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ABSTRACT

The Madden-Julian Oscillation (MJO) is the dominant mode of intraseasonal variability in

the tropical atmosphere and provides global predictability on timescales that bridge the

gap between weather and climate. The influence of the MJO on the ocean is explored

with a combination of statistical analysis of observations using multivariate time series

techniques, dynamical theory, and general circulation models with realistic forcing and

bathymetry.

The MJO is shown to have a significant and predictable influence on global sea level.

Three main regions of influence are identified: (i) the equatorial Pacific and the west coast

of the Americas, (ii) the Gulf of of Carpentaria, and (iii) the northeastern Indian Ocean. In

the equatorial Pacific, equatorially trapped Kelvin waves are forced by MJO-related surface

winds in the western Pacific and propagate eastward. These remotely forced waves then

transform into coastal trapped waves that propagate poleward along the west coast of the

Americas (consistent with previous work). By way of contrast, in the Gulf of Carpentaria

it is shown that the connection with the MJO is due to local wind forcing through simple

set-up of sea level. In the northeastern Indian Ocean, a complex sea level pattern involving

equatorially trapped Kelvin waves, coastal trapped waves along Sumatra, Java and the Bay

of Bengal, and reflected Rossby waves along 5.5◦N is shown to be caused by a combination

of local and remote forcing by MJO-related surface winds.

To examine the predictability of the MJO, and the stability of MJO variability on multi-

decadal time scales, the MJO index is reconstructed over the last century. The reconstructed

index is verified by comparing it with independently observed environmental variables.

Three predictability time scales are proposed and estimated from the MJO index. A simple

forced damped harmonic oscillator model is used to explain the complex relationship

amongst the predictability time scales and also gain insight into the predictability of the

MJO.
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N2 Buoyancy or BruntVäisälä frequency squared radians2 s−2
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CHAPTER 1

INTRODUCTION

The Madden-Julian Oscillation (MJO) is the dominant mode of intraseasonal variability in

the tropical atmosphere. The MJO provides predictability on timescales that bridge the

gap between weather and climate. By modulating surface wind stress, precipitation, and

the amount of solar radiation that reaches the sea surface, among other variables, the MJO

can influence the state of the ocean as well. The Madden-Julian Oscillation is therefore

an important source of intraseasonal variability in the world ocean. In this thesis I will

explore the influence of the MJO on ocean variability and explore the consequences for

the predictability of the ocean on intraseasonal time scales.

1.1 Weather, Climate, and Intraseasonal Variability

The prediction of the atmosphere and the ocean over the short-term (weather forecasting)

and over the long-term (climate prediction) have been studied extensively for centuries

(e.g., see Aristotle’s 4th century Meteorologica, or Ibn Wahshiyya’s 10th century Nabatean

Agriculture). However, throughout most of our history weather prediction has involved

little more than weather lore, such as the old mariner’s rhyme

Red sky at night, sailor’s delight

Red sky at morning, sailors take warning

indicating how one may interpret the colour of a sunrise or sunset (i.e., the observed state

of the atmosphere) in terms of the severity of forthcoming weather conditions. Items

of weather lore such as this were effectively empirical weather prediction tools. The

technological achievements of the industrial revolution led to more accurate observations

1



2

of the environment and the ability to signal changes in weather patterns across large

distances as our ability to communicate improved. The greatest leap came when we

were able to understand the dynamics of the atmosphere in terms of fluid motion and

thermodynamics; by the twentieth century, technology had advanced to the point that we

were able to simulate the atmosphere and ocean using general circulation models. These

last developments can be considered the beginning of contemporary weather and climate

prediction.

After Edward Lorenz laid the theoretical foundations for what would become Chaos

Theory, rapid advances were made in our understanding of the dynamics of weather and

climate. He postulated that the dynamical system describing the atmosphere was chaotic,

implying that there existed a time scale beyond which predictions based on similar initial

conditions would evolve into considerably different states. Unless the initial condition is

known exactly it is impossible to predict the state of the system beyond this time scale

(Lorenz, 1963). Based on a simple mathematical model of the atmosphere, the limiting

time scale for weather prediction was estimated to be about one or two weeks (Lorenz,

1965). These ideas provided the framework for our early understanding of weather and

climate. Weather was defined as the variability that occurs on time scales less than two

weeks and could be predicted using the appropriate dynamical equations and a given initial

state. In practice, modern weather prediction is effectively a series of short initial condition

problems with observations assimilated into the numerical model to correct the model state

as it drifts from reality. Climate prediction is focussed on the statistical properties of the

atmosphere on seasonal time scales or longer and relies on predicting average conditions

using atmospheric dynamics.

The classic division of weather and climate and its practical implications have been

described concisely by John von Neumann (von Neumann, 1960):

“It seems quite plausible from general experience that in any mathematical

problem it is easiest to determine the solution for shorter periods, over which

the extrapolation parameter is small. The next most difficult problem to solve

is that of determining the asymptotic conditions – that is, the conditions that

exist over periods for which the extrapolation parameter is very large, say near

infinity. Finally, the most difficult is the intermediate range problem, for which

the extrapolation parameter is neither very small nor very large. In this case
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the neglect of either extreme is forbidden. On the basis of these considerations,

it follows that there is a perfectly logical approach to any computational

treatment of the problem of weather prediction. The approach is to try first

short-range forecasts, then long range forecasts of those properties of the

circulation that can perpetuate themselves over arbitrarily long periods of

time, and only finally to attempt forecasts for medium time periods which are

too long to treat by simple hydrodynamic theory and too short to treat by the

general principles of equilibrium theory.”

This view effectively divided the prediction of weather, climate, and the intermediate

time scales into three distinct problems of increasing difficulty. A different point of view

is that there are essentially two problems. The more complicated problem is that of

predicting the statistical behaviour of the atmosphere over long time scales (i.e., climate

prediction). The more tractable problem consists of predicting weather and other similar

phenomena within the limits set by their predictability time scales. Weather prediction

using numerical models has been an active field of research for more than a century and our

skill at predicting weather is quite advanced. Recent research has now begun to tackle the

problem of predicting on intermediate, or intraseasonal, time scales that span a few weeks

to a few months. The Madden-Julian Oscillation has a predictability time scale longer

than the “two-week limit” and therefore a better understanding of this phenomenon, and

how it influences the ocean, may allow us to bridge the gap between short-term weather

predictions and long-term climate predictions and help with the development of a seamless

forecasting framework.

1.2 Modes of Variability in the Ocean-Atmosphere System

Recurring patterns of variability in the atmosphere and ocean are known as “modes of

variability”. El Niño is a well-known example that occurs in the tropical eastern Pacific

Ocean and is associated with variations in sea surface temperature and sea level height (e.g.,

Clarke (2008)). El Niño, and its opposite phase La Niña, tend to repeat every 3 to 8 years.

In addition to El Niño-La Niña, there exist numerous other modes of variability affecting

all aspects of the atmosphere and ocean with various time scales and spatial patterns.

Examples include the North Atlantic Oscillation (e.g., Gill (1982)), the Pacific Decadal
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Figure 1.1: Indices describing the time variation of selected modes of variability of the
ocean-atmosphere system. Each row corresponds to a given index, specifically (from top to
bottom) the Atlantic Multidecadal Oscillation, the Pacific Decadal Oscillation, El Niño-La
Niña (Niño 3.4 index), the North Atlantic Oscillation, and the Madden Julian Oscillation
(first component only). Time series are shown on the left and power spectral densities
are shown on the right. The y-axis is the product of frequency and power and x-axis is
the logarithm of frequency leading to a variance preserving form for the power spectral
density.
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Oscillation (Mantua and Hare, 2002), the Atlantic Multidecadal Oscillation (Schlesinger

and Ramankutty, 1994), and the Indian Ocean Dipole (Saji et al., 1999). The time variation

of these modes is often characterized by a time series, known as an index, that captures

the most important features of its temporal variability. Indices for selected phenomena

are shown in Figure 1.1 to illustrate the diverse time scales on which different modes of

variability operate.

The ability to predict the modes of variability can be used to help predict local climatic

conditions. For example, a strong El Niño is associated with enhanced rainfall in coastal

South America, warmer and drier winters over much of northern North America, and dry

conditions over Southeast Asia (Ropelewski and Halpert, 1987, 1986). Therefore, the

predictability inherent in the index describing El Niño allows enhanced predictability of

environmental conditions in these regions.

The MJO is a mode of variability in the tropical atmosphere that operates on intraseasonal

time scales (between 30 and 90 days, Figure 1.1). Therefore, the Madden-Julian Oscillation

(MJO) is a prime candidate for improving the quality of long-range weather predictions.

1.3 The Madden-Julian Oscillation

The phenomenon now known as the Madden-Julian Oscillation was discovered accidentally

during a study of tropical wind. The details were first published in 1971 by Roland Madden

and Paul Julian:

“[. . .] we stumbled upon an apparent long-period oscillation in the station

pressure and zonal wind components at Canton Island (3◦S, 172◦W). The

frequency of this oscillation is much lower than that of any wave mode yet

hypothesized, but is higher than can be expected from any component of a

seasonal variation.” (Madden and Julian, 1971)

They also observed a similar phenomenon in high-level zonal wind that was out of phase

with the signal in low level zonal wind, indicating a baroclinic structure. The initial

discovery and subsequent investigations identified many characteristics of the MJO that

continue to be areas of study today including its time scale, seasonality, nonlinearity,

questions about wavelike or non-wavelike nature, and the dynamics (which are as yet

unexplained by theory and improperly resolved by models). Madden and Julian continued
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Figure 1.2: MJO event lifecycle and index. Left: Schematic showing the lifecycle of
a single MJO event (Madden and Julian, 2005). A convection cell develops over the
Indian Ocean, perturbing the troposphere and zonal wind at both low and high levels.
This “MJO event” then propagates eastward before dissipating over the eastern Pacific and
Atlantic Oceans. Right: MJO Index as developed by Wheeler and Hendon (2004). The
radius and angle of a particular point represent the strength and phase (zonal position of
active convection as indicated around the edge of the plot) of the MJO, respectively. The
numbered phases roughly correspond between the left and right panels.

the study of this phenomenon in their follow-up paper in which they examined the spatial

and temporal structure of the MJO (Madden and Julian, 1972). They reduced the complex

behaviour of the MJO in space and time (along the equator) down to the simple schematic

reproduced here in Figure 1.2. In short, the MJO consists of an eastward propagating

region of deep convection with associated anomalies in precipitation, surface pressure, and

zonal wind at both low and high vertical heights which occurs approximately every 40-50

days along with seasonal variations in strength, meridional structure, and timescale (Zhang

and Dong, 2004). This behaviour represents the dominant mode (but by no means the only

source) of intraseasonal variability in the tropical atmosphere.
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The Madden-Julian Oscillation is a complex beast. As described above, the primary

phenomenon is an eastward moving region of deep atmospheric convection and precipita-

tion centred about the equator. However, it also has poleward propagating features over

Southeast Asia that are often considered separately as the Boreal Summer Intraseasonal

Oscillation (Madden and Julian, 1994). The deep convection drives a baroclinic wind

structure whereby the lower troposphere (below about 1.5 km) experiences anomalous

convergence of zonal wind and the upper troposphere (above about 10 km) experiences

anomalous divergence. Near the surface and over land this is expressed as anomalous

easterly and then westerly winds as the active region of convection passes over. It has been

speculated that the ancient Polynesians may have used knowledge of these “westerly wind

bursts” to navigate the large distances between islands in the Pacific Ocean (Finney, 1994).

The active region of the MJO moves at an average speed of about 5 m s−1 until it reaches

the eastern Pacific after which its speed increases and its strength decreases.

Wheeler and Kiladis (1999) summarized the unique, and largely unexplained, character-

istics of the MJO using wavenumber-frequency spectra of equatorial outgoing longwave

radiation (OLR, used as a proxy for precipitation). They detected dynamically predicted

modes of variability (e.g., convectively coupled Kelvin waves, Rossby waves, inertio-

gravity waves, see Matsuno (1966) and Section 3.3 for details on these modes) as well as

variability which fit the characteristics of the MJO (Figure 1.3). Their spectral approach

gave a clear picture as to how the MJO compares with the dispersion relations of dynami-

cally based modes of variability; it is notable that the MJO lies off the dispersion curves

for known equatorial wave types.

Over the last few years the MJO has been of increasing interest to the research commu-

nity. The number of articles containing the text “intraseasonal” has increased rapidly since

the 1970s when there were only a handful per year. Over the last five years this number

has increased to between 400 and 500 such articles published per year. Since its naming

in the mid-1980s, the number of articles containing the text “madden-julian oscillation”

has increased to nearly 200 annually over the last few years1. The topics covered by

these articles have branched out from simple observational studies of the intraseasonal

oscillation in the tropics in the early years to theoretical studies of the dynamics of the

MJO, how the MJO is represented in numerical models, its connections with ENSO, and

1These figures were generated by searching Google Scholar (scholar.google.com) for specific phrases
and publication dates.



8

Antisymmetric Symmetric

Figure 1.3: Wavenumber-frequency spectra for outgoing longwave radiation (OLR) in
the atmosphere. The spectra, based on averages of OLR in the tropics between 15◦S and
15◦N, are shown for variability which is antisymmetric (left) and symmetric (right) about
the equator. The MJO is clearly distinguishable in both panels for periods between 30
and 90 days and for zonal wavenumbers 1 to 4. The signal is strongest in the symmetric
spectrum which is consistent with observations which show the MJO to be predominantly
symmetric about the equator. The thin solid lines show the dispersion curves for Kelvin
waves, gravity waves (EIG), Rossby waves (ER), and mixed Rossby-gravity waves (MRG).
Figure reproduced from Wheeler and Kiladis (1999).

teleconnections with the extratropical ocean and atmosphere.

The MJO, like weather, has an inherent predictability time scale which is independent

of the MJO oscillation period. Waliser (2005) suggested that this time scale is between

20 to 30 days. Other studies have estimated the time scale to be 2 weeks using a coupled

ocean-atmosphere circulation model (Vitart et al., 2007), 15 days using autoregressive

models (Lo and Hendon, 2000; Maharaj and Wheeler, 2005), 15 days using a multivariate

lag-regression model (Jiang et al., 2008), and 10 days using an atmospheric circulation

model (Lin et al., 2008). Woolnough et al. (2007) found that coupling an ocean general

circulation model to an atmospheric model can add several days over results from modeling

the atmosphere alone. The predictability of the MJO (20–30 days) is longer than the

predictability limit attributed to weather variability (1–2 weeks) and therefore the MJO

has potential to add true value to long range atmospheric forecasting.
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Until recently there was no widely accepted index for the MJO. In fact, there were nearly

as many ways of characterizing the MJO as there were independent studies. Recently, the

definition developed by Wheeler and Hendon (2004) has become the effective standard

index for the MJO. This index is bivariate and consists of the first two principal components

of an EOF analysis of tropically averaged (15◦S to 15◦N) fields of OLR (as a proxy for

precipitation) and zonal wind at two heights (200 hPa and 850 hPa). The intraseasonal

signals in each of these three variables are primary indicators of the MJO and their

combination into the Wheeler Hendon index further suppresses high frequencies signals

which are incoherent amongst these three variables.

The two components of the index can be visualized in a two-dimensional plot where the

x and y axes correspond to the two components. This will be referred to as MJO space.

The radius and angle of a particular point represents the strength and phase of the MJO,

respectively (Figure 1.2). The angle can also be interpreted as the region over which the

active convection associated with the MJO is situated (as indicated in Figure 1.2). MJO

events typically follow counterclockwise paths in MJO space as they propagate eastward

around the globe. (The two components are approximately in quadrature.) The centre of

convection is over the Western Hemisphere and Africa during phases 8 and 1, the Indian

Ocean during phases 2 and 3, the Maritime Continent during phases 4 and 5, and the

Western Pacific during phases 6 and 7.

1.4 Dynamical Theories and Models of the MJO

The Madden-Julian Oscillation has proven itself to be a difficult phenomenon to describe

theoretically. The properties which an effective theoretical model of the MJO must

reproduce include (1) coupled planetary-scale circulation and large-scale convection, (2)

horizontal atmospheric circulation along the equator made up of both eastward propagating

Kelvin waves and westward propagating Rossby waves, (3) eastward propagation speed

of about 5 m s−1 in the Eastern Hemisphere and faster elsewhere, and (4) northward and

westward propagation in the Asian monsoon region during northern summer. It has been

determined that the principal process which must be modeled theoretically in order to

properly reproduce the properties listed above is the interaction between large-scale motion

and moist atmospheric processes. Thus far, models based on wave-CISK (conditional
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instability of the second kind), WISHE (wind-induced surface heat exchange), and friction-

induced moisture-convergence feedback have been the most successful. However, to date

most models have only been able to reproduce a subset of the properties listed above

(Wang, 2005).

Numerical models have had mixed results when attempting to resolve intraseasonal

variability in the ocean and atmosphere. Approaches have ranged from simplifying the

mathematical model down to a forced rotating fluid on a β-plane (Wedi and Smolarkiewicz,

2008) to assessing how a complex ensemble of fifteen different global atmospheric cir-

culation models behave on intraseasonal timescales (Slingo et al., 1996). Part of the

conclusions in the latter study is summarized by the following statement:

“[An] accurate simulation of the intraseasonal oscillation may be a demand-

ing test of a General Circulation Model, because it has so many requirements,

and that these may include good simulations of the basic climate, the seasonal

cycle, higher frequency modes of tropical variability, and interactions with

the extratropics.”

Often, models are able to capture some of the characteristics of the MJO such as eastward

propagation speed and zonal structure while lacking others such as coherence between

zonal wind and precipitation or seasonal variations (Zhang et al., 2006). One of the main

factors that may improve how models handle the MJO and intraseasonal variability is

proper parameterization of subgrid-scale convection (Lin et al., 2008; Grabowski, 2006).

The importance of ocean-atmosphere coupling is potentially an important aspect of

modeling the MJO. Air-sea interactions are certainly necessary in order to resolve oceanic

expressions of the MJO. However, it is not clear if two-way air-sea coupling is critical for

fully resolving the MJO itself or if one-way coupling alone is sufficient. The effect of air-

sea coupling in models is inconsistent from study to study; some show improved resolution

of the MJO and others show no effect or an improvement of some features and not others

(e.g., Hendon (2000), Zhang et al. (2006), Newman et al. (2009), and the aforementioned

Slingo et al. (1996)). This inconsistency may depend on factors such as the particular

oceanic or atmospheric model, the coupling mechanism, specific parameterizations or the

initialization state. Two-way coupling is currently an active field of research.
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1.5 The MJO and the Extratropical Atmosphere

In the extratropical atmosphere, intraseasonal variability is not dominated by the MJO and

other phenomena have a strong influence (e.g.,the North Atlantic Oscillation). However,

the MJO is such a strong source of variability that it affects the global atmosphere-ocean

system leading to detectable signatures in some extratropical regions. A qualitative

description of how the global atmosphere is affected by the MJO can be found in Meehl

et al. (1996) where global patterns of wind anomalies and pressure systems are mapped

for different phases of the MJO. These maps show the effects of tropical intraseasonal

variability being felt at all levels of the troposphere as well as the tropics and extratropics.

Rainfall in the Pacific Northwest of the USA is known to be modulated by the MJO

during the northern autumn (Bond and Vecchi, 2003). Tropical cyclones, though not strictly

an extratropical phenomenon, exert a strong influence when they move into the extratropics

and it has been shown that the generation rate of tropical cyclones is strongly influenced

by the MJO in all ocean basins (Hall et al., 2001; Maloney and Hartmann, 2000a,b; Ho

et al., 2006; Bessafi and Wheeler, 2006). Furthermore, there is strong evidence that there

are links with surface air temperature (SAT) at high latitudes (Vecchi and Bond, 2004; Lin

and Brunet, 2009). Anomalies in SAT associated with the MJO are on the order of 5◦C in

regions such as Northern Ontario and Central Siberia.

Recent research has pointed to strong links between two major modes of variability in

the ocean-atmosphere system: the MJO and the North Atlantic Oscillation (NAO) (Cassou,

2008; Lin et al., 2009). Cassou (2008) categorized the NAO by four regimes: NAO+,

NAO-, Atlantic ridge and Scandinavian blocking. The first two describe variability in

the zonal flow of the region and the latter two describe specific positioning of pressure

systems over Europe and the eastern Atlantic. Cassou (2008) presents statistical evidence

that phases 3 and 6 of the MJO (Figure 1.2) are precursors to NAO+ and NAO- regimes

respectively, and proposes that it may be due to timescale resonance or possibly direct

forcing from the eastern Pacific. Lin et al. (2009) revealed the connection between the

MJO and NAO by examining lagged composites of the NAO index with MJO phase.



12

1.6 The MJO and the Tropical Ocean

The Madden-Julian Oscillation is an atmospheric phenomenon but the associated precipi-

tation, convection, and wind anomalies also interact with the ocean surface. Zonal wind

anomalies affect ocean mixed layer depth and zonal currents at various depths (Kessler,

2005). For example, Han et al. (2001) found that a large portion of the variability in the

intraseasonal zonal flow anomalies in the interior of the Indian Ocean is associated with

the MJO. They also observed that the ocean response to the MJO tends to be expressed on

longer timescales within the intraseasonal band (90 days in the Indian Ocean, 70 days in the

Pacific Ocean). This tendency towards longer timescales is often found when analysing the

oceanic response to intraseasonal forcing and may be an indication of nonlinear processes

influencing the interaction between the two fluids.

Sea level variability on intraseasonal time scales has been studied more than other ocean

variables. Broad scale patterns of intraseasonal sea level anomalies have been detected

worldwide (Fu, 2003) but the most interesting (and numerous) results have been on ocean

waves. Hendon et al. (1998) presented a general study on the MJO and Kelvin waves

and there have been numerous studies focussed on specific regions (e.g., Zhang et al.

(2009) focus on the equatorial Pacific Ocean). Coastally trapped waves with intraseasonal

periods of oscillation have been detected along the eastern boundaries of both the Pacific

(Spillane et al., 1987) and the Indian Oceans (Iskandar et al., 2005). They are believed to

be generated by eastward propagating equatorially trapped waves, driven by the MJO and

originating in the Western Pacific, impinging on the eastern boundary which then excite a

response which travels poleward along the coast (Enfield, 1987; Clarke and Liu, 1993).

Sea surface temperatures (SSTs) have been observed to undergo modulations due to

the MJO (e.g., Woolnough et al. (2000); Shinoda et al. (1998); Maloney et al. (2008))

and it is known that SST signatures propagate eastward across the Pacific Ocean along

with the MJO (Zhang, 2005). In fact, temperature variability in the mixed layer, along

with sea level, may be one of the best oceanic indicators of the MJO. Feedbacks with

ENSO are a major area of study (Kessler, 2005) and it has been observed that the MJO is

particularly strong in the time leading up to the onset of El Niño. It has been proposed

that MJO-driven equatorially trapped Kelvin waves may play a role in triggering El Niño

events (e.g., Harrison and Vecchi (1997); Zhang (2005)).
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1.7 Statement of Problem, Objectives, and Outline of Thesis

This study attempts to answer two fundamental questions:

1. How does the MJO impact the ocean?

2. Is the MJO a potentially useful source of oceanic predictability?

To answer those questions the following objectives have been set:

1. Identify the temporal and spatial patterns of ocean response to the MJO.

2. Identify the physical processes governing the oceanic response.

3. Quantify the impact of the MJO on oceanic predictability and exploit the predictabil-

ity in the design of ocean forecast systems.

The structure of the thesis is as follows. Statistical, dynamical, and numerical methods

are outlined in Chapters 2 and 3. An analysis of the impact of the MJO on global sea

level is described in Chapter 4 and three regions in which the MJO-ocean connection is

particularly strong are identified: the equatorial Pacific and Coastal Americas, the Gulf of

Carpentaria, and the northeastern Indian Ocean. The MJO-ocean connections in the Gulf of

Carpentaria and the northeastern Indian Ocean are explored further using numerical ocean

models in Chapter 5 and Chapter 6, respectively. Chapter 7 describes a reconstruction of

the MJO index over the last century and also sheds some light on the predictability time

scale of the MJO. A summary of the main conclusions of this study, and their implications,

are presented in Chapter 8.



CHAPTER 2

STATISTICAL TECHNIQUES AND

MODELS

The advanced statistical techniques that are used in this thesis are outlined below. Tech-

niques that explore the relationship within a set of random variables are presented in

Section 2.1 and techniques that explore the relationships between sets of random variables

are presented in Section 2.2. Autoregressive models, including a stochastically forced

damped harmonic oscillator used to examine the predictability of the MJO, are presented

in Section 2.3.

