. 10 has some
physical significance that was not explored in that paper. Firstly, it demonstrates the inherent in-
terdependence of the system properties and, second, it can be thought of as analogous to another
nondimensional number in fluid mechanics: the Froude number. On the first point, we demon-
strated in our manuscript that the tangential velocity in the cavity,, is proportional to the
velocity near the wall in the cavityy,. . Clearly, the latter should also be proportional to the
mean velocity in the channet,,,; « u. So, we can deduce that,, should be proportional to
the mean velocityu.,, « @. If we square this expression and call the proportionality consiant

we have:u?,, = Su?. Now, for a circular disc of radiu® the radial acceleration can be expressed

cav

asG = u?,_ /R and so we can rewrite the expression@g8 = Su? from which we have the

cav
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definition of the spin number presented in the manuscript:

= —. (4.1)

We can also derive the Spin number by considering the Froude number (presented in the
Introduction) which measures the relative effects of intertial forces and gravity forces in a hydro-
dynamic system. If we replace the external gravity force with our radial acceler@tjarse a
length scale corresponding to the radius of the cakitgnd use the flow rate as the inertial flow
velocity we can create a nondimensional Spin-Froude number defined as

VGR

In this case we are relating the inertial force in the channel to the radial force in the cavity. This can

Sy = (4.2)

be related to our Spin number 8s= S.,2. We can calculate thsz, number for our simulations in
the manuscript to béy, = 3.12 and for the experiments performed by Ckialto be Sy, = 1.70,
again demonstrating that we are operating in the same regime.

Project II: Mixing

In the second Appendix to the manuscript of the second article we present a method for numerically
calculating the flow-diffusion profiles of a channel given a discrete velocity profile. However, in
the paper we did not show any actual calculations from our simulation. From the analysis we did
perform, we obtained the discrete flow profiles for each simulation (such as those presented in
Fig. 10 of the manuscript) and we can easily use Eq. B.1 to calculate the flow-diffusion profiles.
This can be seen in Figt.1 where we have normalized the curves so that they all regcly

24.83 ¢ at the same point (which we labgl})). This is essentially normalizing the flow profiles so

that they have the property= 2D L, /y2 . This figure is the numerical equivalent to the theoretical
prediction presented in Fig. 2 of the manuscript. The data is shown for each obstacle configuration
and for the channel without obstacles as well as for the theoretical prediction for a flat flow profile
with the same flow rate. Clearly, the obstacle laden channels show the position across the channel,
d, as larger than that for the channel without obstacles measured at algpitl,. This would
correspond to an increased level of partial mixing measured at this point which is exactly what we
observe in the article manuscript.
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FIGURE 4.1 Numerically calculated flow-diffusion profiles for simulations of a
plain channel (Poiseuille flow) and obstacle laden channels (configurations 0O to 4)
as well as the theoretical prediction for a constant flow giveruby 2D Lo /y2. All

of the results for channels with obstacles show that the flow-diffusion profile is greater
than that for a channel with no obstacles (measured at a pgink Ly). Obstacle
configuration O is shown in black as a clear demonstration.

It should be noted that we use the flow profiles averaged over a length of channel near the
position of the obstacles. The flow will slowly recover a Poiseuille profile far from the obstacles
which will affect the flow-diffusion profiles. Therefore, we must interpret the data presented here
as an upper bound for the flow-diffusion profiles in obstacle-laden channels. However, it should
be possible to extend the theory for these profiles to include flows that vary along the length of the
channel in addition to the width.
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Conclusions

This thesis contributes to the field of microfluidics with two distinct studies and adds to the growing
body of work demonstrating the utility of Molecular Dynamics as a simulation tool for microflu-
idic and nanofluidic systems. There is a growing need for a better understanding of the physics
governing microflows and for fresh ideas and new approaches to old problems. As we have shown
in this thesis, there is still room for explorations of new phenomena and explanations of old results.

The two projects presented here are distinct but share a few similarities: both are low Reynolds
number flows over similar length scales and we apply the same model to both systems. Each project
has resulted in a submitted manuscript and the projects are independent of one another (i.e., they
can be read in any order). There is some overlap between the two articles (such as the discussion
of simulation method and hydrodynamic properties in Molecular Dynamics simulations) but for
the most part they do discuss the same subject matter.