2.1 Relationships Within a Set of Random Variables

The techniques outlined below are concerned with relationships that exist within a set of

random variables. In practice, this typically amounts to identifying modes of variability

and the amount of variability accounted for by such modes. At this point the distinction

between statistical modes and dynamical modes should be made. Statistical modes are

a set of empirically determined modes that account for observed variability, e.g., the

eigenmodes of a covariance or cross-spectral matrix (see Sections 2.1.1 and 2.1.2 below).

Many modes of variability, such as the ENSO index, the Madden-Julian Oscillation index,

and the Pacific Decadal Oscillation are often defined by statistical modes. On the other

hand, dynamical modes are predicted patterns of variability that a given dynamical system

supports. (For example, see the equatorial wave modes presented in Section 3.3.) They

may not be present in a given set of observations but the underlying dynamics permit

them under the right conditions. Often, a statistical mode of variability may correspond

14
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to a dynamical mode (e.g., the ENSO index or the Madden-Julian Oscillation index) but

occasionally it does not (e.g., the Pacific Decadal Oscillation).

2.1.1 Empirical Orthogonal Function Analysis

Empirical orthogonal function (EOF) analysis is a technique which accounts for the total

variance of a set of random variables using linear combinations of those variables (e.g.,

Johnson and Wichern (2002)). Each linear combination corresponds to a statistically

uncorrelated mode of variability. The weights in the combination are referred to as EOF

modes and the associated time series are called the principal components. For geophysical

data this often results in a small number of EOF modes accounting for most of the

variability in the original data set and such modes can often be associated with known

phenomena (e.g., the NAO). In fact, principal components from an EOF analysis of selected

tropical atmospheric variables are used to define the Wheeler and Hendon MJO index.

Consider a vector of p random variables: x = [x1 x2 · · · xp]T, where T denotes

transpose. The EOF modes are found by solving the eigenvalue problem

Σxxei = λiei with i = 1, 2, . . . , p (2.1)

where Σxx is the covariance matrix of x. The {ei|i = 1, 2, . . . , p} is a set of p orthonormal

eigenvectors that each represent an independent mode of variability. The proportion of

variance accounted for by the ith mode is given by λi/
∑p

j=1 λj where λi is the eigenvalue

associated with the ith mode. In this way, the total variance, trΣxx, is decomposed into p

modes of variability. Generally, the modes that account for most of the variability are of

primary interest. However, modes that explain essentially no variability (i.e., λi ' 0) but

have a well defined structure can correspond to time-invariant quantities in x and may be

of interest as well.

2.1.2 Frequency Dependent EOF Analysis

Empirical orthogonal function analysis, when generalized to the frequency domain, is

known as frequency-dependent EOF analysis (FDEOF; Wallace and Dickinson, 1972;

Brillinger, 1981).

Consider a random process {xt} where xt is given by [x1 x2 · · · xp]Tt . At a particular
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frequency ω, the FDEOF modes are found by solving the eigenvalue problem

fxx(ω)ei = λiei with i = 1, 2, . . . , p (2.2)

where fxx is the cross-spectral matrix of the process (Priestley, 1981). As above the

{ei|i = 1, 2, . . . , p} is a set of p orthonormal eigenvectors (i.e., the FDEOF modes) and

the proportion of power accounted for by the ith mode is given by λi/
∑p

j=1 λj where λi is

the eigenvalue for the ith mode. In general the λi will be real and non-zero.

The usefulness of this technique over traditional EOF analysis is twofold. First, the

cross-spectral matrix, fxx, is a function of frequency and so the modes will vary with

frequency. This allows one to isolate a particular timescale and examine the modes of

variability that are important on that timescale alone. Second, the cross-spectral matrix

is complex valued and so the eigenvectors (and thus the modes) may be complex as well

which means that the modes can be written in terms of amplitude and phase. Therefore,

propagating waves at a particular frequency can be detected with a single mode using

FDEOF analysis. Using traditional EOF analysis would require more advanced techniques

such as bandpassing the data about the timescale of interest, and using two standing modes

in quadrature, to describe such propagating waves.

2.1.3 Dynamical Modal Analysis

Consider the real-valued random p × 1 vector ut with the ith element corresponding to

the ocean state at location (xi, yi) and time t. The spectral representation of ut is given by

(Priestley, 1981)

ut =

∫ π

−π
eiωtdu(ω), (2.3)

where du(ω) is a random orthogonal increment process and ω denotes frequency.

Now consider a model for ut consisting of a set of m dynamical modes each defined

at (xi, yi) for i = 1 . . . p. The vector ut is now decomposed into the sum of modal

contributions ût and residuals rt representing noise and other processes not explained by

the model as follows:

du(ω) = dû(ω) + dr(ω). (2.4)

The modal contributions are taken to be a linear combination of the m dynamical modes

with amplitudes at time t specified by the m× 1 vector at. In the frequency domain, the
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Figure 2.1: Locations of stations for three dynamical modal analysis case studies. Waves
propagate in the x-direction.

modal contribution dû(ω) is expressed as the product of a p ×m frequency-dependent

dynamical mode matrixM (ω) and the m× 1 vector da(ω) which is the spectral represen-

tation of at. The model for ût is then taken to be

ût =

∫ π

−π
eiωtM(ω)da(ω). (2.5)

The j th column of M (ω) represents an individual mode evaluated at locations (xi, yi) for

i = 1 . . . p (i.e., the rows ofM ). In order for ût to be real-valued the mode matrix must

obey the following restriction: M (−ω) = M(ω)∗, where ∗ denotes complex conjugate.

Let the cross-spectral matrix of at at frequency ω be given by faa(ω). It is now

straightforward to calculate the modal contributions and residuals. The cross-spectral

matrix of the modal contributions is given by

fûû(ω) = Mfaa(ω)M ′ (2.6)

where ′ represents conjugate transpose. This technique, referred to as Dynamical Modal

Analysis (DMA), will be explored further by considering several simple cases.

Case (a): Consider a line of stations at locations (x0, yi) for i = 1 . . . p (Figure 2.1a)

and consider a dynamical model that provides a set of functions φj(y, ω) for j = 1 . . .m

that define the y-dependence of m modes at a given frequency. For example, if the model

represents equatorially trapped oceanic Kelvin waves (see Section 3.3.2) then the φj(y, ω)

functions would be Gaussian in y with a trapping scale that decreases with increasing

mode number j. The elements of the mode matrix can be written Mij = φj(yi, ω).
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Case (b): Consider two lines of stations at locations (x1, yi) for i = 1 . . . p1 and (x2, yi) for

i = (p1 + 1) . . . p (Figure 2.1b). As above, a set of functions φj(y, ω) describes the y and

ω dependence of each mode. Wave propagation can be modelled by assuming ût is made

up of propagating wave solutions with dependence in x and t of the form exp i(kx+ ωt)

where wavenumber k = k(ω). The elements of the mode matrix can be written Mij =

φj(yi, ω)eikx1 for i = 1 . . . p1 and Mij = φj(yi, ω)eikx2 for i = (p1 + 1) . . . p.

The two lines can be uncoupled by removing the constraint of wave propagation between

them. In this case the j th column in the mode matrix is replaced by two columns, j1 and j2,

doubling the number of columns inM . The first column is given by Mij1 = φj(yi, ω) for

i = 1 . . . p1 and Mij1 = 0 for i = (p1 + 1) . . . p. The second column is given by Mij2 = 0

for i = 1 . . . p1 and Mij2 = φj(yi, ω) for i = (p1 + 1) . . . p.

Case (c): Consider a line of stations at locations (xi, y0) for i = 1 . . . p (Figure 2.1c).

Propagating wave solutions are considered as in the previous case. There is no need for y

dependence of the mode shapes and so the φj(y, ω) functions drop out and the elements of

the mode matrix are simply given by Mij = eikjxi . The relationship between wavenumber

and frequency has been generalized such that it can be different for each mode, e.g.,

kj = kj(ω). In this case, the j th mode is simply a sine wave of frequency ω that propagates

along the line with speed of ω/kj(ω).

Consider the case where fuu(ω) is known but the modal amplitudes are unknown. Given

a mode matrixM (ω) it is possible to fit these modes to ut. The cross-spectral matrix of

the modal amplitudes at is estimated following Haines et al. (1991):

faa(ω) = (M ′M )−1M ′fuu(ω)M(M ′M )−1, (2.7)

which follows from Equations 2.4 and 2.5 assuming the residuals are incoherent with the

modal amplitudes and that the matrix M ′M can be inverted. Various quantities, such as

the proportion of variance in the observations that are accounted for by the modes, follow

in a straightforward manner (e.g., Haines et al. (1991)). For example, the quality of the fit

Q can be quantified by

Q = 1− ||fûû − fuu||
||fuu||

, (2.8)

where the norm is defined as the absolute value of the root mean square: ||·|| = |RMS(·)|.
The numerator of the second term is the RMS error between the fit and the observations
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and decreases as the fit improves; the denominator of the second term can be interpreted as

the RMS error between a null fit (i.e., all zeros) and the observations and remains constant.

Therefore, provided the fit explains at least some of the variability in the observations, Q

gives a number between 0 and 1 and increases as the quality of fit increases.

It is interesting to note that frequency dependent EOF analysis (Section 2.1.2) is a

special case of dynamical modal analysis. The FDEOF eigenvalue problem (Equation 2.2)

can be written

fuuE = EΛ (2.9)

where E is a matrix where the ith column represents the eigenvector ei and Λ is a matrix

with the eigenvalues {λi} on the diagonal and zeros elsewhere. If a dynamical modal

analysis is performed with the mode matrix composed of the FDEOF eigenvectors (i.e.,

M = E) then faa(ω) is simply

faa(ω) = Λ (2.10)

using the property that the FDEOF eigenvectors are orthogonal (e.g.,M ′M = I). There-

fore, the modal amplitudes are uncorrelated with each and the spectral densities of the

modes are given by the FDEOF eigenvalues.

2.2 Relationships Between Sets of Random Variables

The techniques outlined below are concerned with relationships that exist between sets of

random variables. Often this type of analysis is concerned with calculating the proportion

of variability in one set of random variables that can be predicted by another set of random

variables.

2.2.1 Partial Correlation

The squared correlation between two random variables, x and y, is defined by

ρ2
xy =

σ2
xy

σ2
xσ

2
y

, (2.11)

where σ2
x and σ2

y are the variances of x and y, respectively, and σxy is the covariance

between them. Now consider a third random variable, z which may be correlated with both

x and y. The correlation between x and y, after taking into account their mutual linear
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relationship with z, is given by the squared partial correlation (Priestley, 1981):

ρ2
xy·z =

(ρxy − ρxzρzy)2

(1− ρ2
xz)
(
1− ρ2

zy

) . (2.12)

The partial correlation measures the correlation between x and y after removing the

common influence of z. The equivalent metric in the frequency domain is the partial

coherence (Priestley, 1981).

2.2.2 Multiple Coherence

The squared coherence between two scalar random processes, {xt} and {yt}, is defined by

κ2
yx(ω) =

|fyx(ω)|2

fxx(ω)fyy(ω)
, (2.13)

where fxx and fyy are the power spectra of {xt} and {yt}, respectively, and fyx is the

associated cross-spectrum (Priestley, 1981). Note the similarity between the expressions

for coherence and correlation (Equation 2.11).

Given the bivariate random process {xt} where xt is given by [x1 x2]t the coherence

between {yt} and both components of {xt} can be calculated using the squared multiple

coherence (Priestley, 1981):

κ2
yx(ω) =

fyx(ω)f−1
xx (ω)f ∗yx(ω)

fyy(ω)
, (2.14)

where

fyx(ω) =
[
fyx1(ω) fyx2(ω)

]
fxx(ω) =

[
fx1x1(ω) f ∗x1x2

(ω)

fx1x2(ω) fx2x2(ω)

]
. (2.15)

Equation 2.14 generalizes for multivariate {xt}. The equivalent metric in the time domain

is the coefficient of determination for a multiple linear regression model.

2.2.3 Frequency Independent Measures of Fit

The squared coherence, κ2
yx, measures the proportion of spectral density of {yt} that is

accounted for by {xt} as a function of frequency. In some situations it may be more useful

to know the proportion of variance of {yt} that is accounted for by {xt}, independent of
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frequency. The variance of {yt} is given by the integral of its spectral density

σ2
y =

∫ ∞
−∞

fyy(ω)dω (2.16)

and the variance of {yt} that is accounted for (or predicted) by {xt} using a frequency-

dependent linear regression model is given by the integral of the product of its spectral

density and the squared coherence with {xt} (Priestley, 1981):

σ2
p =

∫ ∞
−∞

κ2
yx(ω)fyy(ω)dω, (2.17)

where subscript p denotes predicted. It is now straightforward to calculate the proportion

of variance in {yt} that is accounted for by {xt}:

κ̄2
yx =

σ2
p

σ2
y

=

∫ ∞
−∞

κ2
yx(ω)fyy(ω)dω∫ ∞
−∞

fyy(ω)dω

, (2.18)

which is effectively a weighted average of κ2
yx with the weights given by fyy. If {yt} is a

bivariate process, the equivalent quantity is given by

κ̄yx =
σ2

p1
+ σ2

p2

σ2
y1

+ σ2
y2

, (2.19)

where σ2
yi

is the variance of {yi,t} and σ2
pi

is the variance of {yi,t} that is predicted by {xt}.
If {xt} is a banded time series (such as the MJO index) the calculation of κ2

yx is modified

by adding a small constant to fxx (effectively the same as adding a small amount of white

noise to the original time series). In this way, fxx is now nonzero outside the banded

region ensuring that κ2
yx goes to zero at frequencies for which there is little to no energy

in {xt} (since fxx appears in the denominator of Equation 2.13). This also allows us to

integrate over all frequencies rather than arbitrarily choosing a frequency band of interest

(i.e., a range of “MJO frequencies”). In practice, this small constant offset is between one

and five percent of the maximum value of fxx.
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2.2.4 Assessing Statistical Significance

For some statistics, such as correlation and coherence, theoretical results for calculating

statistical significance are available. For other statistics I have used a pragmatic approach.

For example, to assess the statistical significance of an estimated value of κ̄2
yx I used the

following Monte Carlo technique. “Clone” time series of {xt} are generated with the

same mean, variance and spectral density but randomized phases. This is achieved by

manipulating and inverting its Fourier transform. Using a large number of cloned {xt}, the

sampling distribution for κ̄2
yx can be approximated under the assumption of no relationship

between {xt} and {yt}. The value of κ̄2
yx for which 95% of the distribution falls below it

is taken as the 5% significance level and denoted by κ̄2
5%. See Appendix A for a worked

example using the MJO index and a time series of sea level from San Diego, USA.

2.3 Autoregressive Models

An autoregressive process is a random process for which the state at any given time

depends on the state at previous times plus stochastic forcing. Autoregressive models

are often used to fit time series in situations when classical regression models provide

a poor representation of the underlying dynamics (Shumway and Stoffer, 2000). In this

section a forced damped harmonic oscillator will be presented as a differential equation in

continuous time. It is then shown how this can be expressed as an autoregressive model

and generalized to include autoregressive stochastic forcing. This model is used in Chapter

7 as a model for the MJO index.

2.3.1 Damped Harmonic Oscillator Model in Continuous Time

The equation for the state x of a stochastically forced, one dimensional damped harmonic

oscillator is

ẍ+ α1ẋ+ α2x = F (t), (2.20)

where a dot over a variable indicates a derivative with respect to t and F (t) represents a

time-dependent forcing function. Traditionally, α1 = 2β and α2 = ω2
0 where β represents

the damping coefficient and ω0 is the natural oscillation frequency (e.g., Marion and

Thornton (1995)). Equivalently, this can be written as a pair of coupled, first order
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differential equations:

dx

dt
= ẋ (2.21)

dẋ

dt
= −α1ẋ− α2x+ F (t).

The case of interest is for x and ẋ oscillating in quadrature with an exponentially decaying

amplitude. This is known as the underdamped case and exists for α2
1 − 4α2 < 0.

2.3.2 Damped Harmonic Oscillator Model in Discrete Time

By discretizing time and making the approximation dx/dt ' (xt+1 − xt)/∆t, it can

be shown that a stochastically forced damped harmonic oscillator can be represented in

discrete time by an order 2 autoregressive, or AR(2), process (Priestley, 1981):

xt+2 + a1xt+1 + a2xt = ft+2,

where {ft} is a forcing process. The relationships between the coefficients for the discrete

AR(2) process and the continuous model presented above, are

α1 = −a1 + 2a2

a2∆t
α2 =

1 + a1 + a2

a2∆t2
F (t∆t) =

ft
a2∆t2

,

where ∆t is the time step of the discrete process. As above for the continuous problem,

the univariate AR(2) process can be written as a bivariate AR(1) process:

xt+1 = Axt + ft+1, (2.22)

where xt is the bivariate state vector at time t and {ft} is a forcing process at time t. For

an underdamped harmonic oscillator the 2× 2 transition matrix can be written

A = γ

[
cos θ − sin θ

sin θ cos θ

]
(2.23)

where 0 < γ < 1 is the damping coefficient and θ 6= 0 is the rotation rate. The rotation

rate θ can be expressed in terms of a rotation period P by writing it as θ = 2π/P and γ

can be expressed in terms of a decay time scale τ by writing it in the form γ = exp(−1/τ),

i.e., τ = −1/ ln γ.
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Note that the transition matrix A is normal (i.e., A∗A = AA∗). The normality of

A implies that perturbations must decay monotonically to zero (Farrell and Ioannou,

1996). As an illustration, the length of xt for the model described above, under unforced

conditions, is given by |xt+k| = γk|xt|. In continuous time this corresponds to an

exponential decay: |x(t)| = |x(0)| exp(−t/τ). IfA were non-normal, the model although

asymptotically stable may support the transient growth of perturbations.

2.3.3 Damped Harmonic Oscillator Model With Autoregressive Forcing

If the oscillator is driven by autoregressive stochastic forcing then it can be represented by

the following quadrivariate stochastically forced AR(1) model:

xt+1 = Axt + εt+1, (2.24)

where xt is now a 4 × 1 state vector at time step t, A is a 4 × 4 transition matrix that

carries the state vector forward one time step, and εt is the 4 × 1 stochastic noise that

drives the system away from a state of rest. The first two components of xt are taken to

represent the oscillator (as described in Section 2.3.2) and the last two components are

taken to represent the autoregressive forcing. The transition matrix is of the form

A =

[
A1 I

0 A2

]
(2.25)

where I is a 2× 2 identity matrix and

A1 = γ1

[
cos θ − sin θ

sin θ cos θ

]
, A2 = γ2

[
1 0

0 1

]
. (2.26)

In the absence of forcing the oscillator rotates through an angle θ over one time step,

and its amplitude is scaled by a factor γ1. For θ 6= 0, 0 < γ1 < 1, and γ2 = 0 this model

reduces to the one presented in Section 2.3.2.

The forcing drives the oscillator away from zero and is modeled by Equation 2.25 as a

pair of independent AR(1) processes with autoregressive parameter γ2. The forcing itself
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Figure 2.2: Damped harmonic oscillator model in discrete time with autoregressive stochas-
tic forcing. Model parameters are τ1 = 15, τ2 = 2.5, and P = 50 and the variance of the
noise process is σ2

ε = 0.017. On the left the oscillator components (upper) and the forcing
components (lower) of x are plotted for time steps 300 to 700. The first 300 time steps
are discarded to avoid transient effects from the initial conditions (x0 =[1,-1,0,0]). On
the right, the second oscillator component is plotted against the first oscillator component
(thick line) and the second forcing component is plotted against the first forcing component
(thin line) for time steps 300 (open circle) to 350 (closed circle).

is driven by an independent white noise process with variance

Σε = σ2
ε

[
0 0

0 I

]
(2.27)

The parameter γ2 controls the memory of the forcing and it is constrained to be between

0 and 1. It too can be expressed in terms of a decay time scale τ2 by writing γ2 =

exp(−1/τ2).

A realization of {xt} with model parameters τ1 = 15, τ2 = 2.5, and P = 50 is shown

in Figure 2.2. The variance of the noise process is σ2
ε = 0.017. The oscillator components

of x are clearly in quadrature (upper left) and when plotted in phase space (i.e., {x2,t}
versus {x1,t}) evidence of counterclockwise rotation and stochastic forcing are clear (right,

thick line). By contrast the forcing (third and fourth components of x) show very little

coherent behaviour in phase space (right, thin lines).

2.3.4 Statistical Properties of the Damped Harmonic Oscillator Model

Given the model parameters, it is straightforward to calculate the statistical properties

of the damped harmonic oscillator model. First, note that the process is asymptotically
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stationary to second order with mean zero and covariance matrix Σ∞ that satisfies

Σ∞ = AΣ∞A
′ + Σε. (2.28)

where ′ denotes transpose. The solution is given explicitly by (e.g., Harvey (1991))

vec(Σ∞) = [I−A⊗A]−1 vec(Σε), (2.29)

where vec denotes the vectorization of a matrix by stacking the columns of the matrix on

top of one another. The 4× 4 cross-spectral density matrix of xt is given by (Priestley,

1981)

fxx(ω) =
[
eiωI−A

]−1
fεε(ω)

[
eiωI−A

]∗−1
, (2.30)

where ∗ denotes the conjugate transpose. If {εt} is white noise then fεε(ω) is simply σ2
ε

2π
I.

For model parameters P = 50, τ1 = 15, τ2 = 2.5 and noise variance of σ2
ε = 0.017 the

spectral properties of the model (Figure 2.3) demonstrate that the power of the oscillator is

confined within a narrow band about the natural oscillation frequency (2π/50). It is also

clear that the oscillator components of x are highly coherent with each other and are in

quadrature (π/2 phase shift).

It is also straightforward to calculate the EOF and FDEOF modes: the eigenvalue

problems given by Equations 2.1 and 2.2 using the covariance matrix given by Equation

2.29 and the cross-spectral matrix given by Equation 2.30 are solved. The first two EOF

modes each account for 49% of the total variance and the last two account for 1% of the

variance each. The eigenvectors for the first two modes are dominated by the first and

second components, respectively. This implies that 98% of the variance in {xt} can be

accounted for by the first two EOF modes and these two modes roughly correspond to

{x1,t} and {x2,t}. Note that the variances of the first two components of {xt} are greater

than the last two components and therefore get a higher weighting in the EOF analysis.

Note that the results may change for other model parameter choices.

When FDEOF analysis is performed at the central oscillation frequency of ω0 = 2π/P

the first mode alone accounts for 94% of the variability and consists primarily of {x1,t}
and {x2,t} with equal amplitude and a π/2 phase shift between them as expected. Clearly,

the FDEOF analysis is more useful in this case as most of the variability is reduced to

a single, oscillating mode. However, if ω0 is chosen so that it is far from the central
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Figure 2.3: Spectral properties of the damped harmonic oscillator model. Model parameters
are τ1 = 15, τ2 = 2.5, and P = 50 and the variance of the noise process is σ2

ε = 0.017.
On the left the power spectral densities of the first oscillator component (solid line) and
the first forcing component (dashed line, scaled by a factor of 75) of x are plotted as a
function of frequency. On the right, the coherence (solid line) and phase (dashed line)
between the two oscillator components of x. The dashed vertical lines show the natural
oscillation frequency (2π/P ).

oscillation frequency the partitioning of FDEOF modes becomes less clear as the dynamics

are no longer dominated by the resonant oscillation. For example, for ω0 = 0.25× 2π/P

or ω0 = 4 × 2π/P the first mode still represents an oscillation of {x1,t} and {x2,t} in

quadrature; however, the first mode accounts for only 68% of the variability and the second

mode, for which the influence of the stochastic forcing is much stronger, accounts for

about 30% of the variability.



CHAPTER 3

OCEAN DYNAMICS AND MODELS

The ocean dynamical theory and related numerical models used in this thesis are outlined

below. The equations of motion for an incompressible and inviscid fluid and the separation

of solutions into normal modes are presented in Sections 3.1 and 3.2, respectively. The

dynamics of tropical ocean waves are presented in Section 3.3. Two numerical models,

the Princeton Ocean Model and the Nucleus for European Modelling of the Ocean, are

described in Section 3.4 along with the fully nonlinear and viscous equations upon which

they are based.

3.1 Equations of Motion

The equations governing an incompressible and inviscid fluid observed with respect to a

rotating system of coordinates are (Appendix B)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fv = − 1

ρ0

∂pp

∂x
(3.1)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu = − 1

ρ0

∂pp

∂y
(3.2)

∂p

∂z
= −gρ (3.3)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (3.4)

where u(x, y, z, t), v(x, y, z, t), w(x, y, z, t) are the fluid velocities in the x, y, and z

directions respectively, f(y) is the Coriolis parameter, ρ(x, y, z, t) is the fluid density,

ρ0(z) is the equilibrium fluid density, p(x, y, z, t) is the fluid pressure, pp(x, y, z, t) is

the perturbation fluid pressure, and g is gravitational acceleration. These equations are

28
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formulated under the hydrostatic approximation, the Boussinesq approximation, and

assuming that horizontal scales of motion are much larger than vertical scales of motion

(see Appendix B for more details). Equations 3.1 and 3.2 are known as the momentum

equations, Equation 3.3 as the hydrostatic equation, and Equation 3.4 as the continuity

equation.

3.2 Vertical Normal Modes

Following Gill (1982), solutions to Equations 3.1–3.4 for a continuously stratified fluid,

i.e., ρ0 = ρ0(z), with a flat bottom can be expressed as a sum of solutions for uniform

fluids of various depths. The variability in the vertical is separated from the variability in

the horizontal and the solutions are assumed to take the following forms:

[u(x, y, z, t), v(x, y, z, t)] =
1

gρ(z)

∞∑
m=0

p̂m(z)[ũm(x, y, t), ṽm(x, y, t)] (3.5)

w(x, y, z, t) =
∞∑
m=0

ĥm(z)w̃m(x, y, t) (3.6)

pp(x, y, z, t) =
∞∑
m=0

p̂m(z)η̃m(x, y, t) (3.7)

h(x, y, z, t) =
∞∑
m=0

ĥm(z)η̃m(x, y, t) (3.8)

where h(x, y, z, t) represents the vertical displacement of a fluid particle, ĥm(z) and p̂m(z)

are vertical structure functions, ũm(x, y, t), ṽm(x, y, t), w̃m(x, y, t) and η̃m(x, y, t) are

solutions in the horizontal.

The vertical structure functions ĥm(z) and p̂m(z) are solutions to the pair of Sturm-

Liouville equations

d2ĥm
dz2

+
N2

c2
m

ĥm = 0 (3.9)

d

dz

(
1

N2

dp̂m
dz

)
+

1

c2
m

p̂m = 0 (3.10)
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where N2(z) is the buoyancy frequency defined by

N2 = − g

ρ0

dρ0

dz
. (3.11)

Given a fluid of constant depth and an appropriate set of boundary conditions, Equations

3.9–3.10 yield an infinite sequence of eigenvalues cm and corresponding eigenfunctions

ĥm(z) and p̂m(z) for m = 0, 1, . . . ,∞. The eigenfunctions correspond to vertical normal

modes with the barotropic mode given by m = 0 and baroclinic modes by m ≥ 1.

The solutions in the horizontal (ũm, ṽm, η̃m) are solutions to the shallow water equations

(Appendix B):

∂ũm
∂t

+ ũm
∂ũm
∂x

+ ṽm
∂ũm
∂y

+ w̃m
∂ũm
∂z
− fṽm = −g∂η̃m

∂x
(3.12)

∂ṽm
∂t

+ ũm
∂ṽm
∂x

+ ṽm
∂ṽm
∂y

+ w̃m
∂ṽm
∂z

+ fũm = −g∂η̃m
∂y

(3.13)

∂η̃m
∂t

+Hm

(
∂ũm
∂x

+
∂ṽm
∂y

)
= 0 (3.14)

for a homogeneous fluid with uniform depth Hm, known as the equivalent depth, defined

by the eigenvalues: Hm = c2
m/g. In addition, the vertical velocity is given by surface

boundary condition: w̃m = ∂η̃m/∂t.

3.3 Equatorial Waves

Ocean dynamics predicts several wave types that are trapped about the Equator. The

properties of these waves are summarized below.

3.3.1 Equatorial β-plane

The Coriolis parameter f(y) varies sinusoidally with latitude. At low latitudes, the

equatorial beta plane approximation can be made:

f = βy where β = 2.3× 10−11 m−1s−1.



31

In addition, the height of the free surface will be expressed as geopotential height, φ = gη,

and the linearized shallow water equations, dropping the tildes and subscript m, reduce to

∂u

∂t
− βyv = −∂φ

∂x
(3.15)

∂v

∂t
+ βyu = −∂φ

∂y
(3.16)

∂φ

∂t
+ c2

(
∂u

∂x
+
∂v

∂y

)
= 0, (3.17)

where c2 = gH and H is the water depth. It is convenient to non-dimensionalize the

equations of motion using a time scale
√

1/cβ and a length scale
√
c/β, leading to the

governing equations

∂u′

∂t′
− y′v′ = −∂φ

′

∂x′
(3.18)

∂v′

∂t′
+ y′u′ = −∂φ

′

∂y′
(3.19)

∂φ′

∂t′
+
∂u′

∂x′
+
∂v′

∂y′
= 0 (3.20)

where ′ denotes a non-dimensionalized variable. These equations predict several distinct

types of equatorially trapped ocean waves as detailed below.

3.3.2 Equatorially Trapped Kelvin Waves

Consider the case of no meridional motion, i.e., v = 0 and ∂v/∂t = 0. Upon dropping the

primes, Equations 3.18–3.20 reduce to

∂u

∂t
= −∂φ

∂x
(3.21)

yu = −∂φ
∂y

(3.22)

∂φ

∂t
+
∂u

∂x
= 0. (3.23)

These equations lead to second order linear wave equations in the x and t dimensions with

the structure in the y direction governed by Equation 3.22. The solution is known as an
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equatorially trapped Kelvin wave (Gill, 1982) with

u = exp

(
−y

2

2

)
F (x− t) (3.24)

φ = exp

(
−y

2

2

)
F (x− t) (3.25)

where F (x) is an arbitrary function. This solution represents an eastward propagating

wave, F (x − t), trapped near the equator with a meridional decay scale of
√
c/2β (in

dimensional units), also known as the equatorial radius of deformation. If sinusoidal

wave motion is considered, e.g., F (x− t) ∼ exp i(kx+ ωt), the following Kelvin wave

dispersion relationship can be derived1:

ω = −k. (3.26)

Wavenumber and frequency are linearly related and therefore Kelvin waves are non-

dispersive (Figure 3.1). Wave speeds are typically c ∼ 200 m/s for barotropic waves and

c ∼ 0.5− 3 m/s for baroclinic waves (Gill, 1982) leading to trapping scales of about 2000

km for the barotropic mode and 100–250 km for the baroclinic modes.

3.3.3 Equatorially Trapped Rossby, Gravity, and Yanai Waves

There are three types of equatorially trapped waves that exist in addition to Kelvin waves.

If meridional motion is allowed, Equations 3.18–3.20 (again dropping the primes) can

be combined to yield wave equations for each variable such as the following for v (Gill,

1982):
∂

∂t

(
∂2v

∂t2
+ y2v − ∂2v

∂x2
− ∂2v

∂y2

)
− ∂v

∂x
= 0. (3.27)

1In order to be consistent with the formulation of frequency-domain statistics presented in Chapter 2, I
have chosen a wave solution of the form exp i(kx+ ωt). Given a positive frequency, positive wavenumbers
represent westward phase speeds and negative wavenumbers represent eastward phase speeds. Therefore,
there will be sign differences between the expressions found here and those found in sources such as LeBlond
and Mysak (1978), Gill (1982), or Pedlosky (1987) which assume a wave solution of the form exp i(kx−ωt).
However, this difference does not affect the dynamical properties of the waves that will be discussed.
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Figure 3.1: Dispersion curves for waves on an equatorial β-plane. Waves have westward
phase velocities for k′ > 0 and eastward phase velocities for k′ < 0. Waves have westward
group velocity for ∂ω′/∂k′ > 0 and a eastward group velocity for ∂ω′/∂k′ < 0. Note that
ω′ and k′ are in nondimensional units (see Section 3.3.1 for time and length scales).

If wave solutions of the form [u, v, φ] = [U, V,Φ] exp i(kx+ ωt) are considered then the

following solutions are obtained (Matsuno, 1966):

Un =

[
1

2
(ω − k)Hn+1(y) + n(ω + k)Hn−1(y)

]
G(y) (3.28)

Vn = i(ω2 − k2)Hn(y)G(y) (3.29)

Φn =

[
1

2
(ω − k)Hn+1(y)− n(ω + k)Hn−1(y)

]
G(y), (3.30)

whereG(y) = exp(−y2/2), Hn is a Hermite polynomial of order n, and n is a non-negative

integer which will be referred to as the meridional mode number. These solutions form

a discrete set of waves with a meridional structure trapped about the equator and strong

dependence on n (Figure 3.2). Furthermore, these waves satisfy the following dispersion

relation (Matsuno, 1966)

ω2 − k2 +
k

ω
= 2n+ 1. (3.31)

The three wave types that are governed by Equations 3.28–3.31 are outlined below.
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Figure 3.2: Meridional structure of equatorially trapped waves. The latitudinal dependence
of the zonal velocity (top), meridional velocity (middle), and geopotential height (bottom)
associated with equatorially trapped waves (Equations 3.28–3.30) are shown for n = 0
(solid line), n = 1 (long-dashed line), n = 2 (short-dashed line), and n = 3 (dotted line).
The calculations have been performed assuming a wave speed of cm = 2.8 m/s. Yanai
waves are represented by the n = 0 solution; Rossby and Gravity waves are represented
by the n ≥ 1 solutions.
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Rossby Waves: For n ≥ 1 and ω2 � 1 the dispersion relation simplifies to

ω =
k

k2 + 2n+ 1
. (3.32)

Waves that satisfy this relationship are known as equatorially trapped Rossby waves or

planetary waves. This relationship is plotted in Figure 3.1. Rossby waves propagate with a

westward phase velocity and can be further subdivided into two categories: (i) long Rossby

waves (k << 1) carry energy westward and are nearly non-dispersive as the dispersion

relationship simplifies to ω = −k/(2n+ 1), and (ii) short Rossby waves (k >> 1) carry

energy eastward and have a much slower phase speed than long Rossby waves.

Gravity Waves: For n ≥ 1 and k/ω � 1 the dispersion relation simplifies to

ω2 ' 2n+ 1 + k2. (3.33)

Waves that satisfy this relationship are known as gravity waves. Gravity waves can

propagate eastward or westward depending on the sign of k (Figure 3.1). Note the distinct

frequency gap between Rossby waves and Gravity waves.

Yanai Waves: For n = 0 the expressions for Un, Vn, and Φn reduce to (Matsuno, 1966)

U0 = 2y exp

(
−y

2

2

)
(3.34)

V0 = 2i(ω + k) exp

(
−y

2

2

)
(3.35)

Φ0 = 2y exp

(
−y

2

2

)
(3.36)

and the dispersion relationship simplifies to

ω + k − 1

ω
= 0. (3.37)

These waves are known as Yanai waves and can propagate eastward or westward depending

on the sign of k but energy always propagates to the east. For large positive k they behave

like Rossby waves and for large negative k they behave like gravity waves (Figure 3.1). For

this reason they are also known as mixed Rossby-gravity waves or mixed planetary-gravity

waves. At small |k|, they, along with Kelvin waves, can exist with frequencies between
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Figure 3.3: Relationship between critical latitude (yc), frequency (ω), coastline angle (θ),
and the behaviour of waves near ocean boundaries. The lines separate the regions of
(y, ω) and (y, θ) space which lead to coastally trapped solutions or solutions which radiate
offshore. Note that y and ω are in nondimensional units (see Section 3.3.1 for length and
time scales).

Rossby waves and Gravity waves.

3.3.4 Reflection and Transmission at an Eastern Boundary

Waves near an eastern boundary can either propagate away from the boundary or remain

trapped near the coastline. Near a boundary with angle θ relative to a meridian, a critical

latitude yc can be defined (Grimshaw and Allen (1988), Clarke and Shi (1991), Appendix

C):

yc =
cos θ

2ω
(3.38)

such that waves at frequency ω radiate away from the boundary for latitudes equatorward

of yc and remain trapped to the coastline for latitudes poleward of yc. The boundary

between these solutions, in (y, ω) and (y, θ) space, is illustrated in Figure 3.3. Note that

this expression is given in nondimensional units.

In addition, coastline angle plays a significant role in determining the critical latitude.

Due to conservation of potential vorticity, the north-south displacement of a fluid particle

determines the change in relative vorticity which in turn is responsible for the propagation

of Rossby waves (Gill, 1982). At latitudes above the critical latitude, the same north-south
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displacement is not able to produce a change in relative vorticity large enough to become

dynamically significant and thus Rossby waves are not radiated away from the boundary

(Clarke and Shi, 1991). For alongshore wave motions at a given frequency, this north-south

displacement is reduced for non-meridional coastlines and thus the critical latitude is more

equatorward for more angled coastlines (Figure 3.3).

3.4 Numerical Models

Two general circulation models, which include friction and dissipation as well as evolution

equations for temperature and salinity, are used in this thesis and they are described in the

following two sections.

3.4.1 Princeton Ocean Model (POM)

The Princeton Ocean Model (POM) was developed in the late 1970s and has since become

one of the most well-known ocean models available today (Blumberg and Mellor, 1987).

POM is simple to use and is applied extensively to simulate regional ocean circulation in

coastal areas.

POM is a σ-coordinate model so that the vertical coordinate is scaled by the water

column depth (bathymetry plus free surface height), σ = (z − η)/(H + η), so that the

vertical coordinate varies between -1 at the bottom and 0 at the surface. This implies that

there is a fixed number of vertical σ-levels regardless of the water depth (Figure 3.4, left

panel). Figure 3.5 shows how the model variables are laid out on the model grid in the

horizontal and vertical. The horizontal arrangement corresponds to an Arakawa C-grid.

The model separates the calculation of the three-dimensional circulation (internal mode)

from the calculation of the two-dimensional, depth-independent circulation (external

mode). The internal mode integrates discretized versions of the equations of motion (see

Section 3.1) as well as additional tracer equations for temperature, salinity, and turbulence

kinetic energy. The external mode integrates discretized versions of the shallow water

equations (see Appendix B). In both cases additional terms for friction and surface forcing

(i.e., surface wind stress) are included. Vertical mixing coefficients are provided by the

Mellor-Yamada turbulence closure model (e.g., Mellor and Yamada (1982)) and horizontal

mixing is calculated using the Smagorinsky parameterization (Smagorinsky, 1993).

The model equations are integrated in time using a leap-frog scheme. The time steps
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Figure 3.4: Vertical coordinates used in general circulation models: σ-levels (left) and
z-levels (right).

for the integration of the discretized equations are subject to the Courant-Friedrichs-Levy

(CFL) computational stability condition which is generally much more restrictive for the

external mode than for the internal mode (e.g., the time step for the internal mode can

be ∼10 times larger than the time step for the external mode). Therefore, the external

mode undergoes many time steps and only interacts with the internal mode occasionally,

to which it provides updates of sea surface height and depth averaged velocities.

3.4.2 Nucleus for European Modelling of the Ocean (NEMO)

The Nucleus for European Modelling of the Ocean (NEMO) is a complete ocean modelling

framework (Madec, 2008). It includes engines for the dynamics and thermodynamics of the

ocean (OPA), the dynamics and thermodynamics of sea-ice (LIM), and biogeochemistry

(TOP). It is most usually employed to model the dynamics of the deep ocean, often

globally.

The OPA component of NEMO is a complex numerical ocean circulation model. It

supports multiple vertical coordinate discretizations but it has been configured here to use

z-level coordinates (Figure 3.4, right panel). It follows that the discretization of the vertical

coordinate is homogeneous throughout the whole model domain and the number of vertical

levels will depend on the ocean depth. In addition, the model allows for partial steps so

that the thickness of the lowest vertical level is modified based on the depth specified by

the input bathymetry. The arrangement of variables on the model grid in the horizontal

and vertical is shown in Figure 3.5.

The model simulates the full three-dimensional ocean state. The modeled equations

include the horizontal momentum equations (Equations 3.1–3.2), the hydrostatic equation
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Figure 3.5: Arrangement of ocean variables on model grids (Arakawa C-grid). The left
panel shows arrangement in the horizontal and the right panel shows the arrangement in
the vertical. Sea surface height is collocated with temperature T at the topmost level.

(Equation 3.3), the continuity equation (Equation 3.4), tracer equations for temperature

and salinity, and the thermodynamic equation of state ρ = ρ(T, S, p). The momentum

and thermodynamic tracer equations contain surface forcing terms and parameterizations

for small scale physics. Vertical mixing is parameterized using a total kinetic energy

turbulence closure scheme (Bougeault and Lacarrere, 1989; Gaspar et al., 1990; Madec

et al., 1998). Details of the parameterization of horizontal diffusion and momentum

mixing, including coefficient values, are given in Chapter 6 when the model configuration

is described.

The model equations are integrated using a three-level time-stepping scheme:

Xt+∆t = Xt−∆t + 2∆tRHS(X)
t−∆t,t,t+∆t (3.39)

where X stands for u, v, temperature or salinity, RHS(X) is the right-hand side of the

corresponding evolution equation, and ∆t is the time step. The terms that compose RHS

are evaluated at different time steps depending on the physics with which it is associated

(Madec, 2008).

The model is forced at the surface by zonal and meridional wind, specific humidity,

air temperature, precipitation (both solid and liquid), and radiation (both longwave and

shortwave). The wind, specific humidity, and air temperature are assumed to be measured

at 10 m above the sea surface. The model uses a linear free surface formulation that

assumes its height variations are small compared to thickness of the levels and therefore

level thicknesses are assumed to be constant in time.



CHAPTER 4

RESPONSE OF THE GLOBAL OCEAN

TO THE MADDEN-JULIAN

OSCILLATION

4.1 Introduction

Although the strongest effects of the MJO are experienced in the tropics, the MJO does

affect atmospheric and oceanic conditions on a global scale. There have been observations

of large-scale intraseasonal sea level variability in the extratropics (South Atlantic Ocean,

South Indian Ocean, and North Pacific Ocean) which were well correlated with wind

stress curl (Fu, 2003). This sea level variability was found to be consistent with a basic

barotropic vorticity model forced by the global wind field but connections to the MJO were

never explored. Enfield (1987) used tide gauge data to study intraseasonal oscillations

along the Pacific coast of the Americas and Spillane et al. (1987) speculated on remote

forcing by equatorially trapped waves generated by the MJO. They attributed significant

variability to coastally trapped waves that were not obviously forced by local meteorology

and were coherent with eastward propagating equatorially trapped waves with periods of

about 50 days. This area has continued to be an active area of research (e.g., Clarke and

Ahmed (1999)).

One goal of the present chapter is to expand on these previous works by including global

altimeter observations of sea level. Most studies have focussed on the Pacific Ocean but a

few works discuss intraseasonal variability in the Indian Ocean (e.g., Moore and McCreary

(1990); Han et al. (2001); Sengupta et al. (2001); Iskandar et al. (2005)). The relevant

aspects of these papers are discussed later.

40
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The theory governing the coastal response to low-frequency equatorially trapped Kelvin

waves incident upon an eastern boundary includes subtleties worthy of note. There exists a

critical latitude, equatorward of which the incident energy is reflected back into the basin

as Rossby waves; poleward of this latitude the incident energy is transmitted poleward

as propagating coastal trapped waves (e.g., Grimshaw and Allen (1988); Clarke and Shi

(1991); Clarke (1992) and Section 3.3.4). For perfectly meridional eastern boundaries,

this critical latitude is identical to the turning point associated with Rossby waves in

the open ocean (Cane and Sarachik, 1981). Furthermore, using the curved coastline

metrics of (Clarke, 1977), it can be shown that for non-meridional eastern boundaries the

critical latitude depends on the orientation of the coastline (e.g., Clarke and Shi (1991) and

Equation 3.38). This dependence is such that the critical latitude is closer to the equator

for more inclined coastlines leading to decreased leakage of Rossby waves and increased

flux of energy associated with coastal trapped waves.

The understanding of the dynamics of the MJO at present comes primarily from ob-

servations rather than physical principles or models, both of which perform poorly at

consistently explaining and predicting the genesis and evolution of the MJO, its interaction

with the extratropical atmosphere and coupling with the ocean. Thus at the present time

there remains an important role for empirical studies which use statistical techniques to

explore the relationship between the MJO and atmospheric and ocean variables.

This chapter focuses on the relationship between the MJO and observed sea level defined

on a global grid. Sea level was chosen as the ocean variable of interest for several reasons.

First, with the advent of altimeter measurements, it has been continuously mapped on a

global scale since 1992 (see Fu et al. (1994) and Cazenave et al. (2008)). Second, it is

a fundamental variable of interest in its own right and also a variable that can be used to

infer, for example, changes in quantities like surface geostrophic flow, heat content and

wave propagation. Sea level appears in the momentum equations as a gradient term and is

thus a natural integrator of ocean dynamics.

In this chapter global sea level is related to the MJO using a scalar metric based on the

coherence between the MJO and global sea level averaged across the MJO band. The

global perspective allows us to identify regions of the ocean with a particularly strong

connection with the MJO. Three such regions are identified: the equatorial Pacific and

coastal Americas, the Gulf of Carpentaria and the northeastern Indian Ocean. In a set



42

of regional analyses, frequency dependent statistical techniques are used to isolate and

describe the sea level variability in the MJO band and then the results are explained using

simple physical principles and concepts (e.g., wind set-up, wave propagation, local and

remote forcing).

The chapter is structured as follows. The data are presented in Section 4.2 and the

statistical methods used to explore connections between sea level and the MJO, and

relationships within the sea level dataset itself, are described in Section 4.3. In Section 4.4

the global connection between the MJO and sea level variability is described followed by

regional analyses in Section 4.5. In the last section, modelling experiments are discussed

as a means of examining and confirming some of the speculations raised here.

4.2 Data

The Wheeler and Hendon MJO index and global observations of sea level and surface

wind are described in this section. Records of observed sea level from tide gauges along

the Pacific coast of the Americas are also described.

4.2.1 The Madden-Julian Oscillation

Daily values of Wheeler and Hendon’s bivariate MJO index were obtained from the

Government of Australia Bureau of Meteorology for the period 1 January 1974 to 31

December 20071. Most of the energy of the MJO has periods between 30 and 90 days,

making it a quasi-periodic phenomenon. This frequency band will be referred to as the

MJO band. The MJO index is based on the first two principal components from an

empirical orthogonal function analysis of tropical outgoing longwave radiation and zonal

winds after removing seasonal and interannual signals (Wheeler and Hendon, 2004). The

two indices describe a propagating phenomenon and are approximately in quadrature.

4.2.2 Global Observations of Sea Level

Global fields of satellite-based altimeter measurements of isostatically adjusted sea level

anomalies were obtained from Aviso2. Weekly data are available on a 1/4◦ resolution

grid for the period 14 October 1992 to 12 May 2007. Because the memory requirements

1http://www.bom.gov.au/bmrc/clfor/cfstaff/matw/maproom/RMM/index.htm
2http://www.aviso.oceanobs.com/en/home/index.html
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of the regional analyses performed in Section 4.5 scale as the square of the number of

locations, the data were further processed by spatially averaging to produce a dataset

with a resolution of 1◦ (each 4 by 4 block of adjacent points were averaged with equal

weights) for these analyses. For both the 1/4◦ and 1◦ datasets, time series of anomalies for

each spatial grid point were generated by filtering the data using a third order, highpass

Butterworth filter with a cutoff period of 120 days. The anomalies are denoted η′a. Note

that η′a has had all interannual variability as well as the annual cycle and its first harmonic

removed by the filter.

4.2.3 Coastal Observations of Sea Level

Measurements of coastal sea level by tide gauges were used to supplement the satellite-

based observations. The altimeter does not resolve the coastal sea level well within

about 25 km of the coast. Given this limitation, the tide gauge data complement well

the observations made by the altimeter. Daily time series were obtained for thirteen tide

gauges along the coast of the Americas (seven south and six north of the equator, for

more details see Section 4.5.1) from the University of Hawai‘i Sea Level Center3. Tides

have been removed by the University of Hawai‘i Sea Level Center. Weekly means were

generated from this dataset, in order to match the time step of the altimeter data, for the

period 23 December 1998 to 14 October 2002. (Gaps of missing data shorter than 20 days

were interpolated.) Measurements of sea level pressure, obtained from the NCEP/NCAR

Reanalysis4 and interpolated to the locations of the tide gauges, were used to remove the

inverse barometer effect. The tide gauge data were then highpass filtered as above. The

highpass filtered and isostatically adjusted coastal sea level anomalies are denoted by η′c.

4.2.4 Global Observations of Surface Wind

Global fields of zonal and meridional surface (10 m) winds were obtained from the

NCEP/DOE Reanalysis 2 (Kanamitsu et al., 2002). Daily fields of global data on a T62

grid were available from 1979 to 2008 inclusive. In order to facilitate cross-spectral analysis

with η′a the wind data were output as weekly averages and anomalies were generated by

highpass filtering as above.