Project I: Spinning

The first project, “spinning”, was a numerical reproduction and extension of published experi-
mental research. We recreated the microvortex studies by Chiu’s group as a Molecular Dynamics
simulation and developed a method of generating spin in a more efficient manner. We began by
exploring the hydrodynamic properties of a fluidic channel with no cavity and how we could mod-
ify the wall-fluid interaction. By reducing the attractive portion of the Lennard-Jones potential we
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decreased the interfacial tension between the wall and the fluid. Then, by measuring the slip length
observed at the wall we determined that this effect corresponds to increasing the hydrophobicity of
the wall: effectively allowing the fluid to acquire a significant nonzero velocity along the wall. We
then applied this technique to a system containing both a channel and cavity to explore how the hy-
drophobicity affects the rotation of the cavity fluid. Using two schemes which selectively alter the
hydrophobicity of the cavity and/or channel we were able to significantly increase the level of spin
(measured by the time- and mass-averaged angular momentum) in the cavity. The two schemes
selectively modify the fluid-wall interaction either along one channel wall (scheme A) or along the
channel and cavity walls (scheme B). Using scheme B we were able to increase the level of spin by
over 80% by reducing the surface tension by half. From finite difference calculations of a model
based on the Navier-Stokes equation we were able to determine how the cavity spin should depend
on the channel properties (in this case, the flow) and were able to fit our data succesfully. Finally,
we proposed a nondimensional parameter to characterize the spin regime for studies performed on
coupled channel-cavity microfluidic systems.

As far as we are aware, the technique we develop for increase spin by modifying the chemistry
of the wall has never been proposed or examined experimentally. Therefore, we will contact the
authors and discuss the viability of our technique as well as the possibility of a collaboration.
More generally, our results show the importance of wall-fluid interaction in microsystems. Since
walls play such an important role on micro- and nanoscale systems, determining how they effect
the dynamics of microflows and controlling their behaviour is of paramount importance to the
development of microfluidic devices.

Project II: Mixing

The second project, “mixing”, was also a numerical reproduction of a previous study. This time
the study was on the mixing properties of channels with obstacles and we reproduced as well as
explained the results in detail. We explored the various processes that are relevant for enhancing
mixing and clarified prior interpretations of the results. The original study by Véaadiclaimed

that the presence of obstacles increased the efficiency of mixing in a microchannel. We challenged
that statement in our study by breaking down all of the possible effects and how they might alter
the mixing efficiency. We were able to determine that obstacles had two effects: (i) increasing the
effective contact between the different fluid species by inducing flow in the lateral direction and
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(i) flattening the Poseuille flow profile over a finite length of the channel. From our simulation
results we determined that the former effect is negligible and the latter effect is responsible for the
conclusions drawn in the earlier paper by Waat@l We showed, through theoretical arguments
and simulation data, that all flow profiles of the same flow rate reach complete mixing at the same
point (a lengthZ,, determined from the geometry of the channel and the diffusive properties of
the fluid). Also in this paper we presented a theoretical prediction for diffusion of a particle across
a channel in the presence of a Poiseuille flow profile. This theory explains how, with a flattened
flow profile, the measured mixing at a point befdrg will yield a higher level of partial mixing
(<100%). This is the effect that was observed previously and published by taaigince their
channel length is an order of magnitude smaller thanZiheequired given their channel width

and Peclet number.

We have shown that simple tricks, such as those explored in this project, cannot be used
to increase mixing in low Reynolds number flows. One can think of many (such as bumps and
grooves along the channel walls or hydrophobic and hydrophilic patches on the wall) but more
complex schemes are required in order to significantly enhance the mixing. For this reason, many
schemes of increasing complexity have been and are still being explored in this field.

Further Studies

Molecular Dynamics allows the study of many physical systems that would be difficult with tradi-
tional methods (such as macroscopic hydrodynamics). One example is our treatment of hydropho-
bic walls: we have only made assumptions onititeractionbetween the wall and the fluid. In

a hydrodynamic model one would have to make assumptions on the observable properties of the
system (such as the fluid velocity). Also, as shown in the introduction, Molecular Dynamics al-
lows for the study of immiscible and partially immiscible fluids in a natural way: by modifying

the interaction between fluid species. This would, again, require a complex model in order to be
simulated with macroscopic theories.

In future work we would like to extend the projects from two dimensions to three dimensions,
particularly for the mixing project. Although we are confident in the generic physics of our results,
we would be interested in exploring the same systems in three dimensions. Clearly, the exact
numerical values we obtain will be different depending on the dimensionality but we expect to
observe the same general physical trends.
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One avenue that was not explored in this work is the properties of complex fluids under
the two conditions studied here: rotational motion and diffusive mixing. A complex fluid would
constitute an ensemble of dimers, oligomers and polymers (or other types of macromolecules, such
as branched polymers) and can exhibit very unique properties. Modelling such a system is trivial
with Molecular Dynamics but poses problems in macroscopic models. Furthermore, Molecular
Dynamics simulations allow one to explore the properties of systems where the nanoscopic nature
of materials may become apparent (as we witnessed with fluid layering near walls). Exploring
either project under such conditions would be an interesting study. How does a mivesortex
behave? How do the mixing properties of channels with obstacles change in the presence of the
finite structure of fluids? Molecular Dynamics simulations along with other models of similar
spirit (such as Monte Carlo) are indispensible tools for examining physical (as well as chemical
and even biological) systems.
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