3http://uhslc.soest.hawaii.edu/
4http://www.cdc.noaa.gov/cdc/data.ncep.reanalysis.html
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Figure 4.1: Global map of the proportion of global sea level variability related to the MJO.
Filled contours show κ̄, the proportion of the standard deviation of η′a accounted for by the
MJO. The 5% significance level is κ̄5% ∼ 0.3. Regional blowups of this map are shown in
Figure 4.4 (west coast of the Americas), Figure 5.5 (Gulf of Carpentaria), and Figure 6.4
(northeastern Indian Ocean).
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Figure 4.2: Global map of the amount of global sea level variability related to the MJO.
Filled contours show σp, the magnitude of the standard deviation of η′a accounted for by
the MJO. The quantity σp is only shown for regions where κ̄ > κ̄5%. The boxes show the
study regions examined in Sections 4.5.2 and 4.5.3.
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4.3 Statistical Methods

Two different statistical methods are used to analyze the sea level observations. The first

method relates the sea level to the MJO and the second method looks at relationships

within the sea level data set. The advantage of the first method is that it uses the MJO

index as a surrogate forcing term thus allowing us to explore links between the response

(sea level at a specific grid point) and the forcing (MJO). A drawback of using a single

index to characterize the MJO is that it has no information on the spatial variability of

the MJO. In order to assess the spatial dependence of intraseasonal sea level variability

associated with the MJO the above technique is supplemented by looking for modes of

variability within the sea level dataset in the MJO band.

4.3.1 Relationships Between Sea Level and the MJO

Given a time series of interest, such as η′a at a particular grid point, how can its relationship

with the MJO be quantified? It is possible to explore the relationship between η′a and the

MJO by compositing based on phase and strength of the MJO (e.g., Hall et al. (2001);

Wheeler and Hendon (2004); Vecchi and Bond (2004)). One of the strengths of such an

approach is that it allows nonlinear relationships to be resolved. However, compositing

of sea level with the MJO index (not shown) has indicated that the assumption of a linear

relationship between these variables is reasonable and so traditional time series techniques

(e.g., spectral analysis, regression) are used in this study to explore the relationship between

sea level and the MJO.

A simple metric was developed to quantify the strength of the relationship between sea

level variability and the Madden-Julian Oscillation. It represents the ratio of the variance

in η′a predicted by the MJO (σ2
p) to the total observed variance in η′a (σ2

o):

κ̄2 =
σ2

p

σ2
o

=

∫
κ2(ω)f(ω)dω∫
f(ω)dω

, (4.1)

where κ2 is the multiple coherence squared between η′a and the bivariate MJO index and

f is the power spectrum of η′a. The total observed variance is defined as the integral over

f and the predicted variance is the integral over the product of f and κ2. This statistic is

discussed in Section 2.2.3.

The κ̄2 statistic reduces the coherency spectra to a scalar value at each spatial point and

has the additional useful property that it lies between zero and unity. Similar to coherence,
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a value of zero implies no relationship (no sea level variance is predicted by the MJO) and

a value of unity implies a perfect linear relationship (all the variance is predicted by the

MJO). This metric is more general than a correlation because it allows linear relationships

to be found between broad-banded time series even when they are in quadrature (in which

case the correlation would be zero).

From the practical standpoint of prediction a large κ̄ is not useful unless the predicted

response is significant as well. Thus the quantity σp, which is the standard deviation of

η′a predicted by the MJO, is used to assess practical significance. Regions where both

quantities are large have a significant implied connection with the MJO. The statistical

significance of κ̄ is assessed using a Monte Carlo method to generate a sample distribution

of κ̄ under the assumption of no relationship with the MJO (see Section 2.2.4 and Appendix

A).

4.3.2 Modes of Sea Level Variability in the MJO Band

Relationships within a spatially distributed dataset can be assessed using frequency depen-

dent empirical orthogonal function (FDEOF) analysis (e.g., Wallace and Dickinson (1972);

Brillinger (2001); Section 2.1.2). This technique allows us to determine the presence

of propagating or standing waves within a narrow band of frequencies. This analysis

yields a set of complex, frequency-dependent modes which specify the spatial patterns of

magnitude and phase relationships within each mode.

4.4 Global Response of Sea Level to the MJO

The global maps of κ̄ and σp for η′a are shown in Figures 4.1 and 4.2. The ocean shows

a statistically significant response of sea level to the MJO across the Equatorial Pacific

(κ̄ ∼ 0.4− 0.7), an intermediate response along coastlines (κ̄ ∼ 0.3− 0.5) and a weaker

but large scale response in the central North and South Pacific (κ̄ < 0.3). One of the most

notable features is that a much higher fraction of the coastal response is explained by the

MJO along the western coastlines than along the eastern coastlines of each landmass (most

obvious along the coasts of Sumatra and the Malay Peninsula). This coastal response

is strongest along the Maritime Continent (κ̄ ∼ 0.5), followed by the Americas (κ̄ ∼
0.3− 0.5) and weakest along the coast of west Africa (κ̄ < 0.3). This is consistent with

the understanding of the MJO as an eastward propagating phenomenon which originates,
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and is strongest, in the vicinity of the Indian Ocean.

The map of σp (Figure 4.2) is masked according to statistical significance of κ̄. From

this map several major regions with large κ̄ and σp can be identified. First, there is a band

along the Equatorial Pacific. This region has been treated in detail by Zhang et al. (2009).

A second region is identified in the northeastern Indian Ocean and includes a complex

array of features including coastal responses along Sumatra, the Bay of Bengal and the

west coast of the Indian subcontinent as well strong signals in the central part of the ocean.

A third region covers the Gulf of Carpentaria and the nearby Arafura and Timor Seas,

between Australia and New Guinea. Finally, a fourth region is the Pacific coast of the

Americas, especially near Central America and tropical South America but also extending

to the extratropics along the coast of Chile. As noted above, the altimeter does not resolve

the signal near the coast very well in the extratropics. However, the coastal Americas form

a continuous waveguide based on the strong tropical signal, the strong signal near Chile,

and the work of previous authors (Enfield, 1987; Spillane et al., 1987; Clarke and Ahmed,

1999).

Coherence of sea level with the MJO at the selected regions is quantified in Figure

4.3. The Equatorial Pacific and coastal Americas are combined into one region. For the

Equatorial Pacific coastal Americas region both η′a and η′c are used; for the Gulf of Carpenta

and northeastern Indian Ocean only η′a is used. The η′c series were recorded at the coastal

tide gauge locations shown in Figure 4.4 (the exact locations, along with information on

time span and completeness, are given in Table 4.1). Each region shows a peak at a period

of about 75 days which suggests that the same large-scale atmospheric forcing may be

responsible for driving the variability observed in each region.

4.5 Regional Responses of Sea Level to the MJO

The following subsections describe the sea level variability in the three regions mentioned

in Section 4.4 and explain it in terms of simple physical processes.

4.5.1 The Equatorial Pacific and Coastal American Waveguides

Figure 4.4 shows a map of κ̄ focusing on the eastern equatorial Pacific and the coastal

Americas between 50◦N and 50◦S. There are indications that the sea level response reaches

into the extratropics (with decaying magnitude and zonal extent in the poleward direction).
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Figure 4.3: Coherence between the MJO and sea level for three regions. The continuous
line is the coherence between regional sea level time series and the MJO index averaged
over the following regions: (a) the Pacific-Americas waveguide, (b) the Gulf of Carpentaria,
and (c) Northeastern Indian Ocean (the latter two regions are defined by the boxes in Figure
4.2). For each region there is clear maximum at about a period of 75 days (shown by a
vertical dashed line) which is used as the frequency for the subsequent FDEOF analysis.
The grey band indicates the standard deviation of coherence values within a region. The
dashed line shows the 5% significance level based on an individual calculation of coherence.
“cpd” denotes cycles per day.

Name Latitude Longitude % Complete
San Francisco 37◦48’N 122◦28’W 100

Monterey 36◦36’N 121◦53’W 99.3
Los Angeles 33◦43’N 118◦16’W 100
San Diego 32◦42’N 117◦10’W 99.8
Acajutla 13◦35’N 89◦50’W 99.2

Armuelles 6◦16’N 82◦52’W 99.9
La Libertad 2◦12’S 80◦55’W 99.4

Lobos 5◦56’S 80◦43’W 99.6
Callau 12◦3’S 77◦9’W 99.7
Arica 18◦28’S 70◦20’W 99.9

Antofagasta 23◦39’S 70◦24’W 94.6
Caldera 27◦4’S 70◦50’W 99.5

Valparaiso 33◦2’S 71◦38’W 98.4

Table 4.1: Details on the tide gauge records. The completeness percentage is over the
common period from 23 December 1998 to 14 October 2002.
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Figure 4.4: Proportion of sea level variability measured by altimeters accounted for by
the MJO near the Americas (a regional blowup of Figure 4.1) . κ̄ represents the fraction
of standard deviation of η′a predicted by the MJO. The 5% significance level (see Section
2.2.4) is κ̄5% ∼ 0.3 and is denoted by the black contour. The dots show the locations of the
coastal tide gauges providing records of η′c (see Table 4.1 for detail on each tide gauge).
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A possible physical explanation is that the atmospheric component of the MJO generates

equatorially trapped waves in the western Pacific which propagate eastward along the

equator before reaching the coastal boundary at which point the energy is reflected as

Rossby waves at low latitudes and transferred to poleward propagating coastally trapped

waves at higher latitudes (Spillane et al., 1987; Clarke and Ahmed, 1999). For the Americas

on intraseasonal timescales, this critical latitude occurs between 8.5◦ and 11◦ from the

equator (calculated following Clarke and Shi (1991), see Section 3.3.4). These latitudes

are consistent with the region of significant seaward extend of κ̄ in the tropics off the coast

of the Americas. Also, the poleward reduction in seaward extent is consistent with internal

Rossby radius of deformation which decreases poleward and defines the length scale for

coastal trapping.

A FDEOF analysis was performed on η′a and η′c to test the theory that the coastal response

is related to waves travelling along the equator and coastlines. The η′a series were recorded

at 25 equally spaced points along the equator from 155◦E to 85◦W, and 44 near coastal

points along the coast of the Americas from 45◦S to 44◦N (equally spaced in latitude).

Note that the tide gauge data were made into weekly averages and that the time span η′a
was shortened to match that of η′c (23 December 1998 to 14 October 2002). The time series

were also scaled so that the total variance of the equatorial set is equal to the total variance

of the coastal set. This ensures that both the equatorial signal and the coastal signal are

weighted equally in the statistical analysis.

The proportion of spectral density accounted for by the first twenty FDEOF modes is

shown in Figure 4.5. This analysis was performed at a frequency corresponding to a period

of about 75 days which is the location of the peak in coherence between sea level and

the MJO (Figure 4.3a). The first mode accounts for approximately two-thirds of the total

spectral density (defined as the trace of the cross-spectral matrix) and the higher order

modes add less than 10% each.

Figure 4.6 shows the first mode from the FDEOF analysis. The upper panel shows the

magnitude of this mode (absolute value of the elements of ei, see Section 2.1.2) and the

lower panel shows the time delay of the mode (derived from the phase of the elements of

ei) as functions of “distance” along the waveguides (i.e., the equatorial waveguide and the

coastal waveguide). Distance was calculated along two paths: both run along the equator

but split into north and south paths at the coastal boundary. This division into two paths is
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Figure 4.5: Total spectral density of sea level accounted for by the FDEOF as a function
of the number of FDEOF modes included. The vertical axis is the fraction of the spectral
density at a 75 day period accounted for by the FDEOF modes and the horizontal axis
represents the number of modes included.

performed under the assumption that some energy will travel north and some will travel

south once the equatorially trapped energy reaches the coastal boundary thus splitting the

energy along two paths. The time delay was calculated from the phase of the eigenvector

elements and the timescale of 75 days (the most westerly station is assumed to be t = 0).

The time delays shown in Figure 4.6 are consistent with a response propagating east-

wards along the equator which excites coastally trapped waves that move poleward along

the coast of the Americas. From the linear regression of phase lag on distance the equatorial

wave is estimated to have a speed of 2.6 ± 0.1 ms−1 which is consistent with the first

baroclinic mode of equatorially trapped oceanic Kelvin waves (Gill (1982); Hendon et al.

(1998); Zhang et al. (2009), see Section 3.3.2). The coastal waves have speeds of 5.6± 2.8

ms−1 (northern hemisphere) and 3.3±0.6 ms−1 (southern hemisphere). Error bounds were

determined from the distribution of linear fit parameters based on 300 fits using bootstrap

resampling (300 was sufficiently large to give stable results upon repetition).

The speeds found here are similar to those found by Brink (1982) who developed a

semi-theoretical model for free, coastally trapped long waves (with periods from a few
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days up to 20 days). The estimated wave speed along the coast of South America is also

consistent with the speed obtained from the model developed in Clarke and Ahmed (1999).

The amplitude increases slightly with distance eastward along the equator. According to

theory, the sea level amplitude of the coastal trapped wave should increase as
√
|f | due

to flux conservation (Clarke, 1992), substantially less so if the effects of topography and

friction are included Clarke and Ahmed (1999). However, along the coastal boundaries

the amplitude has too much scatter to make a definitive conclusion as to the trend. As

discussed previously, outside the tropics the sea level signals within a Rossby radius from

the coast are not well resolved by the altimeter measurements. This may explain the large

amount of scatter in the mid- and high latitude altimeter points in the delay of the mode

(Figure 4.6). It may be possible to obtain a more accurate measure of wave speed by

omitting the altimeter data at higher latitudes but the small number of points would make

the sample size too small to give much confidence in the results.

Intraseasonal coastal trapped waves along the coast of the Americas were studied by

Spillane et al. (1987). They examined relationships between time series of sea level height

from coastal tide gauges. Spillane et al. (1987) found a coherent wave with a period

between 47 and 58 days travelling poleward from the equator to 55◦N and 15◦S. Over the

range 10◦N to 40◦N the wave has a nearly constant speed of ∼1.7 ms−1 which is slower

that the speed estimated here (although the wave has a different timescale). A follow-up

study examined possible forcing in the equatorial Pacific ocean (Enfield, 1987) and found

that there is a coherent wave that travels along the equatorial Pacific and the coast of the

Americas. They concluded that the forcing occurred remotely in the western Pacific. The

analysis performed here expands on the work of Enfield (1987) and Spillane et al. (1987)

by including satellite-based measurements of sea level in addition to tide gauges and by

making a statistical connection with the MJO which is treated as a surrogate for forcing.

4.5.2 Gulf of Carpentaria

In order to explain the high values of κ̄ in the Gulf of Carpentaria, the FDEOF technique

is applied to sea level measured from altimeters within a region surrounding northern

Australia (see box in Figure 4.2). The period of the FDEOF analysis is 75 days (see Figure

4.3b).

The first mode accounts for 34% of the total spectral density (see Figure 4.5). Maps

showing the cyclic evolution of the first mode are given in Figure 4.7. This mode describes
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Figure 4.6: The first mode of the FDEOF analysis of sea level from the Pacific-Americas
waveguide at a period of 75 days. The magnitude of response is shown in upper panels and
time delay from first station in lower panels. Open circles represent satellite data and filled
circles represent tide gauge data. The equator, northern hemisphere coast and southern
hemisphere coast are split for visual clarity. The lines on the lower panels represent linear
regressions with slopes representing wave speeds of 2.6± 0.1 ms−1 (equator), 5.6± 2.8
ms−1 (N. Hemisphere) and 3.3± 0.6 ms−1 (S. Hemisphere).
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Figure 4.7: Maps of the first FDEOF mode in the Gulf of Carpentaria region for one half
of its cycle (in π/4 radian steps). The complete cycle can be constructed by repeating
these snapshots with positive and negative values switched. The mode is dominated by a
standing wave in the Gulf of Carpentaria as well as smaller amplitude travelling waves to
the east and west of Australia. Note that given the period of the mode is 75 days, the above
sequence has a time range of 32.5 days. In order to show the shallow waters of the Gulf
of Carpentaria and the Arafura and Timor Seas a thin black line representing the 100 m
bathymetric contour is shown in the first panel. The box shows the region for the wind field
(8.75◦S to 16.25◦S and 136.25◦E to 141.5◦E) and the circles show the locations of sea level
time series used in the set-up analysis ([16◦S,138.5◦E], [16◦S,139.5◦E], [16◦S,140.5◦E],
[15◦S,140.5◦E] and [14◦S,140.5◦E]).

a standing wave in the relatively shallow Gulf of Carpentaria and nearby Arafura and

Timor Seas to the west (see the first panel of Figure 4.7). Weaker progressive waves are

also evident in the deeper water off the northwestern and northeastern Australian coasts.

The standing wave may be due to the effect of wind set-up over the shallow waters

noted above. To explore this possibility the sea level variability at the head of the Gulf

of Carpentaria is examined. Sea level at the head of the Gulf (the southeastern end), ηH,

is taken as the average of the five points whose locations are depicted in the first panel

of Figure 4.7. A plot of this time series over a 6-year time period is shown in Figure 4.8.

The upper panel shows ηH. Variations on the order of 60 cm, including a strong seasonal

cycle, are observed. The middle panel shows the same data after removing the seasonal
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Figure 4.8: Sea level and local wind set-up in the Gulf of Carpentaria. The sea level
anomaly at the head of the Gulf of Carpentaria, ηH(t), and the set-up due to wind, η̂H(t),
are both shown over a 6-year period. The upper panel (a) shows the sea level at the head
of the Gulf ηH(t) and sea level from the set-up calculation using wind stress η̂H(t). The
middle panel (b) shows the deseasonalized ηH(t) and η̂H(t), and the lower panel (c) shows
the bandpassed (30-90 days) ηH(t) and η̂H(t). There is good agreement particularly in the
timing and sign of the predicted set-up response.

cycle (annual and semiannual cycles were removed by harmonic regression). Much of the

remaining variability is concentrated in the MJO band which is emphasized in the 30-90

day bandpassed series shown in the lower panel.

The prediction of the sea level anomaly at the head of the Gulf of Carpentaria due to

wind set-up, η̂H, was calculated as follows. Assuming constant density and depth, and

steady state, the linearized momentum equations representing the ocean response to wind

forcing leads to a balance of surface wind stress, τ , and the pressure gradient along the

Gulf (which is taken to be northwest-southeast, based on the shape of the standing mode

in Figure 4.7 and the local shape of the coastline). The head of the Gulf is chosen to be

in the southeast corner (see Figure 4.7, panel 1) and length is defined to be L = 1000 km.
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This value is somewhat subjective and open to uncertainty. The averaging period for the

sea level is one week and this is much longer than the time estimated to reach a steady

state (∼1 day). It follows that set-up theory can be applied independently at each point

in time to predict the sea level response to wind stress. Assuming the sea level change at

the “mouth” is zero, this leads to the following expression for the sea surface height at the

head:

η̂H =
Lτ

ρgH
, (4.2)

where g is gravitational acceleration (9.8 ms−2), ρ is the density of seawater (taken to

be 1024 kg/m3) and H is the water depth (36 m, based on ETOPO2 bathymetry data5).

The along-gulf wind component, w, was calculated from the average of all northwesterly

winds in the box shown in the first panel of Figure 4.7. The wind stress was calculated

using τ = ρacd(a)aw, where ρa is the density of air (taken to be 1.2 kg/m3), cd(a) is

the wind-dependent air-sea drag coefficient and a is a modification of the wind speed to

account for the contribution to the stress from variability lost by taking a weekly average

of the daily winds (see Thompson et al. (1983) for details on the calculation of a).

The predicted sea level set-up, η̂H, is plotted in the upper panel of Figure 4.8 along with

the aforementioned time series of ηH. The middle and lower panels show the observed

sea level and set-up after removing the seasonal cycle and applying a 30-90 day bandpass

filter, respectively. It is clear that wind set-up explains most of the seasonal cycle as well

as several large events in the original data; it is particularly powerful at predicting the

bandpassed sea level variability. Quantitatively, the zero-lag crosscorrelation between the

bandpassed sea level and set-up is 0.70. However, the model overestimates the observed sea

level significantly (the minimum RMS difference between ηH and η̂H is found for 0.64η̂H).

At a period of 75 days the coherence between the bandpassed ηH and η̂H (effectively

the wind stress) is 0.81 (between 0.5 and 0.85 across the entire MJO band with a 5%

significance level of 0.28). Sea level set-up therefore explains a large portion of sea level

variability at the head of the Gulf and is especially relevant on MJO timescales.

Note the multiple coherence between the northwesterly wind stress and the MJO index

is 0.68 at a period of 75 days (between 0.4 and 0.7 across the entire MJO band with a 5%

statistical significance level of 0.25). From this result it is concluded that the intraseasonal

5http://www.gfdl.noaa.gov/products/vis/data/datasets/etopo2_
topography.html
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sea level variability in the Gulf of Carpentaria region is mainly due to the MJO through

its influence on local sea level set-up. Note that the reanalysis, which is a numerical

model simulation of the atmosphere, provides the MJO-related wind component despite

the MJO not being well resolved by numerical models (see Section 1.4). This is most

likely due to the reanalysis being constrained by numerous observations of MJO-related

winds and simply providing dynamically-smoothed atmospheric fields. As will become

clear in Chapter 7, if the observations are too sparse in space and time the model will not

be able to accurately simulate the MJO.

The influence of the Madden-Julian Oscillation on sea level and circulation in the Gulf

of Carpentaria, as well as a discussion of its predictability, will be explored in more detail

in Chapter 5.

4.5.3 Northeastern Indian Ocean

The FDEOF technique was applied to a region in the northeastern Indian Ocean bounded

by the box shown in Figure 4.2. As above, the 1◦ resolution η′a data were used and the

frequency, corresponding to a period of 75 days, was chosen based on the peak in average

coherence between sea level and the MJO for this region (see Figure 4.3c). The first mode

accounts for 25% of the total spectral density at 75 days (see Figure 4.5) and its time

variation is visualized in Figure 4.9.

This mode represents a mixed set of dynamics. It is clear from Figure 4.9 that there

are relatively fast waves travelling eastward along the equator which reach the western

coast of Sumatra. This energy is then reflected back into the basin at low latitudes as

Rossby waves or carried poleward at higher latitudes by coastal trapped waves moving

along two paths: south along the coasts of Sumatra and Java and north along the coasts of

Sumatra and the Bay of Bengal. This phenomenon is similar to that observed in the Pacific

Ocean (see Section 4.5.1) and consistent with observations of coastally trapped waves

in the southern hemisphere along the coasts of Sumatra and Java (Clarke and Liu, 1993;

Iskandar et al., 2005). The Rossby waves are most prominent in the northern hemisphere,

forming near the northern tip of Sumatra and propagating along 5.5◦N. For a coastline

angle of 45◦ (approximately the coastline angle of Sumatra) and a period of 75 days, the

critical latitude is ∼ 9◦N which is poleward of the northern tip of Sumatra. Therefore,

these Rossby waves are permissible and are consistent with observations by Chelton et al.

(2003). The observed asymmetry (i.e., that the Rossby wave signal is stronger north of
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Figure 4.9: Maps of the first FDEOF mode in the northeastern Indian Ocean region for one
full cycle (in π/4 radian steps). The mode shows an equatorially trapped wave reaching
the western coast of Sumatra and exciting westward propagating waves around 5.5◦N and
5.5◦S. There are also indications of coastal trapped waves in the Bay of Bengal. A full
cycle is completed in 75 days.
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the equator than south of the equator) may be due to the shapes of the specific meridional

modes that are excited (see Section 3.3.3).

In order to illustrate this propagation pattern a modified Hovmöller diagram has been

generated of η′a showing the continuous propagation of signals and westward reflection in

the tropical Indian Ocean. The horizontal axis of the Hovmöller diagram represents the

path of a wave in three sections: (i) eastward along the equator from 50◦E (near Africa) to

99◦E (Sumatra), (ii) northwestwards along the coast of Sumatra from the equator to 5◦N,

and (iii) westward along 5.5◦N from 94◦E to 70◦E (this path is shown in the first panel of

Figure 4.9). Part of the Hovmöller diagram for a subset of the full time period is shown in

Figure 4.10.

There is continuity between the eastward-propagating signals along the equator and

those which propagate westward along 5.5◦N (Figure 4.10). The eastward-propagating

component in the first portion of the figure is consistent with a first mode baroclinic Kelvin

wave. In order to illustrate this, a line corresponding to a wave speed of 2.8 ms−1 (speed

of the first baroclinic mode for equatorial oceanic Kelvin waves in this region (Chelton

et al., 1998)) is shown. As noted above, the westward-propagating component appears

to be the result of Rossby waves forming off the coast of Sumatra and travelling along

5.5◦N. Lines are added to Figure 4.10 demonstrating the predicted speeds of the first two

baroclinic Rossby wave modes (0.93 m/s and 0.47 m/s, respectively).

These observations are consistent with Chelton et al. (2003) who discuss an observed

maximum in the westward propagating Rossby wave signal near 5.5◦N and phase speeds

between 0.5 ms−1 and 1 ms−1. Chelton et al. (2003) also state that theoretically these

waves should be associated with identical waves travelling westward along 5.5◦S but also

note that observations usually identify the waves in the southern hemisphere (if they are

identified at all) as having much smaller amplitude. The results found in Chelton et al.

(2003) are consistent with these observations in which a slight indication of these waves

developing in the southern hemisphere is seen but they do not propagate far into the ocean

interior.

A possible explanation is as follows. The more meridional a coastline, the more

poleward is the critical latitude which delineates the change between reflected Rossby

waves and coastally trapped waves. The tropical eastern boundary of the Indian Ocean is

more meridional in the northern hemisphere (Sumatra and Myanmar) than in the southern
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Figure 4.10: Modified Hovmöller diagram for η′a for the period from October 1995 to
October 1998. The horizontal axis is split into three regions: (i) eastward along the
equator, (ii) northwestward along the coast of Sumatra, and (iii) westward along 5.5◦N.
The propagation of signals along the equator, and reflection from the eastern boundary,
are evident. The lines represent wave speeds of 2.8 ms−1 in the first section representing
the first mode baroclinic Kelvin wave and 0.933 ms−1 and 0.467 ms−1 in the third section
(solid and dashed, respectively) representing the first two Rossby wave modes.
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hemisphere (Sumatra and Java) and so the critical latitude will be more poleward in the

north than in the south. This will result in more energy radiated into the basin as Rossby

waves in the north. It should also be noted that the westward propagating waves do not

travel west of about 72◦E which could be due to the presence of the Maldives Island

chain which lies off the southwest coast of India near this longitude and is oriented in the

north-south direction.

The strength and generation of equatorially trapped Kelvin waves are known to be

influenced by zonal wind stress along the surface of the equatorial Ocean. It is also known

that the MJO is strongly correlated with zonal wind in this region (Madden and Julian,

1972; Zhang et al., 2009). Many equatorial events evident in Figure 4.10 occur at times

that correspond with large MJO events. Generally the best correspondence between MJO

and sea level events occurs during late Boreal spring and summer (approximately from

May through to August). One particularly notable example of this is the summer of 1997.

The westward propagating waves along 5.5◦N may be a combination of remote and local

forcing. Figure 4.10 shows that they are often partly based on signals originating in the

equatorial region and so are partially forced remotely by wind generated waves in the

equatorial Indian Ocean. Note that the westward propagating waves exhibit characteristics

such as multiple wave speeds and amplification or decay along their paths that cannot be

attributed solely to such remote forcing. A more detailed modelling study of this region

is pursued in Chapter 6 in order to determine the dominant waveforms along with their

forcing and decay.

4.6 Summary and Discussion

Using satellite-based measurements of sea level it is shown that the Madden-Julian Os-

cillation can have a significant effect on sea surface height. Using traditional statistics a

simple scalar statistic is developed that measures the strength of the connection between

the MJO and sea level variability in a given frequency band and at a fixed location. The

connection between sea level and the MJO on a global scale was mapped for the first time

using this statistic.

The global maps were used to identify regions which have a strong connection between

sea level and the MJO by considering both statistical significance (the magnitude of the

coherence) and practical significance (the magnitude of the predicted sea level response).
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The most significant regions include the equatorial Pacific Ocean and the west coast of

the Americas (combined into one region), the shallow seas off the north coast of Australia

(including the Gulf of Carpentaria and the Arafura and Timor Seas), and the northeastern

Indian Ocean. These regions were examined individually in order to determine the

dominant physical processes relevant for variability on MJO timescales.

The equatorial Pacific and coastal Americas act as a continuous waveguide linking both

equatorially and coastally trapped waves. Signals are forced by zonal surface winds in the

western Pacific which then propagate east along the equator as Kelvin waves. Once they

strike the American coast they excite coastally trapped waves which propagate poleward

and are detected as far as 37◦N and 33◦S. The sea level variability north of Australia

consists of a standing wave in the Gulf of Carpentaria and nearby shallow seas. Further

investigation shows that most of the variability is due to sea level set-up driven by local

onshore winds associated with the MJO. Finally, the northeastern Indian Ocean exhibits a

complex variety of different behaviours. It is speculated that equatorially trapped Kelvin

waves, generated by surface wind forcing (as in the equatorial Pacific), excite signals along

the coasts of Sumatra that propagate poleward as coastal trapped waves and into the basin

as Rossby waves that travel westward along 5.5◦N.

The present study relies on a combination of statistical analysis and dynamical reasoning

(e.g., sea level set-up due to wind based on linear theory as well as considerations of local

and remote forcing). There are, however, some important questions to be answered. Does

the wind-driven sea level set-up in the Gulf of Carpentaria act as a generator of Rossby

waves in the adjacent deep ocean as suggested by the small amplitude waves observed off

the west coast of Australia? Is the fact that westward Rossby waves in the northeastern

Indian Ocean are predominantly radiated along 5.5◦N related to bathymetry or coastal

geography? In order to shed light on some of these questions, and confirm the physical

explanations given earlier, more complex modeling studies are presented in Chapter 5

(Gulf of Carpentaria) and Chapter 6 (northeastern Indian Ocean) that include realistic

bathymetry, forcing and stratification.



CHAPTER 5

THE GULF OF CARPENTARIA: LOCAL

RESPONSE TO THE MJO AND

REMOTE FORCING FROM THE

PACIFIC OCEAN

5.1 Introduction
It was shown in Chapter 4 that sea level from the Gulf of Carpentaria has a significant

correlation with the MJO. In this chapter I examine the effect of the Madden-Julian

Oscillation on sea level in the Gulf of Carpentaria and expand the analysis to include

circulation variability. This is done using a regional ocean model that is validated through

comparison with coastal tide gauge observations.

There have been few studies on sea level variability in the Gulf of Carpentaria. Church

and Forbes (1983) examined the barotropic tidal circulation in the Gulf and Forbes and

Church (1983) observed a strong seasonal cycle in sea level, with maximum variability

in the southeast corner of the Gulf, and showed it was related to surface wind, atmo-

spheric pressure and steric density effects. The observed sea level range at Karumba

(140◦49′E,17◦29′S) is 75 cm which is speculated to be partly due to local effects and partly

due to the influence of nearby seas (Forbes and Church, 1983). A similar pattern to what

was presented in Chapter 4 was observed by Tregoning et al. (2008), except on annual

time scales, and compared estimates of sea level from GRACE to those from a wind- and

pressure-driven barotropic model and measurements from a local tide gauge. The role of

the MJO was not discussed in the above studies.

64
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Figure 5.1: Power spectrum of the MJO and its relationship to wind over the Gulf of
Carpentaria. The two lines show the coherence between the MJO and zonal (solid)
and meridional (dashed) surface wind averaged over the box shown in Figure 5.3. The
horizontal dashed line indicates the 5% significance level and vertical lines indicate periods
of 30, 60 and 90 days. The grey shaded region shows the shape of the power spectrum of
the MJO index (the spectra of the two individual components have been summed).

Exploring the coastal expressions of the Madden-Julian Oscillation as well as lower

frequency variability such as ENSO in the Gulf of Carpentaria is interesting from a

scientific perspective. From a more applied perspective it is important to note that the

Gulf is an important fishing area and understanding how environmental changes can affect

these fisheries is potentially important from a resource management perspective. It has

already been shown that ENSO affects Rock Lobster populations off the northwest coast

of Australia through changes in sea level and circulation (Pearce and Phillips, 1988) and

wind variability has been shown to affect the banana prawn fishery in the northern Gulf of

Carpentaria (Vance et al., 1985).

This chapter is organized as follows. The observations and a preliminary statistical

analysis are presented in Section 5.2 and Section 5.3, respectively. The ocean model is

described in Section 5.4 and in Section 5.5 it is used to better understand the dynamics in

the Gulf of Carpentaria and the role of the Madden-Julian Oscillation. In Section 5.6, the

low frequency residual signal (i.e., that component not predicted by the model) is related to
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remote forcing from the Pacific and Indian Oceans via the Indonesian Throughflow region.

A summary of the results and implications of this study, as well as a discussion of future

work, are presented in Section 5.7.

5.2 Observations of Sea Level, the MJO, and Surface Wind

Observations of the MJO, sea level, and the wind data which are used to validate and force

the coastal model are presented here as a prelude to the more complete modeling study

described in Section 5.4. The altimeter-based observations of sea level, which were used

in Chapter 4, are supplemented with coastal observations from tide gauges.

5.2.1 The Madden-Julian Oscillation Index

The MJO is characterized using the bivariate index of Wheeler and Hendon (2004). Daily

values from 1/1/1979 to 30/1/2010 were obtained from the Government of Australia Bureau

of Meteorology1. The power spectrum of the MJO index is shown in Figure 5.1.

5.2.2 Sea Level from Altimeters

Global fields of satellite-based altimeter measurements of sea level anomalies were ob-

tained from Aviso2. The data were isostatically adjusted for local pressure effects and

corrected for tides by Aviso. Weekly data from a 1/4◦ resolution grid for the period

14/10/1992 to 22/7/2009 are analyzed, after the annual cycle and its first two harmonics

were removed from each grid point time series using least squares.

5.2.3 Sea Level from Tide Gauges

Hourly time series of sea level were obtained from three tide gauge locations (Figure

5.3) around the Gulf of Carpentaria for the period 14/11/1979 to 30/1/2010. The data for

Groote Eylandt were obtained from the Australian Baseline Sea Level Monitoring Project3

and those for Karumba and Weipa were obtained from Maritime Safety Queensland,

Queensland Government, Australia. See Table 5.1 for details. The records were de-tided

using the analysis package of Pawlowicz et al. (2002) using 68 tidal constituents and

1http://www.bom.gov.au/bmrc/clfor/cfstaff/matw/maproom/RMM/index.htm
2http://www.aviso.oceanobs.com/en/home/index.html
3http://www.bom.gov.au/oceanography/projects/abslmp/data/index.shtml
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Tide Gauge Latitude (S) Longitude (E) Start End % Complete
Groote Eylandt 13◦50′ 136◦30′ 2/9/93 31/8/09 99

Karumba (1) 17◦29′ 140◦49′ 15/11/79 12/3/91 96
Karumba (2) 17◦29′ 140◦49′ 14/10/93 31/12/09 98

Weipa (1) 12◦40′ 141◦52′ 2/6/84 3/9/91 95
Weipa (2) 12◦40′ 141◦52′ 6/9/91 31/12/09 99

Table 5.1: Details of the tide gauge records. The Karumba and Weipa records were split
into two segments because there was a large gap in the middle of the record that was too
long to fill by standard interpolation.

averaged to daily values using a simple Doodson X0 filter (Doodson, 1928). The inverse

barometer effect was removed using daily sea level pressures from the NCEP/NCAR

Reanalysis 1 (Kalnay et al., 1996) defined on a 2.5◦ grid. The annual cycle and its first

two harmonics were removed using least squares prior to analysis. The daily mean tidal

residual of coastal sea level is denoted by ηo. Sample plots of the time series are shown in

Figure 5.2.

5.2.4 Surface Wind

Six-hourly fields of surface (10 m) winds were obtained from the NCEP/DOE Reanalysis

2 (Kanamitsu et al., 2002) for the period 1/1/1979 to 31/12/2009. The data are defined

on a global T62 Gaussian grid with an approximate resolution of 2◦. The wind fields

were mapped onto the ocean model grid (Section 5.4) using two-dimensional bicubic

interpolation and stresses were subsequently calculated using the air-sea drag coefficient

of Large and Pond (1981). This drag formula ignores the stability of the atmosphere lying

over the ocean surface. This is not a major concern because McBride and Frank (1999)

have shown that the atmospheric stratification over the Gulf of Carpentaria is weak. The

Gulf-mean wind is defined as the average over the area shown by the box in Figure 5.3

(data over both land and ocean are included).

5.3 Intraseasonal Variability in Observed Sea Level and Surface Wind

The annual cycle of ηo was estimated for each tide gauge location by harmonic regression.

Phases are similar across all stations, with sea level peaking in late January and February

(Figure 5.4), consistent with Forbes and Church (1983). It was shown in Chapter 4 that the
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Figure 5.2: Observed and predicted sea level for a typical two-year period. The dashed
line shows the observed sea level (ηo) and the red line shows the corresponding model
prediction (ηm). The solid line shows the observed sea level after high-pass filtering with a
cutoff period of 1/2 year.
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Figure 5.3: The model domain and bathymetry. Black lines show the 25 m, 50 m, and 200
m depth contours. The three white circles show the locations of the tide gauges. The box
shows the area used to form the Gulf-mean wind and sea level (see Sections 5.3 and 5.5).

Figure 5.4: Annual cycle of observed sea level. Black circles show the amplitude and
phase for the annual cycle at each station (calculated by harmonic regression). Grey circles
show the residual after removing the predicted annual cycle from the observations. Note
that phases of 30, 60 and 90 degrees roughly correspond to the end of January, February
and March, respectively. Stations are coded GE (Groote Eylandt), K1/K2 (Karumba, first
and second segments), and W1/W2 (Weipa, first and second segments).
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Figure 5.5: Maps of the amount of Gulf of Carpentaria sea level variability related to
the MJO (regional subset of Figure 4.1). The left panel (a) shows κ̄, the proportion of
the standard deviation of altimeter-derived sea level accounted for by the MJO. The right
panel (b) shows σp, the magnitude of the standard deviation of altimeter-derived sea level
accounted for by the MJO. Sea level has had variability on time scales longer than 120
days filtered out.

MJO was found to account for over 50% of the standard deviation of sea level in the Gulf

after filtering out seasonal and interannual variability (Figure 5.5). It was speculated that

the underlying principal cause of this statistical relationship was set-up by local surface

winds that are strongly linked to the MJO. Tregoning et al. (2008) also examined the effect

of wind on sea level set-up in the Gulf of Carpentaria but did not relate the wind forcing to

the MJO. Furthermore, the coherence between the MJO and ηo is statistically significant

across the MJO band (see Figure 5.6).

The wind direction over the Gulf of Carpentaria is strongly linked to both the local trade

winds and the Australian-Indonesian monsoon. The background flow in this region is

dominated by the southeasterly trade winds which peak in July. During Austral Summer the

Australian-Indonesian monsoon causes the mean flow to be predominantly northwesterly

(see (Forbes and Church, 1983) and histogram in Figure 5.7).

The coherence as a function of frequency (Figure 5.1) was calculated to examine the

relationship between the MJO index and Gulf-mean wind. In general, the coherence

peaks for both wind components for periods between 30 and 60 days. Zonal wind has

the highest coherence with the MJO (between 0.5 and 0.7 across the intraseasonal band).

Directional dependence was explored by looking at the average intraseasonal coherence

(periods between 30 and 90 days) between the MJO and wind projected onto an axis. The

coherence was then plotted as a function of axis direction (Figure 5.7). The intraseasonal

coherence peaks for westerly to northwesterly winds (or easterly to southeasterly). As
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Figure 5.6: Power spectrum of the MJO and coherence between the MJO and observations
of coastal sea level from the Gulf of Carpentaria. Same format as Figure 5.1.

noted above, the prevailing winds in the region are northwesterly/southeasterly. It will

be shown in Section 5.5.1 that the Gulf responds most strongly to wind in this direction.

Therefore, it is anticipated that the MJO will provide a strong contribution to intraseasonal

wind-driven variability of sea level and circulation in this region.

Another way of exploring the dependence of wind and sea level on the MJO is by

compositing based on its phase. The MJO phases are defined following Wheeler and

Hendon (2004): phases 2/3 represent an active MJO over the Indian Ocean, 4/5 over the

Maritime Continent, 6/7 over the Western Pacific, and 8/1 over the Western Hemisphere

and Africa. Composites of zonal wind (not shown) show the passage of a convergence

region at the surface associated with the movement of active MJO-related convection over

the Maritime Continent (e.g., Zhang (2005)). This leads to anomalous easterlies over the

Maritime Continent at the equator when the convective centre is over the Indian Ocean

(phases 1-3) and anomalous westerlies when it is over the Pacific Ocean (phases 6-7).

The Gulf of Carpentaria, just south of the Maritime Continent, experiences anomalous

northwesterlies during phases 6-7 with set-up of coastal sea level evident at all three tide

gauges and anomalous southeasterlies during phases 1-3 with set-down at all three stations

(illustrated for phases 2 and 7 in Figure 5.8).



72

E NE N NW W SW S SE E
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

co
h

e
re

n
ce

direction

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

average

MJO/wind
coherence

sea level

response

Figure 5.7: Wind statistics over the Gulf of Carpentaria as a function of wind direction.
The grey boxes form a histogram of daily wind directions of the Gulf-mean wind. The
solid line shows the coherence (averaged over intraseasonal frequencies) between the
Gulf-mean wind, projected onto an axis at the direction given, and the MJO. The dashed
line shows the magnitude of the steady state response of Gulf-mean sea level as a function
of wind direction as predicted by the ocean model.
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Figure 5.8: Composites of sea level, wind, and surface current anomalies associated with
phase 2 (left) and phase 7 (right) of the MJO (for MJO amplitudes exceeding 1). The thick
black arrows in the lower left corner of each panel are the composites of the Gulf-wide
wind. The filled contours and filled circles show the composites of ηm and ηo, respectively.
The black arrows show composite of predicted currents with reference speed shown in the
upper right of each panel.

To explore the seasonal variation of the spectral properties of the wind and the MJO

spectra are calculated using 180 day subsets of the Gulf-mean wind time series with

succesive blocks shifted by one day. The seasonal cycle of spectral density was then

calculated by averaging across years for January 1, January 2, etc. The seasonal variation

of the northwesterly wind spectrum (Figure 5.9, left panel) shows that the energy is

relatively high at periods between 30 and 60 days during Austral Summer which coincides

with the Australian-Indonesian monsoon. This time of year also corresponds to relatively

high coherence between the wind and the MJO (Figure 5.9, right panel) consistent with

previous work (Salby and Hendon, 1994; Zhang and Dong, 2004; Bellenger and Duvel,



74

Figure 5.9: Seasonal variation of the spectral properties of the Gulf-mean wind. Left panel:
the seasonal cycle of the spectral density of northwesterly wind across the intraseasonal
band. To emphasize the seasonal changes in spectral shape, the spectrum for a given time
of year has been normalized by the corresponding variance (see centre panel). Right panel:
the seasonal cycle of the coherence between northwesterly wind and the MJO across the
intraseasonal band. The vertical lines indicate periods of 30 and 60 days.

2007). The seasonal cycle in the spectral density of ηo shows the same cycle as the wind

(compare the left-hand panels of Figure 5.10 with Figure 5.9).

In Section 5.5 I check if the ocean model can reproduce these seasonal variations in the

spectral properties of sea level and the relationship between sea level and the MJO.

5.4 Numerical Model

The Princeton Ocean Model (POM, e.g. Blumberg and Mellor (1987) and Section 3.4.1)

was used to dynamically simulate the Gulf of Carpentaria, the adjacent shallow Arafura

and Timor Seas, and the deep waters to the northeast and northwest of Australia (see

Figure 5.3 for model domain). The model grid is defined with a spatial resolution of 1/6◦

(103 points meridionally and 157 points zonally for a total of 16171 grid points). The

bathymetry (Figure 5.3) was interpolated to the model grid from the 1/10◦ Australian

Bathymetry and Topography Grid [David Griffin, CSIRO, personal communication]. The
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Figure 5.10: Seasonal variation of the spectral density of observed and predicted sea level.
Left panels correspond to observations and middle panels to predictions. The spectra have
been normalized by the variances shown in the right panels (solid: observations, dashed:
predictions). Otherwise same format as Figure 5.9.
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model is forced by surface stress derived from six-hour reanalysis surface winds (Section

5.2.4) linearly interpolated to the model time step (see below). Note that the model is not

forced by variations in atmospheric pressure.

The model was run barotropically to simulate sea level and the depth averaged flow.

The bottom stress was formulated in terms of depth averaged flow U and was of the

form cdU |U | where cd = 2.5× 10−3. The time step for the barotropic calculations was

12 s, satisfying the CFL condition for stability. The coastal boundary condition was no

normal flow and no slip; radiation conditions were applied at the open boundaries to allow

transients generated within the domain to escape with minimal reflection. The initial

condition was a state of rest and a flat sea surface. The model was run for 31 years (forced

by the reanalysis wind field) and sea level and current fields were output daily (sufficient

for this study because the variability of interest occurs on intraseasonal timescales).

5.5 Comparison of Observed and Predicted Sea Level

The predicted sea level and circulation in the Gulf of Carpentaria for the period 1/1/1979 to

31/12/2009 were used to explore the forcing mechanisms that link intraseasonal variability

in sea level and circulation to the Madden-Julian Oscillation. After evaluating the effect of

natural resonances of the model, the model predictions are compared to observations at the

three tide gauge locations.

5.5.1 Dynamical Response of the Gulf to Wind Forcing

The possibility of a natural resonance with frequencies within the MJO band, such as an

internal seiche, must be ruled out in order to link sea level variability in the Gulf with the

MJO. To quantify the resonance characteristics of the model, it was forced for 700 days

by periodic along-gulf winds (northwesterly direction with an amplitude of 7.1 ms−1).

Individual runs were performed for forcing periods between 2 and 150 days. For each run,

the amplitude of the Gulf-mean sea level was calculated and plotted against frequency

(not shown). Over intraseasonal timescales the gain is flat, consistent with Pariwono et al.

(1986) who estimated the resonant period of the Gulf of Carpentaria to be about 26 hours.

Therefore, the model is not resonant at intraseasonal frequencies.

The sensitivity of sea level to the direction of surface wind was also examined. The

model was forced for 1 year by a steady, uniform wind of 5 ms−1. Simulations were run
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independently for 64 discrete wind directions. For each run, the steady state response of the

Gulf-mean sea level was averaged over days 201 through 365 and stored. The largest sea

level response was found for northerly to northwesterly winds for set-up and the opposite

directions for set-down (dashed line, Figure 5.7), consistent with the discussion in Section

5.3.

5.5.2 Seasonality and Intraseasonal Variability in Observed and Predicted

Sea Level

Predicted seasonal cycles (estimated by harmonic regression) are of smaller amplitude

(10 to 20 cm) than the observed seasonal cycles. However, the ocean model does not

include steric effects which are present in the observations. Forbes and Church (1983)

calculated the seasonal cycle of steric sea level anomalies to have an amplitude of 9.4 cm at

Karumba which the ocean model is consistent with. The residual seasonal cycle, calculated

by subtracting the predicted annual cycle from the observed annual cycle, is similar across

all stations (Figure 5.4). This is consistent with steric changes in the adjacent deep water

which peak near the end of the southern hemisphere warming cycle.

The model predictions of sea level at the three tide gauge locations were then desea-

sonalized by removing the annual cycle and its first two harmonics using least squares

(henceforth denoted by ηm). After deseasonalization, observed and predicted sea levels

agree quite well in terms of amplitude and correlation (Figure 5.2 and Table 5.2). On in-

traseasonal timescales the agreement between ηo and ηm is particularly high with coherence

above 0.80 for Groote Eylandt and Weipa, and above 0.7 for Karumba. From Table 5.2,

the RMS of the prediction errors are generally less than 8 cm (except at Karumba which

are as high as ∼12.5 cm). It should be noted that the predicted sea level represents all of

the wind-forced intraseasonal variability, i.e., the predicted sea level includes both MJO

and non-MJO related components. The MJO component of the observed and predicted sea

level variability is discussed in Section 5.5.3.

It was encouraging to find that the model captures well the observed seasonal cycle of

intraseasonal variability (right-hand panels of Figure 5.10) except at very low intraseasonal

frequencies (<0.015 cpd). Interestingly, the seasonally-stratified coherences between ηo

and ηm (not shown) are above 0.9 (0.8 for Karumba) during Austral Summer but drop

to about 0.75 during Austral Winter when the connection with the MJO through surface
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Name σo σm σo-m ρom

Groote Eylandt 9.38 8.65 6.24 0.763
Karumba (1) 13.18 13.27 12.38 0.562
Karumba (2) 15.86 14.13 10.98 0.737

Weipa (1) 10.86 9.63 7.45 0.741
Weipa (2) 11.70 10.27 6.41 0.837

Table 5.2: Comparison of observed and predicted sea level. Standard deviation of ηo

and ηm (σo and σm, respectively), the standard deviation of their difference (σo-m), and
correlation (ρom) are shown. Note ηo and ηm were highpass-filtered with a cutoff period of
1/2 year prior to the calculation of these statistics. Standard deviations are in cm.

wind forcing is weak. I conclude that the model captures the wind-driven intraseasonal

component of sea level variability in the Gulf of Carpentaria.

5.5.3 Influence of the MJO on Circulation and Sea Level

The composites of model predicted sea level and depth-averaged current anomalies were

calculated as a function of MJO phase. The composites for phases 2 and 7 (Figure 5.8)

illustrate that the wind during these phases is consistent with sea level set-up and set-down,

respectively. The phase 7 (2) composite of depth averaged currents exhibits a cyclonic

(anticyclonic) gyre centred in the Gulf of Carpentaria and strong eastward (westward) flow

through the Torres Strait. As the MJO performs a cycle, the composites pass through a

quiescent state (phase 8), followed by the set-down pattern (phase 1-3), and then another

quiescent state (phase 4-5), before returning to the set-up pattern (phases 6-7).

A time series that represents set-up and set-down favorable conditions was generated by

projecting the bivariate MJO index onto the phase 3 / phase 7 axis. By definition, positive

values occur during phase 7 and negative values during phase 3. From Figure 5.11 it can

be seen that strong set-up and set-down events often occur when the MJO is of extreme

amplitude during phases 7 and 3, respectively. It is also clear from this figure that this

connection is particularly strong during Austral Summer.

The predicted sea level does not reproduce well the observed variability on timescales

longer than 120 days (Figure 5.2). The physical origin of this low frequency signal is

discussed in the folowing section.
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Figure 5.11: Observed and predicted sea level at Groote Eylandt over a typical six-year
period. Solid black line: ηo after high-pass filtering with a cutoff period of 1/2 year. Red
line: ηm. Blue filled curve: the MJO index, projected onto the phase 7 / phase 3 axis
(positive values correspond to phase 7 and negative values to phase 3).
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5.6 Cause of Low-Frequency Sea Level Variability

Now the sea level variability that is unexplained by the model is examined. A residual

time series ηo−m was generated by removing the model predictions from the observed

coastal sea level. Removing ηm from ηo effectively removes the high-frequency local wind

effect leaving a low frequency residual that is very similar at each tide gauge location

(correlations above 0.7). To obtain a single regional signal, the three ηo−m series were

averaged into one (henceforth denoted by η̄o−m). The variations of η̄o−m are on the order

of 10–20 cm (Figure 5.12, upper panel).

What is the cause of variability of η̄o−m? It is not present in the surface wind forcing

and so it is likely due to variations in the deeper waters along the open boundaries of the

model domain. Figure 5.12 compares η̄o−m and altimeter-observed sea level from a point

at the shelf edge (denoted by ηsh, see caption for exact location). The close agreement

between η̄o−m and ηsh leads us to hypothesize that the unexplained low frequency variability

is driven by larger scale sea level changes in the deeper water, seaward of the Gulf of

Carpentaria.

What is the cause of the variability of ηsh? Equatorial Kelvin waves can be excited by

surface winds blowing over the Indian Ocean which then propagate eastward across the

basin. Once they reach the eastern boundary they can be channeled towards the Indonesian

Throughflow region as coastal trapped waves travelling along the western coast of the

Indonesian Archipelago. Similarly, westward propagating Rossby waves from the tropical

Pacific can drive variability in the throughflow region upon reaching the western ocean

boundary (Spall and Pedlosky, 2005). This raises the question of which ocean basin is

the primary source of the variability of ηsh. Clarke and Liu (1994) predicted that signals

originating in the Indian Ocean would travel no further than the Lombok Strait. They also

predicted, and showed with sea level observations along the northwestern Australian coast,

that Pacific Ocean signals can penetrate the Indonesian Throughflow region and propagate

along the western Australian coast. It is therefore not surprising that interannual sea level

changes along the western boundaries of the Indonesian Archipelago and western Australia

are in phase and highly correlated with sea level in the western Pacific (Clarke, 1991).

Other studies have supported the view that a significant part of the variability of Australian

coastal sea level originates in the Pacific Ocean (Pariwono et al., 1986; Potemra, 2001;

Wijffels and Meyers, 2004). It has been shown that a positive ENSO phase is associated
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Figure 5.12: Time series and correlations of low frequency sea level. Top panel: η̄o−m is
shown in black and ηsh, sea level from [132.45◦E, 7.60◦S] (yellow circle, bottom panel), is
shown in red. The Niño 3.4 index, IEN, is shown by the blue and red filled curve. Bottom
panel: correlation between altimeter-measured sea level, low-pass filtered with a cutoff
period of 1/2 year, and η̄o−m. The black line is the 1000 m depth contour. Open circles
are positions from which altimeter records were extracted for the Hovmöller diagrams in
Figure 5.14.
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with a drop in sea level in the waters surrounding Indonesia (Nerem et al., 1999). This drop

is consistent with a quasi-steady response to low frequency wind forcing in the Pacific

which is in turn related to ENSO (Clarke, 2008). I have used three approaches to explore

the origin of the low frequency variability in the Gulf of Carpentaria as detailed below.

5.6.1 Correlations of Sea Level with Climatalogical Indices

The Niño 3.4 Index, IEN, was used as a measure of Pacific Ocean variability and the Dipole

Mode Index (Saji et al., 1999), IDMI, was used as a measure of Indian Ocean variability4.

For periods longer than one year, η̄o−m is coherent with IEN and IDMI at about 0.8 and

0.4 respectively (both significant at the 5% level). This could lead one to conclude that

both oceans contribute significantly to the variability of η̄o−m. However, these two indices

are not independent (Saji and Yamagata, 2003; Yuan and Li, 2008) and partial coherence

was used to remove the effect of one index on the coherence between η̄o−m and the other

index (see Section 2.2.1). The partial coherence between η̄o−m and IEN, allowing for

IDMI, is about 0.7 for periods exceeding one year (see Figure 5.12 for time series); the

corresponding partial coherence between η̄o−m and IDMI, allowing for the effect of IEN, is

not significant at the 5% level. This simple and exploratory analysis leads us to speculate

that η̄o−m is forced primarily by large scale, ENSO-related variability in the Pacific Ocean

rather than in the Indian Ocean.

5.6.2 Regional Sea Level Correlations

Correlations between η̄o−m and sea level from altimeters were calculated on a 1/4◦ grid and

contoured (Figure 5.12). The patterns formed by the high correlations (above 0.4) suggest

connections between the Indian and Pacific Oceans and the Gulf of Carpentaria. In the

Indian Ocean there is a tongue of high correlation extending from the eastern equatorial

boundary which encompasses Sumatra as well as extending poleward both north, around

the Bay of Bengal, and south, along the Indonesian Archipelago. In the Pacific Ocean

there are two extended tongues of high correlation in the tropics, north and south of the

equator. Finally, there is a long narrow tongue hugging the coast of Australia that links

Tasmania back to Indian and Pacific Oceans.

To identify the source regions for the variability in the Gulf of Carpentaria the correlation

between sea level on the 1/4◦ grid with sea level at various potential source locations was
4Both were obtained from http://ioc-goos-oopc.org/state_of_the_ocean/all/
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mapped. By examining the associated time lags (not shown) in the high correlation regions

it is concluded that there are in fact only two potential sources for the variability: the

equatorial Indian Ocean and the northern tongue of high correlation in the tropical Pacific

Ocean (see upper panels of Figure 5.13). Noting the high correlation in the Gulf one might

conclude that both oceans are important drivers of variability in this region. However,

as noted above, variability in the Indian and Pacific Oceans are not independent and so

partial correlations were calculated as before to quantify the effect of each basin separately

(see lower panels of Figure 5.13). The maps of partial correlation clearly show that the

variability originating in the Indian Ocean does not propagate past the Lombok Strait,

consistent with the work of Clarke and Liu (1994). On the other hand, variability from the

Pacific Ocean can reach the Gulf of Carpentaria, and can continue to propagate west and

south around the coast of Australia.

The partial correlation map for the Pacific Ocean source region (and the corresponding

lag map, not shown) are consistent with equatorial Rossby waves propagating westward

across the basin and entering the Indonesian Throughflow region. The partial correlation

and lag maps for the Indian Ocean source region are consistent with equatorially trapped

Kelvin waves travelling eastward and then poleward as coastally trapped waves towards the

Indonesian Throughflow region. These interpretations are consistent with the discussion

and references given above.

5.6.3 Hovmöller Diagrams

In order to better understand how the two ocean basins influence low frequency sea level

in the Gulf of Carpentaria Hovmöller diagrams were generated along the two pathways

identified in the previous section. (The advantage of Hovmöller diagrams is that they

allow the identification of individual events as well as explicitly show lags as these events

propagate.) Both pathways originate in the interior of their respective oceans and terminate

at the location of ηsh on the northwestern Australian shelf edge. Other potential pathways

through the Indonesian Throughflow (such as the channel between Borneo and Sulawesi

and exiting through the Lombok strait) were identified but were not explored further in

this study. The chosen pathways are shown by white circles in Figure 5.12 and time series

of sea level from the positions were low-pass filtered with a cutoff period of 1/2 year prior

to plotting. The time axis of the Hovmöller diagram runs from 1994 to 2009.

The Hovmöller diagram for the Indian Ocean (Figure 5.14, left) shows that signals
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Figure 5.13: Connections between the Indian and Pacific Oceans and the Gulf of Car-
pentaria. Upper panels: correlation between gridded altimeter sea levels and sea level at
[0◦N, 89◦E] in the Indian Ocean source region (top left) and [8.25◦N, 150◦E] in the Pacific
Ocean source region (top right). Lower panels: partial correlations allowing for the effect
of the other source region. Locations of sources are indicated by white dots. The thin black
line is the 1000 m depth contour.
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Figure 5.14: Propagation of signals along pathways originating in the Indian Ocean and
the Pacific Ocean and terminating at the location of ηsh. The pathways are shown in Figure
5.12. Left panel: Hovmöller diagram for the Indian Ocean pathway. The vertical line
at a distance of ∼2000 km indicates where the equator meets Sumatra; the second line
approximates the location of Lombok Strait. Sloped lines show equatorial Kelvin wave
speeds (2.8 ms−1, solid line) and coastal trapped wave speeds (1.78 ms−1, dashed line).
Right panel: similar format as left panel but for the Pacific Ocean pathway. The vertical
line marks the entrance to the Indonesian Archipelago. Sloped lines show the speeds of
first and second mode equatorial Rossby waves (0.93 ms−1 and 0.47 ms−1). Centre panel:
η̄o−m (black) and ηsh (red), low-pass filtered with a cutoff period of 1/2 year. Note that the
innermost time series in each Hovmöller diagram also corresponds to ηsh.
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from the equatorial Indian Ocean are channeled along the coast of Indonesia but are

severely attenuated when crossing the Lombok Strait as predicted by Clarke and Liu

(1994). Signals travelling along the equator propagate at the expected speed of first

baroclinic mode equatorial Kelvin waves (2.8 ms−1, Chelton et al. (1998)). The speed of

propagation along the Indonesian coast agrees well with previous estimates (1.78 ms−1 for

coastal South America, Spillane et al. (1987); Arief and Murray (1996)).

The Hovmöller diagram for the Pacific Ocean (Figure 5.14, right) shows signals orig-

inating in this basin propagate westward and then through the Indonesian Archipelago

and along the Australian shelf break where they force sea level in the shallow Timor and

Arafura Seas and the Gulf of Carpentaria. Evidence of these signals can often be seen

propogating past the location of ηsh and continuing along the Australian shelf edge (i.e.,

the large event in 1994/1995). These westward propagating signals travel at wave speeds

which agree with the first and second mode equatorial Rossby wave speeds (0.93 ms−1

and 0.47 ms−1, Chelton et al. (2003)).

Overall the correlations with indices, regional sea level correlations, and Hovmöller

diagrams are consistent with the conclusion that the low frequency variability in the Gulf

of Carpentaria is dominated by energy originating in the Pacific Ocean rather than the

Indian Ocean.

5.7 Summary and Discussion

A barotropic circulation model has been used to show that sea level variability in the

shallow waters of the Gulf of Carpentaria is dominated by simple wind set-up. The same

model was also used to map out the associated depth-averaged flow and thus supplement

and extend the study presented in Chapter 4 based on simple dynamical balances.

A reconstruction of sea level and circulation variability driven by observed winds for

the period 1979-2009 showed that the model could reproduce many of the features present

in three long observed sea level records from the Gulf. The timing and amplitude of the

seasonal cycles were consistent with the observations once the effects of density were

taken into account. After deseasonalization, the amplitudes of the predictions were similar

to those of the observations; correlations between observed and predicted sea level at tide

gauge locations were typically above 0.8 on intraseasonal timescales. Furthermore, the

predictions capture the seasonal cycle of the spectral properties of the observations.
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The along-Gulf wind is strongly correlated with the Madden-Julian Oscillation. As

the centre of convection propagates from the Indian to the Pacific Ocean, low level wind

anomalies dominate the wind variability over the Gulf. Thus changes in sea level and

circulation in the Gulf are associated with a larger scale atmospheric mode of intraseasonal

variability. Sea level changes of up to 7 cm can occur along the coast and fluid speeds of

3–5 cm/s, with corresponging particle excursions of 20–35 km, can occur in the interior

of the Gulf during significant MJO events. This has implications for predictability of sea

level and circulation in the Gulf; if the initiation and evolution of the MJO can be reliably

predicted, which can be done out to 2 to 3 weeks (see Sections 1.3 and 7.5), then this

information will lead to better forecast skill for sea level and circulation variability in the

Gulf of Carpentaria on intraseasonal timescales.

Subtracting the predictions of sea level from the coastal observations leaves a large

scale low frequency signal unexplained by the model. The weak spatial gradients and long

time scale of this residual mode of variability imply that it will not be associated with

significant changes in circulation. To identify the cause of this residual low frequency

signal three statistical approaches have been used. First, it is shown that the large scale

signal was correlated with two indices describing Indian Ocean Dipole variability and

ENSO variability. However, a more detailed analysis based on partial coherence and

correlation suggested the signal was driven by mainly ENSO-related signals originating in

the Pacific Ocean.

The second approach involved calculating correlations amongst coastal sea level and

gridded sea level measurements from satellite-based altimeters. Several possible pathways

were identified based on high correlations between the coastal and altimeter observations.

Two possible source regions for the variability in the Gulf have been identified by examin-

ing lagged correlations: the Indian Ocean and the Pacific Ocean. Using partial correlations,

sea level variations originating in the Pacific were shown to pass through the Indonesian

Archipelago, unlike those originating in the Indian Ocean. The correlations between sea

level in the Gulf and Indian Ocean are non-causal (i.e., due to correlations between the

forcings of the two ocean basins such as wind stress).

Finally, Hovmöller diagrams aligned with the pathways connecting the Indian Ocean,

the seaward edge of the Gulf of Carpentaria, and the Pacific Ocean have been constructed.

These diagrams confirm the Pacific is the origin of low frequency sea level variability
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along the northwestern Australian shelf edge and thus the Gulf of Carpentaria. They also

confirm that the Lombok Strait is a barrier to the propagation of signals from the Indian

Ocean. It is also shown that the low frequency signal in the Gulf is strongly correlated

with El Niño. Knowledge of the future state of El Niño, which can be predicted with 6-24

months lead time (Chen et al., 2004; Jin et al., 2008), can therefore be used to predict

potential large scale changes in the Gulf on long time scales.

The study undertaken in this chapter confirms the connection between the MJO and

ocean variability in the Gulf of Carpentaria that was noted in Chapter 4. The next chapter

undertakes a similar exploration of the connection between the MJO and variability in the

northeast Indian Ocean.



CHAPTER 6

THE NORTHEASTERN INDIAN OCEAN:

LOCAL AND REMOTE RESPONSE TO

THE MJO

6.1 Introduction
The connection between the MJO and sea level in the northeastern Indian Ocean that

was noted in Chapter 4 will be explored in more detail in this chapter. There have been

several notable studies on intraseasonal variability in the tropical Indian Ocean. Luyten

and Roemmich (1982) discovered a spectral peak near 50 days in 200 m zonal flow

measured by moored current meters in the equatorial Indian Ocean [47–63◦E]. Similarly,

Reppin et al. (1999) found a 40–60 day spectral peak in near surface currents further east

[80◦30’E,0◦45’S–5◦N] and Webster et al. (2002) found a near-50 day oscillation of zonal

surface current at 90◦E.

Zonal wind is highly coherent with zonal currents in the central equatorial Indian Ocean

down to 100 m depth for periods between 30 and 60 days (McPhaden, 1982). Using a

4-1/2 layer model, Han et al. (2001) found that 40–60 days surface current variability were

forced primarily by zonal winds associated with the MJO. In addition, with a numerical

model forced by realistic winds, Han (2005) found a preferential excitement of lower

order baroclinic Rossby and Kelvin waves with a possible resonant excitation of second

baroclinic mode waves on intraseasonal time scales.

A large scale pattern of variability matching what was presented in Chapter 4 was

recently mapped by Vialard et al. (2009). They observed intraseasonal fluctuations in

alongshore current off the west coast of India and were able to predict this variability

89
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from altimeter-derived sea level. The local sea level changes were then traced back to

this coherent basin-scale pattern in the 70–90 day band. They claim that zonal surface

winds drive equatorially trapped Kelvin waves which then excite a coastal response upon

reaching the eastern boundary. This response is partly radiated back into the basin (along

5◦N and 5◦S) as Rossby waves and partly sent around the Bay of Bengal as coastal trapped

waves. Later, a reversal in the wind pattern reinforces these dynamics. Webber et al.

(2010) observed the same pattern described above and claim that the westward propagating

signals, with phase speeds of 0.7 m/s, are meridional mode 1 baroclinic Rossby waves and

that these waves are locally forced as they propagate. These Rossby waves were also noted

by Girishkumar et al. (2011) who examined the intraseasonal variability in the barrier layer

thickness (the difference between the mixed layer depth and the isothermal layer depth, i.e.,

the depth where T is 0.8◦C less than SST) at [8◦N,90◦E]. They found that intraseasonal

variability in the barrier layer thickness is mainly controlled by the vertical movement of

the isothermal layer depth. In the southern Bay of Bengal they attribute this variability to

the westward propagating intraseasonal Rossby waves and claim that they are remotely

forced by intraseasonal surface winds in the equatorial Indian Ocean.

In the Pacific Ocean, energy that is remotely forced by the MJO is radiated away from

the forcing region. Conversely, in the Indian Ocean, MJO-excited energy can return to the

forcing region by way of reflected Rossby waves and coastally trapped waves propagating

around the Bay of Bengal. Therefore, the Indian Ocean response has the potential for

feedback with the MJO itself. Webber et al. (2010) speculate that these westward Rossby

waves, once they reach the western Indian Ocean, may help trigger the next MJO event

due to associated SST anomalies.

It was shown in Chapter 4 (see also Oliver and Thompson (2010)) that sea level in

the northeastern Indian Ocean has a statistically significant and dynamically complex

relationship with the MJO. In this chapter, several important questions related to the effect

of MJO-related surface forcing on the northeastern Indian Ocean are addressed. What

is the depth-dependence of this response? Can the variability be described by known

dynamical modes, i.e., equatorially trapped waves? Finally, what is the physical cause of

this variability and does the MJO provide some predictability in the system?

The basin scale pattern in the northeastern Indian Ocean described above will be

generated by a general circulation model forced by realistic winds. The general circulation
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Tide Gauge Latitude Longitude Start End % Complete
Gan, Maldives 0◦41′S 73◦9′E 12/7/1991 8/3/2009 99

Colombo, Sri Lanka 6◦57′N 79◦51′E 16/7/1989 26/8/1992 94
Sabang, Indonesia 5◦50′’N 95◦20′E 21/12/2005 21/4/2008 100

Table 6.1: Details on the tide gauge records. See Figure 6.1 for locations.

model is validated by comparison with altimeter-derived measurements of sea level,

coastal tide gauge observations and ADCP-measured currents. Then the effect of MJO-

related surface forcing will be examined in the three-dimensional ocean state in order

to characterize the response of the ocean at depth and detect equatorially trapped waves

based on dynamical theory. Finally, the physical cause of the observed variability will be

determined with a series of process studies.

This chapter is organized as follows. The observations and a preliminary statistical

analysis are presented in Sections 6.2 and 6.3. The model is described in Section 6.4. The

model results are validated against observations and the dynamics examined in Section 6.5.

The source of the variability and its predictability are discussed in Section 6.6. A summary

of the results, and a discussion of future work, are found in Section 6.7.

6.2 Observations of Sea Level, Currents, MJO Index, and Surface

Wind

Observations of the MJO index, sea level, ocean currents, and atmospheric forcing are

presented here. The altimeter-based observations of sea level, which were used in Chapter

4, have been supplemented with coastal observations from tide gauges and ADCP profiles

of ocean currents. The observations of sea level and currents are used to validate the global

general circulation model that is forced by reanalyzed atmospheric fields.

6.2.1 The Madden-Julian Oscillation Index

The MJO is characterized using the bivariate index of Wheeler and Hendon (2004). Daily

values from 1/1/1979 to 30/12/2006 were obtained from the Government of Australia

Bureau of Meteorology1.

1http://www.bom.gov.au/bmrc/clfor/cfstaff/matw/maproom/RMM/index.htm
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Figure 6.1: The domain and bathymetry of the high resolution submodel which is nested
within the global model. The grid size in the meridional direction varies from 1/9◦ at
the equator to 1/3◦ near the northern boundary; the grid size in the zonal direction is
everywhere 1/3◦. The blocky bathymetry around the edges are the connection points
at which the depth is defined by the coarse bathymetry. The vertical lines indicate the
meridional sections along which the depth-dependent flow is analyzed in Section 6.5.3.
The three white circles show the locations of the tide gauges. The Gan tide gauge (left-most
white circle) is actually located 150 km further west than indicated, which is outside the
domain of the high resolution nest. The green circle indicates the location of the RAMA
ADCP data. The yellow circle indicates the location used for an illustration of predictability
in the final section.
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Figure 6.2: Observed and predicted sea level at three locations in the northeastern Indian
Ocean. The observed sea level, after removing the mean, linear trend, and inverse barometer
effect, is shown in the upper panels (black lines) for Gan, Maldives (left), Colombo, Sri
Lanka (middle), and Sabang, Indonesia (right). The observed sea level, after filtering out
variability on time scales longer than 120 days and then interpolating to the model output
step, is shown in the lower panels (black lines). The red lines show the corresponding
model predictions of isostatically adjusted sea level from the FULL run. The predicted sea
level for Gan was taken from the coarse resolution global model; the predicted sea level
for Colombo and Sabang were taken from the high resolution nest.

6.2.2 Sea Level from Altimeters

Global fields of weekly altimeter measurements of sea level were obtained from Aviso2

on a 1/4◦ resolution grid for the period 14/10/1992 to 22/7/2009. Aviso has removed the

seven-year mean, adjusted the data for the inverse barometer effect and corrected for tides.

The annual cycle and its first two harmonics were removed by linear regression.

6.2.3 Sea Level from Tide Gauges

Hourly time series of sea level were obtained from three tide gauge locations around

the northeastern Indian Ocean from the Hawai’i Sea Level Center. (See Figure 6.1 for

locations and Table 6.1 for details such as time period covered and completeness.) The

records were de-tided using the analysis package of Pawlowicz et al. (2002) using 68 tidal

constituents and then averaged to daily values. The inverse barometer effect was removed

using daily sea level pressures from the NCEP/NCAR Reanalysis 2 (Kanamitsu et al.,

2002) defined on a 2.5◦ grid. Sample plots of the time series are shown in Figure 6.2.
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Figure 6.3: Observed and predicted zonal current at [0◦N,90◦E] and depths of 41 m, 93
m, and 160 m. The observed current, after removing the mean and linear trend, is shown
in the upper panels (black lines). The observed current, after filtering out variability on
time scales longer than 120 days and then interpolated to the model output step, is shown
in the lower panels (black lines). The observed current has been linearly interpolated to
model depths of 41 m (left), 93 m (middle), and 160 m (right). The red lines show the
corresponding model predictions from the FULL run. For all depths the predicted currents
were taken from the high resolution nest. The location of the ADCP profiles is shown by
the green dot in Figure 6.1.

6.2.4 Zonal and Meridional Currents from ADCPs

Daily time series of ADCP-measured zonal and meridional currents at [90◦E,0◦N] (green

dot, Figure 6.1) were were obtained from the RAMA array which is part of the Tropical

Atmosphere Ocean (TAO) project3 for 18/11/2000 to 29/11/2006. This location was chosen

over other RAMA locations after considering data length, completeness, and colocation

with model output used in later analyses. Currents were obtained for depths between 40 m

and 180 m at 10 m intervals. Sample plots of the time series are shown in Figure 6.3.

6.2.5 Atmospheric Forcing Fields

Global fields of 10 m zonal and meridional wind, 10 m air temperature, 10 m specific hu-

midity, shortwave and longwave radiation, and liquid (rain) and solid (snow) precipitation

were obtained from the Common Ocean-ice Reference Experiment version 2 (COREv2)

reanalysis4. COREv2 is generated by combining and correcting a variety of reanalyses and

2http://www.aviso.oceanobs.com/en/home/index.html
3http://www.pmel.noaa.gov/tao/index.shtml
4http://data1.gfdl.noaa.gov/nomads/forms/mom4/COREv2.html
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Figure 6.4: Maps of the amount of tropical Indian Ocean sea level variability related to the
MJO. The left panel shows κ̄, the proportion of the standard deviation accounted for by
the MJO, for altimeter-derived sea level (regional subset of Figure 4.1). The right panel
shows κ̄ for the predicted sea level from the global model (FULL run). Observed and
predicted sea level have had variability on time scales longer than 120 days filtered out
prior to analysis.

data sources (Large and Yeager, 2009) and was used because it was prepared especially

for use as forcing in ocean modelling experiments. The data are defined on a global T62

Gaussian grid with an approximate resolution of 2◦ and with sample rates of monthly

(for precipitation), daily (for longwave and shortwave radiation), and 6-hourly (for wind,

temperature, and humidity). Both climatological forcing (Corrected Normal Year Forcing,

or CNYF) and realistic forcing over the period 1979 to 2006 (Corrected Inter-Annual

Forcing, or CIAF) were obtained.

6.3 Intraseasonal Variability of Observed Sea Level, Currents and

Atmospheric Variables

It was shown in Chapter 4 that the MJO can account for up to 50% of the standard deviation

of altimeter-derived sea level after filtering out variability on time scales longer than 120

days (e.g., Figure 6.4, left panel). Additionally, there is significant intraseasonal variability

in observed tide gauge records of sea level (Figure 6.2, lower panels) and ADCP records of

zonal current (Figure 6.3, lower panels). The MJO index accounts for a significant amount

of sea level variability in tide gauge records especially at Colombo and Sabang (∼0.5,

see Table 6.2). In addition, the MJO index accounts for a significant amount of zonal

current variability, especially at shallower depths (∼0.5), but accounts for less variability

in meridional current (< 0.3).
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Sea Level Observed Predicted
Station ρ κ̄ κ̄

Gan, Maldives 0.52 0.25 0.34
Colombo, Sri Lanka 0.50 0.46 0.51
Sabang, Indonesia 0.66 0.64 0.69

Zonal Current Observed Predicted
Depth (m) ρ κ̄ κ̄

41 0.74 0.50 0.46
52 0.74 0.48 0.46
64 0.73 0.47 0.43
77 0.71 0.47 0.42
93 0.66 0.41 0.42

112 0.56 0.35 0.41
134 0.56 0.31 0.41
160 0.56 0.33 0.41

Meridional Current Observed Predicted
Depth (m) ρ κ̄ κ̄

41 0.48 0.30 0.35
52 0.52 0.30 0.35
64 0.51 0.30 0.34
77 0.48 0.29 0.32
93 0.45 0.25 0.32

112 0.46 0.31 0.31
134 0.39 0.30 0.32
160 0.36 0.31 0.31

Table 6.2: Correlations between observed and predicted (FULL run) sea level, zonal
current and meridional current and their relationship to the MJO. The correlations between
observed (tide gauges, ADCP) and predicted series are denoted by ρ. The proportions
of standard deviation accounted for by the MJO index are denoted by κ̄. Observed and
predicted sea level and currents have had variability on time scales longer than 120 days
filtered out prior to analysis. The predicted sea level for Gan was taken from the coarse
resolution global model; the predicted sea level for Colombo and Sabang were taken from
the high resolution nested model. The predicted currents for all depths were taken from
the high resolution nested model.
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Figure 6.5: The MJO response of observed sea level for the eight MJO phases. The annual
cycle and its first two harmonics were removed from the sea level by linear regression
prior to analysis.
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Sea level observed by altimeters at each location were regressed onto the two components

of the MJO index using the linear model

ηt = β0 + β1I1,t + β2I2,t + εt, (6.1)

where ηt is sea level at time t, I1,t and I2,t are the first and second components of the

MJO index respectively, {βi|i = 0, 1, 2} are the regression coefficients, and εt is an error

term corresponding to measurement error and effects not included in the model5. The

estimated regression coefficients, β̂1 and β̂2, were calculated by least squares and the

“MJO-reconstructed” sea level is given by

ηMJO
t = β̂1I1,t + β̂2I2,t. (6.2)

For all variables, both from observations and model predictions, the “MJO-reconstructed”

variable is calculated using Equation 6.2 and the Wheeler and Hendon (2004) MJO index

for I1,t and I2,t. The “MJO response” of sea level is calculated using a sinusoidal MJO oscil-

lation of amplitude a, i.e., [I1,t,I2,t] = [a cosφ,a sinφ] where φ = −7π/8,−5π/8 . . . 7π/8

(corresponding to the MJO phases 1,2. . .8). An amplitude of a = 2 was chosen in order

to examine the response to a moderate/strong MJO cycle. For all variables, both from

observations and model predictions, the “MJO response” is given by Equation 6.2 using a

sinusoidal MJO index at the eight phases listed above.

The MJO response of observed sea level (Figure 6.5) illustrates the basin-scale pattern

that was described in Chapter 4. A sea level depression propagates eastward along the

equator from phase 8 to phase 2 at which point it causes sea level to fall at the coast of

Sumatra. This coastal signal propagates poleward around the Bay of Bengal and along

southern Sumatra and Java during phases 1 through 4. Additionally, an off-equatorial

signal is reflected off of the eastern boundary and can be seen propagating westward along

5.5◦N as far as Sri Lanka for phases 3 to 6. At phase 4 this pattern is repeated with opposite

sign starting with a positive sea level anomaly propagating eastward along the equator.

The influence of the MJO on atmospheric forcing was examined by regressing zonal

and meridional wind onto the MJO index as above. The MJO response of wind propagates

5This simple model is appropriate if the response time of sea level to surface forcing is short compared to
the period of the MJO. If this criterion is satisfied then maps of β1 and β2 can be interpreted as “response
patterns” of sea level to the MJO.
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Figure 6.6: The MJO response of 10 m wind for the eight MJO phases. The arrows show
wind direction with arrow length proportional to speed; the coloured contours show wind
speed. The arrow in the lower left corner indicates a wind speed of 1 m s−1. The annual
cycle and its first two harmonics were removed from the wind by linear regression prior to
analysis.
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eastward over the tropical Indian Ocean as the MJO cycles through its phases (Figure 6.6).

Zonal wind is strongest along the equator during phases 4 and 8. These phases correspond

to when the sea level signal is excited along the equator. The signal is also strong off

the equator (3–12◦N and S) in phases 4 to 6 and 8 to 2. The two off-equatorial regions

of strong wind may be due to seasonality, i.e., the zonal wind is strong just north of the

Equator in Boreal Summer and just south of the Equator in Boreal Winter (e.g., Wheeler

and Hendon (2004)). The phases at which the wind is strongest off the equator correspond

to when the sea level signal is propagating westward along 5.5◦N and 5.5◦S. The observed

timing suggests that the observed sea level pattern may be driven by a combination of

local and remote forcing. Air temperature is strongest in the southeastern and northwestern

Indian ocean with predominantly eastward propagation over the equatorial Indian Ocean

(not shown); specific humidity is strong in a large swath of the Indian ocean stretching

from the northwest to the southeast and propagates eastward and southward (not shown).

A global circulation model, described in the next section, with a high resolution nested

submodel in the northeastern Indian Ocean is used to examine the role surface forcing plays

in exciting the complex sea level pattern described above, and also provide complete three-

dimensional fields of ocean variables so that the influence of the MJO can be examined

below the surface. A series of sensitivity studies is then performed to determine the

physical cause of the observed variability.

6.4 Numerical Model

The Nucleus for European Modelling of the Ocean (NEMO, e.g. Madec (2008) and Section

3.4.2) was used to dynamically simulate the global ocean. In the horizontal the model is

defined on a tripolar ORCA1 grid with one pole in Antarctic, a second in Canada, and a

third in Siberia. The grid has a nominal resolution of 1◦ but is refined meridionally in the

tropics and reaches a minimum of 1/3◦ near the equator. The grid spacing reduces near the

poles but this is only relevant for the ocean around the Canadian Arctic Archipelago where

the grid size reaches a minimum of 25 km.

The model bathymetry has been derived from version 9 of the Smith and Sandwell

(1997) global dataset at 1-min resolution6 and interpolated to the model grid. The model

6http://topex.ucsd.edu/marine_topo/mar_topo.html
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has a maximum of 46 z-levels in the vertical with partial cells at the bottom. The model

uses a linear free surface formulation. Level thickness increases from 6 m at the surface to

a maximum of almost 250 m for the bottom-most level. The maximum depth is 5720 m.

A grid with a resolution increased by a factor of three in both directions was created

using the AGRIF adaptive mesh refinement tool7 in the northeastern Indian Ocean. The

boundaries of the high-resolution nest are 73.5◦E, 111.5◦E, 12.2◦S and 21.4◦N. The

bathymetry for the nest region was interpolated from a high resolution (ORCA025) grid

and smoothed (Figure 6.1). A connection zone lies around the inner edge of the nest for

which the depth is defined by the coarse bathymetry. The nesting is performed two-way

so that the coarse model supplies the boundary conditions to the nest and the nest feeds

information back to the coarse model.

The model is integrated using a filtered, three-level time-stepping scheme (see Equation

3.39 and associated text). The time step for the calculations was 3600 s (1 hour) thereby

satisfying the CFL condition for stability. The coastal boundary conditions for velocity

were no normal flow and no-slip; for other variables it was no flux into the coast. Horizontal

tracer diffusion is parameterized using a Laplacian scheme along isopycnals. Horizontal

momentum mixing is parameterized using a Laplacian scheme along horizontal planes.

The horizontal mixing coefficients are proportional to the size of the horizontal grids. The

maximum values of horizontal mixing coefficients are Kh = 1000 m s−1 for diffusivity

and Ah = 10000 m2 s−1 for viscosity.

The model is forced by 10 m surface wind, 10 m surface air temperature, 10 m specific

humidity, longwave and shortwave radiation, and liquid and solid precipitation interpolated

to the model time step and grid. Note that the model is not forced by variations in

atmospheric pressure. The model calculates surface fluxes from bulk formulae using the

atmospheric forcing and the predicted ocean state.

The model was spun-up for 10 years using the CNYF of COREv2 representing the

climatology, i.e., the climatological forcing was repeated each year for 10 years. The

FULL run was continued from the end of the climatology spin-up of the model and was

forced using the CIAF of COREv2 for 28 years covering the period 1979 to 2006 (see

Table 6.3). Sea surface height and three-dimensional fields of velocity, temperature, and

salinity, were output every 5 days (sufficient for my purposes because my interest is in

7http://www-ljk.imag.fr/MOISE/AGRIF/index.html
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Name Start End Length (yrs) Notes
CLIM - - 10 Climatological forcing
FULL 1 Jan 1979 31 Dec 2006 28 Realistic forcing
HEAT 1 Jan 1979 31 Dec 1986 8 Climatological momentum flux
MJO1 1 Jan 1979 31 Dec 1986 8 Remote MJO forcing
MJO2 1 Jan 1979 31 Dec 1986 8 Local and remote MJO forcing

Table 6.3: Details of model runs including name, start date, end date, duration, and forcing
fields. The FULL, HEAT, MJO1, and MJO2 runs were continued from the end of the
10-year CLIM run.

variability on intraseasonal timescales).

6.5 Validation and Analysis of the FULL Run

In this section the model output is validated by comparing it to observed sea level and

currents of the FULL run. Then the analysis is extended to the complete three-dimensional

ocean state by exploring how the predicted flow fields vary with MJO forcing. Finally,

dynamical wave modes are fit to the model output in an attempt to explain the MJO-related

component of the three-dimensional flow.

6.5.1 Validation of Predicted Sea Level and Currents

Predicted sea surface height at the tide gauge locations listed in Table 6.1 are shown in

Figure 6.2 (red lines). The model is able to capture the seasonal cycle, the 1997/1998 El

Niño event (not shown), and the intraseasonal variability. The correlations between tide

gauge records and predictions, after filtering out variability on time scales longer than 120

days, is 0.50–0.66 indicating that the model is predicting observed sea level reasonably

well. Predicted zonal currents at [90◦E,0◦N] and three depths are shown in Figure 6.3 (red

lines). The model is able to capture the observed currents and their intraseasonal variability.

The correlations between observed and predicted zonal current, after filtering out variability

on time scales longer than 120 days, is 0.56–0.74 (highest for measurements closest to

the surface). The correlations are much lower for meridional currents. In addition, the

proportion of variability which is accounted for by the MJO is consistent between observed

and predicted records of sea level and zonal and meridional currents and decreases with

depth.
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The MJO accounts for ∼50% of the standard deviation of predicted sea level in the

northeastern Indian Ocean (Figure 6.4, right panel). The pattern, especially along the

equator and eastern boundary, is similar to the pattern formed from observed sea level

(Figure 6.4, left panel). However, there are regions where the MJO accounts for a sig-

nificant amount of the variability, especially in the open ocean, which is not reflected

in the observations. The model also fails to capture the full amplitude of the westward

propagating signal along 5.5◦N.

The variability in the FULL run which is coherent with the MJO was examined using

the same technique used for the observations. The MJO response was calculated by first

regressing the predicted fields onto the MJO index and then using a sinusoidal MJO index

at the eight standard phases. The MJO response of modelled sea level matches reasonably

well with observations in terms of amplitude and very well in terms of timing (Figure 6.7,

contours).

6.5.2 Response of the Ocean to the MJO

In the previous section it was shown that the ocean model reproduces well the variability

of observed sea level from altimeters and tide gauges and currents from ADCP profiles.

These tide gauges and ADCP profiles are very sparsely distributed in space. The analysis

is now extended to include the complete three-dimensional circulation predicted by the

model.

The MJO response of sea level is shown for the eight MJO phases in Figure 6.7 (colour

shading). The relationship between the predicted sea level and the MJO matches well with

the observed relationship (compare with Figure 6.5). The fact that the MJO response of

sea level is well captured by the model and that the κ̄ map for predicted sea level (Figure

6.4) does not match as closely to observations may be indicative of poor representation of

the total sea level variability (i.e., MJO and non-MJO related components combined) by

the model (see Equation 2.18 for the relationship between κ̄, total sea level variability, and

MJO-related sea level variability).

The MJO response of near-surface (3 m) circulation is shown in Figure 6.7 (arrows).

The circulation is dominated by (i) zonal flow at the equator, strongest in phases when

the surface wind forcing is also strong and in the same direction, and (ii) alongshore flow

following the propagation of sea level along the coast of Indonesia and the Bay of Bengal.

There is very little near-surface circulation signature of the westward propagating waves
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Figure 6.7: The MJO response of modelled sea level and horizontal velocity from the
FULL run at 3 m depth for the eight MJO phases. The filled contours show sea level. The
arrows show horizontal circulation; the arrow in the lower left corner indicates a current
speed of 0.1 m s−1. The annual cycle and its first two harmonics have been removed by
linear regression prior to analysis.
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Figure 6.8: The MJO response of modelled vertical and horizontal velocity from the FULL
run at 200 m for the eight MJO phases. Format identical to Figure 6.7 except that filled
contours show vertical velocity. The arrow in the lower left corner indicates a current
speed of 0.01 m s−1. The annual cycle and its first two harmonics have been removed by
linear regression prior to analysis.



106

Figure 6.9: The MJO response of modelled vertical and horizontal velocity from the FULL
run at 1000 m depth for the eight MJO phases. Format identical to Figure 6.8. The arrow
in the lower left corner indicates a current speed of 0.01 m s−1. The annual cycle and its
first two harmonics have been removed by linear regression prior to analysis.
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along 5.5◦N.

The MJO response of horizontal and vertical velocity at 200 m and 1000 m depth are

shown in Figures 6.8 and 6.9. The eastward propagating equatorial waves and the poleward

propagating coastally trapped waves that are clear at the surface are well represented in

all three fields at 200 m and 1000 m depths. Also evident are cyclonic and anticyclonic

circulation cells about regions of downwelling and upwelling. These correspond to the

westward propagating waves with wavelengths on the order of 2000–3000 km observed in

sea level along 5.5◦N. Typical velocities are 1–2.5 m s−1 in the horizontal and 10−5 m s−1

in the vertical; the vertical velocities lead to a vertical excursion of ∼10 m assuming an

MJO period of 50 days. These signatures appear earlier at greater depths. These results

support the idea of Kelvin and Rossby waves propagating along the equatorial waveguide

which is tested against dynamical theory in the following subsection.

6.5.3 Physical Interpretation in Terms of Dynamical Wave Modes

The previous section provided evidence for the existence of equatorially trapped waves. In

this section dynamical wave modes are fit to the model output to obtain a better physical

understanding of their origin and evolution.

Sea level was subsampled to 25 latitude locations along each section. The cross-spectral

matrix for MJO-reconstructed sea level from the FULL run along two North-South sections

(at 83.5◦E and 90◦E, between 10◦S and 10◦N, thick lines in Figure 6.1) was calculated over

58 non-overlapping 175-day segments and then averaged across all segments. The analysis

is carried out at a frequency corresponding to a period of 58.3 days (within the 40–60 day

time scale range of the MJO, but on the slower end to be consistent with Chapter 4).

The sea level variability along these sections, calculated from the auto- and cross-spectra,

supports the equatorial wave propagation interpretation given above (Figure 6.10, top row).

For both sections, eastward propagating sea level variability is significant on the equator

and westward propagating sea level variability is significant off the equator (4–8◦N and S).

Propagation speeds are calculated from the phase spectra between points of equal latitude

on the two meridional sections, i.e., the time lag between sea level along the two lines at

each latitude. The propagation speeds (1.68 m/s eastward on the equator and 0.39–1.13

m/s westward over the range 4–8◦N) are within the ranges of the first three baroclinic mode

(m =1,2,3) equatorially-trapped Kelvin waves and the first three baroclinic mode, first

meridional mode (m =1,2,3, n = 1) equatorially-trapped Rossby waves (shaded regions).
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Figure 6.10: Sea level variability and phase propagation speeds for the FULL run and
dynamical modal fits along 83.5◦E and 90◦E. Top row: the left panel shows the square
root of the spectral density of the MJO-reconstructed sea level from the ocean model (at
a period of 58.3 days) along 83.5◦E (solid line) and 90◦E (dashed line). The right panel
shows the speed of sea level propagation, calculated from the cross-spectra (i.e., time lag)
between the two sections at each at each latitude. Positive velocities are eastward, negative
velocities are westward. Middle and bottom row: same format as the top row except for
the dynamical modal fits using coupled sections (middle) and uncoupled sections (bottom,
see text for discussion). The shaded regions show the range of Kelvin and Rossby wave
speeds for the first 3 baroclinic wave modes (m =1,2,3) and the first meridional wave
mode (n = 1).
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Figure 6.11: Vertical profiles of absolute salinity SA, conservative temperature Θ, buoyancy
frequency N2, and the vertical structure functions ĥm(z) and p̂m(z) at 83.5◦E and 90◦E.
The vertical structure functions are shown for the first three baroclinic modes (m = 1, 2, 3).

Additionally, sea level along 90◦E propagates poleward, travelling from the equator to

5.5◦N in 16.8 days.

To determine the existence of dynamical modes wave types have been identified with the

Dynamical Modal Analysis (DMA) fitting technique (see Section 2.1.3) which expresses

the fields as a linear combination of modes. The dynamical modes used are free waves on

an equatorial β-plane linearized about a state of rest (see Section 3.3). These modes were

fit to the three dimensional fields from the FULL run. The solution was decomposed into

normal modes (see Section 3.2) and taken to be a linear combination of baroclinic mode

equatorially trapped Rossby, Kelvin, and Yanai waves. The vertical structure functions,

ĥm(z) and p̂m(z), and baroclinic wave speeds cm are needed in order to calculate the

dynamical wave forms. They obey the following equations:

d2ĥm
dz2

+
N2

c2
m

ĥm = 0 (6.3)

d

dz

(
1

N2

dp̂m
dz

)
+

1

c2
m

p̂m = 0, (6.4)
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m 0 1 2 3
cm [m/s] 198 2.82 1.73 1.05

Table 6.4: The wave speeds cm calculated from the density profile shown in Figure 6.11.
The barotropic mode is denoted by m = 0; the baroclinic modes are denoted by m ≥ 1.

where N2(z) is the buoyancy frequency defined by

N2 = −g
ρ

dρ

dz
, (6.5)

g = 9.8 m/s2 is gravitational acceleration and ρ = ρ(z) is the fluid density profile. Density

profiles and buoyancy frequency were calculated from the average model temperature and

salinity along these two meridional sections using the Gibbs SeaWater (GSW) Oceano-

graphic Toolbox 8 (Figure 6.11, left panels). These profiles were then used to calculate

the vertical structure functions, evaluated at the model z-levels (Figure 6.11, right panels),

by solving Equations 6.3–6.4 numerically. This eigenvalue/eigenvector calculation was

performed using the code written by J. Klinck and available on the Woods Hole SEA-MAT

site9. It was performed assuming a constant depth equal to the average depth of the two

sections (4029 m). The barotropic and first three baroclinic wave speeds are shown in

Table 6.4. The first baroclinic mode wave speed of 2.82 m/s is consistent with Chelton

et al. (1998) for the region being considered. The dynamical mode shapes in the horizontal

were calculated using the functional forms given in Section 3.3.

Equatorially trapped wave modes were estimated by fitting the dynamical mode shapes

to the model output along 83.5◦E and 90◦E using DMA. This technique is used for the case

of wave propagation between two meridional sections (e.g., case (b) in Section 2.1.3). The

model fields consist of the MJO-reconstructed sea level and zonal, meridional, and vertical

velocity at depths down to 2000 m (30 vertical levels) and subsampled meridionally to 25

latitude points. Each field has been area weighted and then normalized to have unit total

variance. Velocities below the minimum depth of the two sections were discarded (∼2500

m along the Ninetyeast Ridge); in addition, velocities between 2000 m and 2500 m were

also discarded as enhanced bottom flow over this ridge may contaminate the data.

Equatorially trapped Kelvin, Rossby, and Yanai waves for m = 1, 2 . . . 10 and n =

8http://www.teos-10.org/
9http://woodshole.er.usgs.gov/operations/sea-mat/
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m 1 2 3 4 5 6 7 8 9 10
Kelvin 0.01 0.07 0.02 - - - - - - -
Yanai - - - - - - - - - -

Rossby (1) 0.02 0.18 0.04
Rossby (2) 0.01 0.03
Rossby (3) 0.01
Rossby (4) -

Table 6.5: Quality of fit Q for individual dynamical wave modes. Each wave type
corresponds to a given row and each baroclinic mode m corresponds to a column. The
numbers in parentheses for the Rossby wave modes indicate the meridional mode number
n. The dashes indicate modes with Q < 0.01 (to two decimal places precision); the blank
cells indicate the Rossby wave modes that are not permitted at a period of 58.3 days (see
text).

1, 2 . . . 10 were considered for a total of 120 possible mode shapes. In fact, there are only

27 possible mode shapes since many of the Rossby wave modes are not permitted at a

period of 58.3 days, i.e., the Rossby wave dispersion curves for many of the modes are not

defined for this oscillation period (see Figure 3.1). Barotropic waves have been ignored

because their meridional trapping scale (∼2000 km) is on the order of the meridional

extent of the sections and thus it would be difficult to distinguish different barotropic

wave modes from each other and from variations in the meridional-mean ocean state. The

meridional trapping scales of the baroclinic modes are ∼100–250 km.

The fit of individual wave modes was quantified by fitting with that mode only. The

quality of fit Q, which lies between zero and one as defined by Equation 2.8, is highest

for the m = 2 Kelvin wave and for the m = 2, n = 1 Rossby wave (see Table 6.5 for a

summary of individual mode fits). Yanai waves do not fit the model variability well at all.

Allowing for all 37 wave modes together leads to a quality of fit of Q = 0.41.

The sea level signal associated with the fit indicates a strong signal at the equator with

significant amplitude off the equator (3–8◦N and S) as well (Figure 6.10, middle row). At

90◦E the off-equatorial sea level amplitude is stronger in the Northern Hemisphere than in

the Southern Hemisphere; conversely, at 83.5◦E the off-equatorial sea level amplitude is

stronger in the Southern Hemisphere than in the Northern Hemisphere.

The propagation pattern of the dynamical mode fit is consistent with the interpretation

given above: sea level at the equator propagates with an eastward wave speed of 1.52 m/s

(Figure 6.10, middle row), then sea level signal along 90◦E propagates from the equator
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in a poleward direction taking 13.9 days to reach to 5.5◦N (not shown), finally sea level

between 4◦N–8◦N propagates with westward wave speeds of 0.42–0.78 m/s (Figure 6.10,

middle row).

There is mismatch between the fitted modes and the numerical model variability es-

pecially in the meridional amplitude structure (Figure 6.10). The modal fit lacks a clear

separation between the equatorial and off-equatorial signal and is too large in general. My

interpretation of the poor fit is that the DMA method is limited in two ways:

Limitation 1: Local Forcing The dynamical modes represent free waves. If the variabil-

ity is locally forced, there is no reason why the forced response should project down onto

a small number of free modes. In an attempt to allow for a more local, forced response,

the modal amplitudes were uncoupled between the lines (see Section 2.1.3, case (b)). This

allows each mode to have a different amplitude response at each section and the modes are

no longer constrained to propagate between sections at the theoretical wave speed. The

quality of fit for uncoupled wave modes isQ = 0.56 indicating that uncoupled wave modes

fit the variability better than coupled wave modes (Q = 0.41). This is to be expected

because the DMA has been given more degrees of freedom. It is encouraging to note that

the propagation speeds between 4◦N–8◦N (0.39–0.77 m/s, Figure 6.10, bottom row) are

consistent with the numerical model but the propagation speed at the equator is now much

too large (4.63 m/s). There is a clearer separation of amplitude between the equatorial

signal and the off-equatorial signal consistent with the FULL run. However, sea level

amplitudes are still too large in general.

Limitation 2: Background State The dynamical wave modes are calculated from a

β-plane linearized about a state of rest which is an approximation unlikely to hold in the

real ocean. Therefore, it is likely that an inappropriate set of modes is being fit to the

model output. Chelton et al. (2003) calculated the meridional structure of Rossby modes

on an equatorial β-plane linearized about the observed background flow of the Equatorial

Pacific Ocean. They suggested that asymmetric meridional shears in the mean equatorial

current system alter the potential vorticity gradient which is in turn responsible for the

observed asymmetries in free Rossby wave modes (see also Perez et al. (2005)). Durland

et al. (2011) confirmed this and showed that the modification of the wave modes is strongly

dependent on how the background potential vorticity gradient projects down onto each

mode. The zonal currents along 83.5◦E and 90◦E from the FULL run are significantly
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different from zero and strongly seasonal (not shown) leading to modifications of the

Rossby wave mode shapes. A superposition of members of an inappropriate set of modes

will nonetheless be able to explain some of the variability. Therefore, the fit can be

improved by providing the correct set of dynamical modes.

6.6 Physical Causes of Variability

Kelvin and Rossby waves were suggested in the previous section to play an important role

in the MJO-related variability of the northeastern Indian Ocean. However, the interpretation

is difficult due to a possible mix of local and remote forcing and a non-zero background

state. This section will perform a series of process studies in order to gain insight into the

physical cause of the MJO-related variability. First, the roles of momentum and buoyancy

flux were examined. Second, the relative importance of local and remote forcing due to

surface winds was examined.

6.6.1 Momentum Versus Buoyancy Forcing

The importance of momentum versus buoyancy forcing was examined with a process

study. This process study was a model run, hereafter referred to as the HEAT run (see

Table 6.3), identical to the FULL run with the exception that wind stress was calculated

using the climatological (CNYF) 10 m wind velocities instead of using the realistic (CIAF)

wind. Effectively, this is like turning off the wind stress on intraseasonal time scales where

the MJO plays a role; on intraseasonal time scales the ocean variability will be driven

primarily by buoyancy flux. The HEAT run was performed for 8 years covering the period

1979 to 1986.

The amplitude and phase of the MJO-response of sea level10 for the HEAT run (Figure

6.12, second row of panels) exhibits a similar pattern to the FULL run (Figure 6.12, top

row of panels) however the amplitude of the sea level response is significantly reduced

with only a hint of the pattern seen in the FULL run. The phase propagation is preserved

which is not surprising given the weak variations that are excited must still propagate along

the same waveguides. However, the much reduced amplitude indicates that the role of

wind stress is of primary importance in generating the waves described above.

10The amplitude of the MJO response is given by a
√
β̂2

1 + β̂2
2 and the phase is given by arctan (β̂2/β̂1)

(see Equation 6.2).
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Figure 6.12: MJO response of sea level for various model runs. Amplitude (left) and phase
(right) of MJO response of sea level for the FULL run (first row), the HEAT run (second
row), the MJO1 run (third row), and the MJO2 run (fourth row). The left side colorbar is
for amplitude; the right side colorbar is for phase. The white boxes show the geographic
extent of the weighting functions used to restrict the MJO-reconstructed forcing in the
MJO1 and MJO2 runs. All calculations have been performed over the same time period
(1/1/1979–31/12/1986). Sea level has had the annual cycle and its first two harmonics
removed by linear regression prior to analysis.
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6.6.2 Role of Local and Remote Forcing by the MJO

The role of local and remote forcing by MJO-related atmospheric processes was examined

with a pair of process studies in which the atmospheric forcing fields have been spatially

restricted. Consider 10 m zonal wind forcing uijt at location (i, j) and time t which is

due to a sum of climatology uc
ijt and MJO-reconstructed wind uMJO

ijt . In addition, the

MJO-reconstructed wind forcing is localized in space by a weighting function wij with a

range between 0 and 1:

uijt = uc
ijt + wiju

MJO
ijt . (6.6)

The MJO-reconstructed wind uMJO
ijt is calculated using an equation of the form given by

Equation 6.2.

Two process studies have been run with 10 m zonal and meridional wind, 10 m tem-

perature, 10 m humidity, and longwave and shortwave radiation of the form given above.

Solid and liquid precipitation, which are specified monthly and thus too coarse to resolve

variability on intraseasonal time scales, are represented by climatological forcing only.

The first process study (MJO1) used a weighting function which is unity within the box

defined by 50◦E, 90◦E, 6◦S, and 6◦N and zero elsewhere. This weighting function was

chosen so that the ocean is forced “upstream” with regards to the equatorial waveguide,

i.e., this process study represents a purely remotely forced run. The second process study

(MJO2) extends the eastern edge of this box to 104◦E in order to examine the role of mixed

local and remote forcing. The edges of the boxes (shown in Figure 6.12) are defined by

hyperbolic tangent functions, with a 1 degree length scale, in order to ensure a smooth

transition between 0 and 1. See Table 6.3 for details on the model runs.

The pattern exhibited by the MJO response of sea level from the FULL run is also

evident in both the MJO1 and MJO2 runs (Figure 6.12, third and fourth rows of panels).

The signal is strong along the equator, the coast of Sumatra, and around the Bay of Bengal

indicating that remotely forced equatorial Kelvin waves propagate freely and then excite

a coastal response. Therefore, remote forcing is important for setting up the observed

pattern. However, the MJO2 run has a stronger response than the MJO1 run. For the MJO1

run, the amplification of the equatorial signal towards the coast is strongly reduced east of

90◦E (i.e., outside of the MJO-forced region). For the MJO2 run, where the MJO-forced

region extends further eastward, the amplification of the equatorial signal continues right

up to the eastern boundary indicating that local forcing is also important in generating
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both the coastal response and the equatorial signal just offshore. Westward propagating

Rossby waves are present around 5–6◦N and 5–6◦S but appear to be locally forced: their

eastward extent is controlled by the extent of the MJO-forcing region and in the MJO1

run do not appear to be reflected from the coast but are generated in the open ocean.

Therefore, the complex pattern that the MJO excites in the northeastern Indian Ocean is

driven by a combination of local and remote forcing. Additionally, the MJO-related forcing

is constrained to lie over Indian Ocean domains only and so forcing from the Pacific does

not appear to be a factor.

6.7 Summary and Discussion

A three-dimensional general circulation model with a high resolution nested submodel in

the northeastern Indian Ocean, in addition to dynamical mode fitting and several process

studies, showed that intraseasonal variability in that region is driven by a combination

of local and remote forcing by wind stress over the Indian Ocean. This model was used

to predict both sea level and the associated depth-dependent flow and extend the study

presented in Chapter 4 that relied only on observed sea level from altimeters.

A reconstruction of sea level and three-dimensional circulation variability driven by

reanalyzed atmospheric fields of surface wind, air temperature, humidity, radiation and

precipitation for the period 1979-2006 showed that the model could reproduce many of

the features present in three observed sea level records from around the region and for

ADCP profiles of zonal and meridional flow. The amplitude and timing of the predicted

sea level signature, with respect to the MJO, were broadly consistent with observations

from altimeter-derived measurements of sea level as well as from tide gauges and ADCP

measurements. The model underestimated the amplitude of the reflected Rossby waves.

This may be caused by an overly smoothed bathymetry allowing energy to propagate

around the northern tip of Sumatra as coastally trapped waves instead of being scattered

by steep bathymetry gradients and reflected back into the interior of the basin. A series of

carefully designed sensitivity studies in which the bathymetry is modified could shed light

on this problem but it is beyond the scope of the present study.

Once the predictions were validated against observations the analysis was extended to

include the full three-dimensional circulation. The near-surface circulation is dominated

by horizontal flow associated with waves along the equator and the poleward propagating
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waves along the coast. However, at depth there is a three-dimensional circulation pattern

associated with the surface signal. This pattern includes the equatorial and coastal signature

mentioned above as well as cyclonic and anticyclonic circulation about downwelling and

upwelling events that are due to the westward propagating off-equatorial waves.

Dynamical modes for equatorially trapped baroclinic waves were fit to the model output

in order to better understand the underlying dynamics. Second baroclinic mode Kelvin

waves and second baroclinic mode, first meridional mode Rossby waves were detected

with phase relationships consistent with observations: eastward propagation along the

equator followed by westward propagation off the equator. However, the mode shapes

used are not appropriate as a non-zero background flow will alter the equatorially trapped

wave modes. The results also suggest that a combination of local and remote forcing may

play a role. The limitations of the technique can be overcome by providing dynamical

modes that accurately represent the response, within a realistic background state, due to

local and remote forcing. However, this is beyond the scope of the study presented here.

The physical cause of the variability was explained in three process studies. First, it was

determined that realistic momentum flux is necessary for the generation of the observed sea

level pattern presented in Chapter 4; buoyancy flux is of secondary importance. Second,

a pair of process studies in which the geographic extent of MJO-related surface forcing

was limited spatially lead to the conclusions that (i) the MJO is largely responsible for the

observed sea level pattern, (ii) both local and remote forcing play a significant role, and

(iii) the source of the forcing lies over the Indian Ocean and not over the Pacific Ocean.

The above analysis points to the possibility of some predictability in the northeastern

Indian Ocean due to the MJO. The timing of sea level variability and depth-dependent

circulation with respect to the MJO cycle can be read off directly from Figures 6.7–6.9. If

the initiation and evolution of the MJO can be reliably predicted, which can be done out

to 2–3 weeks (see Sections 1.3 and 7.5), then this information will lead to better forecast

skill not only for sea level and circulation variability in the region but may help to predict

major upwelling events and their impact on local fisheries. As an illustration, predicted sea

level and sea level from altimeter-derived measurements at [97.3◦E,0◦N] near the coast of

Sumatra (Figure 6.1, yellow circle) are plotted in Figure 6.13 (top panel) along with the

MJO index projected onto the phase at which sea level at this location has the strongest

response (MJO phase 6/2). Many large sea level events are well-timed with corresponding
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Figure 6.13: Relationship between the MJO index and sea level, upwelling, and temperature
at [97.3◦E,0◦N] (yellow circle, Figure6.1). Top panel: observed sea level (black line) and
predicted sea level from the FULL run (red line) are shown along with the the MJO index
(shaded area) which has been projected onto the phase 6/2 axis. Bottom panel: predicted
temperature from the FULL run between 50 m and 200 m is shown as filled contours along
with the depth of the 1025 g/kg isopycnal (black line). Sea level, isopycnal depth, and
temperature have had variability on time scales longer than 120 days filtered out prior to
analysis.

MJO events.

Upwelling and downwelling due to the baroclinic waves associated with these sea level

events modulate temperature down to a depth of 200 m according to the ocean model

(Figure 6.13, bottom panel). For example, at 120 m the temperature varies by as much as

±4◦C during strong MJO events. This location is just on the edge of the shelf break near

the coast of Sumatra and such upwelling/downwelling events will undoubtedly modulate

the nutrient levels in nearby coastal waters. Predictable changes in temperature and nutrient

levels may lead to significant changes in biological productivity and fishery yields.



CHAPTER 7

HISTORICAL RECONSTRUCTION OF

THE MADDEN-JULIAN OSCILLATION

AND AN EXAMINATION OF ITS

PREDICTABILITY

7.1 Introduction
The Madden-Julian Oscillation (MJO) is the dominant mode of intraseasonal variability

of the tropical atmosphere. The original studies on what would later become known as

the MJO identified a “40–50 day oscillation” in sea level pressure and upper and lower

level zonal wind in the tropics (Madden and Julian, 1971, 1972). Since then, the MJO

has been quantified in many different ways. For example, Shinoda et al. (1998) used EOF

analyses of tropical outgoing longwave radiation (OLR) and Jones et al. (2004) used EOF

analyses of global OLR and zonal wind at low and high levels. Filtering of OLR over a

select band of MJO wavenumbers and frequencies has also been used to characterize the

MJO (Wheeler and Kiladis, 1999; Wheeler and Weickmann, 2001). The index presented

by Wheeler and Hendon (2004), henceforth WH04, is now widely used to quantify the

MJO. It is based on the first two principal components of filtered tropical fields of OLR

and zonal wind at heights of 200 hPa and 850 hPa.

The Wheeler and Hendon index, henceforth IWH
t , is not defined for the pre-satellite

era (i.e., before June 1974). As noted above, sea level pressure has a strong relationship

with the MJO (Donald et al., 2006) and observations have been made by land- and ship-

borne sensors for centuries. This raises the possibility of reconstructing the Wheeler and

119
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Hendon MJO index to cover the pre-satellite era. Such a reconstruction would be useful in

quantifying the long time scale (i.e., decadal) variability of the MJO and connections with

other phenomena (e.g., ENSO) and environmental variables (e.g., San Diego sea level).

Additionally, a long reconstruction could be useful for examining the role of the MJO

in oceanic records which do not overlap with the WH04 index (e.g., decomissioned tide

gauges). Pohl and Matthews (2007) generated an MJO index from 1950 to 2005 using

an EOF analysis of upper- and lower-level zonal winds from NCEP reanalysis fields. In

addition, Jones and Carvalho (2009) inferred the intensity of MJO activity over the period

1880 to 2008 using a simple Markov-chain model forced with monthly SST but did not

provide an MJO index of the same form as the Wheeler and Hendon index.

In this chapter, the MJO index has been reconstructed over the period 1905 to 2008

by using air pressure time series from a long reanalysis (Compo et al., 2011) as inputs

to a multivariate regression model. The selection of the pressure series was based on (i)

the strength of their relationship with the MJO, (ii) the decorrelation length scales of the

pressure variability, and (iii) the quality of the reanalysis pressures. The reconstructed MJO

index, IOT
t , is shown to have similar temporal and spectral properties to IWH

t including

measures of predictability based on a stochastically forced, damped harmonic oscillator

model. The low frequency variability of IOT
t is validated through comparison with inde-

pendent environmental variables including its relationship with precipitation, temperature,

and sea level.

Only pressure was chosen to be included in the regression model. It could be argued that

including zonal wind at upper and lower levels could provide better model results. Surface

pressure was chosen for two reasons. First, to the extent that the relationship between

surface pressure and wind is linear, adding winds will have no impact on the performance

of the regression model. Second, the use of wind data, especially upper level winds,

would introduce additional errors due to the assimilation of only sparse surface-based

observations by the reanalysis.

The outline of this chapter is as follows. The data are described in Section 7.2. The

regression model used to estimate the MJO is presented in Section 7.3 and the internal

variability of the reconstructed index, including connections with several independent

environmental variables, is examined in Section 7.4. The predictability of the MJO is

examined in Section 7.5 using a stochastically forced, damped harmonic oscillator model.
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Conclusions and discussion are provided in the final section.

7.2 Data and Preliminary Analysis

The Wheeler and Hendon index, and the surface pressure reanalysis used for its historical

reconstruction, are described in this section. Long records of observed Australia precipita-

tion and air temperature, California sea level, and surface pressure from a group of stations

clustered around Jakarta are also described. These long time series are used to assess the

reliability of the low frequency variability of the reconstructed index over the last century.

7.2.1 The Madden-Julian Oscillation Index, IWH
t

Daily values of the bivarate index IWH
t were obtained from the Government of Australia

Bureau of Meteorology for the period 1979 to 2008 inclusive (this is henceforth referred

to as the WH04 period). Due to a gap in the instrumental record for part of 1978, the

MJO index prior to 1979 was not used in order to have a continuous time series. The

two components of the index have most of their energy at periods between about 30 and

90 days. Some variability does exist at higher frequencies; it is believed to be due to

the signature of Kelvin waves and Equatorial Rossby waves in the wind and OLR fields

used to generate IWH
t (Roundy et al., 2009). Given that the goal is to reconstruct the MJO

index from surface pressure measurements which may not contain these higher-frequency

components, the MJO index has been low-pass filtered with a cut-off period of 10 days.

7.2.2 Global Surface Pressure

Daily fields of surface pressure were obtained from the 20th Century Reanalysis Project

(20CR) for the period 1871 to 2008 inclusive (Compo et al., 2011). The reanalysis was

carried out on a global grid with a resolution of 2◦ and based on assimilating surface

pressure observations, monthly sea surface temperatures, and sea ice distribution using an

ensemble Kalman smoother. The ensembles have 58 members with the ensemble mean

pressure at grid point (i,j) and time t given by pijt (with zonal and meridional indices

ranging from i = 1 . . . 180 and j = 1 . . . 91, respectively). The reanalysis also supplies the

standard deviation of the 56 member ensemble, ∆pijt. For reasons related to data scarcity

which will be investigated in more detail later, the analysis has been restricted to the period

1905 to 2008.
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Location Variable Latitude Longitude Start End %
Booby Is., Aus precip. 10◦37′S 141◦55′E 1/8/1908 8/7/2001 96.3

Darwin P.O., Aus Tmax 12◦28′S 130◦50′E 1/1/1885 31/1/1942 99.7
Darwin Airp., Aus Tmax 12◦25′S 130◦53′E 1/1/1941 2/10/2010 99.0
San Diego, USA sea level 32◦43′N 117◦10′W 21/1/1906 31/12/2008 97.6
Kemayoran, Ind pressure 6◦9′S 106◦51′E 30/4/1949 30/3/1987 60.0

Jakarta, Ind pressure 6◦11′S 106◦49′E 30/5/1905 31/1/2008 42.5
Serang, Ind pressure 6◦7′S 106◦8′E 23/9/1975 31/12/2006 70.9
Kalijati, Ind pressure 6◦33′S 107◦40′E 7/6/1951 26/11/1999 35.3

Table 7.1: The long meteorological and oceanographic records used for validation of
the reconstructed MJO index. The Australian records were obtained from the Australian
Bureau of Meteorology, the USA record from the Hawai’i Sea Level Center, and the
Indonesian records from the International Surface Pressure Database (Yin et al., 2008). The
numbers in the final column indicate the completeness of the time series. The four pressure
records were averaged into a single series. The same was done for the two temperature
records (although each was scaled to have the same variance before averaging).

Seasonal and interannual variability of the pijt series was removed following the pro-

cedure outlined in WH04. Specifically, the annual cycle and its first two harmonics were

removed using least squares and the time mean of the previous 120 days was also removed.

Following the recommendation of Gottschalck et al. (2010), the only difference between

the method applied here for removing low-frequency variability and that presented in

WH04 is that the linear contribution of El Niño / La Niña was not removed. The pressure

series were also low pass filtered with a cutoff period of 10 days. The processed pressures

are henceforth denoted by pa
ijt.

7.2.3 Observed Records of Precipitation, Air Temperature, Sea Level, and

Surface Pressure

Observations of three environmental variables that were believed to be strongly related to

the MJO have been included in the study. The station locations were chosen based in part

on an understanding of the physics governing the connections to the MJO and in part on

data availability. Pressure records from a cluster of land stations near Jakarta are used to

assess the reliability of the pressure reanalysis. Details of the long environmental records

are summarized in Table 7.1 and discussed below.

Two time series of daily air temperature were obtained for Darwin (Northern Territory,

Australia). The temperature records were averaged over the shared period into a single
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series. An hourly time series of sea level measured by the tide gauge in San Diego

(California, USA) was obtained and the inverse barometer effect was removed using the

daily 20th Century Reanalysis mean sea level pressure interpolated to the location of the

tide gauge. The adjusted sea level was de-tided using a simple Doodson X0 filter (Doodson,

1928), detrended, and subsampled to daily values. A daily time series of precipitation was

obtained for Booby Island (Queensland, Australia). The time series was first transformed

into a binary times series with 1 indicating rainfall and 0 otherwise. This binary series was

then filtered with a running 7-day sum to give the number of rainy days per week centred

on each day.

Time series of surface pressure were obtained from four stations within 1 degree of

Jakarta (Indonesia). The time series are irregular with sample rates of daily, twice-daily, or

four-times daily. The time series contained many outliers that were removed by setting

all points more than 3 standard deviations from the mean to a missing value. Each

pressure time series was then averaged to daily means. The annual cycle and its first two

harmonics were removed using least squares, and interannual and high-frequency signals

were removed using the same procedure applied to the pijt series. The pressure records

were averaged into a single series.

7.3 Reconstructing the MJO

The MJO index has been reconstructed over 1905–2008 by performing a multivariate linear

regression of IWH
t onto m predictors using the following model:

It = β pt + εt, (7.1)

where It is the observed bivariate index (a column vector of length two), β is a 2xm

matrix of regression coefficients, pt is a mx1 vector of predictors at time t, and εt is an

error term corresponding to measurement error and effects not included in the model. The

estimated regression coefficients (β̂) were based on a least squares fitting of the model

to the Wheeler and Hendon index; the MJO index was reconstructed from 1905 to 2008

using IOT
t = β̂ pt.

The MJO is a propagating phenomenon and so including lagged pressures as predictors

in the regression model would reduce the mean square error. However, allowing for lags of
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Figure 7.1: Relationship between the MJO index and surface pressure. κ̄ij represents
the fraction of the total standard deviation of IWH

t that can be statistically accounted for
by surface pressure (pa

ijt) for the period 1979 to 2008. It is calculated using a frequency
dependent regression (see text and Section 2.2.3 for details). White circles show the
locations of predictors used in the regression model and the thick black line defines the
exclusion area discussed in Section 7.3.

up to 20 days or more would lead to an overly complex regression with too many predictors

and an overfit model. The approach used here is based on the observation that the two

components of IWH
t are quasiperiodic and in quadrature so the Hilbert transform of one

component is well correlated with the other component. (The correlations for IWH
t exceeds

0.7 at zero lag.) Thus, instead of adding lagged variables, the Hilbert transform has been

included in the set of predictors. This provides sine- and cosine-like time series for each

pressure series which gives freedom to the regression to choose a linear combination in

order to achieve the best lag-relationship with IWH
t . This doubles the number of predictors

but it does improve significantly the skill of the regression model (see below). The

Hilbert transform is calculated in the frequency domain using the algorithm provided by

Oppenheim et al. (1989).

7.3.1 Location of Pressures Chosen for Inclusion in the Regression Model

Much of the tropics exhibits a strong relationship between surface pressure and the MJO

index (Figure 7.1). To limit the number of predictors in the regression model, and thus

avoid overfitting, the strength of the linear relation of the candidate predictor and the MJO

and the quality of the hindcast pressure have been taken into account (see Appendix D).

These considerations led to a restriction of available locations from which predictors could

be chosen (Figure 7.1, thick black line). Twelve locations were then chosen (Figure 7.1,

white circles) with preference given to regions with a stronger relationship with IWH
t and

higher data quality while also taking into account meridional and zonal decorrelation

lengthscales. Details are given in Appendix D. Pressures from these twelve locations (and

their corresponding Hilbert transforms) form the set of predictors for the regression model
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Figure 7.2: Comparison of IWH
t and IOT

t over the period 2000 to 2002. The first component
of the indices is shown in the top panel and the second component in the bottom panel.

(thus m = 12× 2 = 24).

7.3.2 The Reconstructed Historical Index

The regression of IWH
t onto the 24 predictors for 1979–2008 can account for 69% of the

total variance of IWH
t (i.e., the sum of the variances of its two components). It follows

that the predicted index will underestimate IWH
t by a factor of about

√
0.69, i.e., 0.83.

Note there remains a certain degree of collinearity amongst the predictors despite the

precautions taken to choose them. Therefore, the magnitude of the regression coefficients

do not by themselves indicate the importance of an individual predictor.

To reconstruct the MJO index from 1905 to 2008 the regression coefficients estimated by

fitting the model over the WH04 period were used. Plots of IWH
t and IOT

t over a common

three year period (Figure 7.2) show the new index predicts well the timing of IWH
t although

the amplitude is slightly underestimated for the reasons given above. Plots of IOT
t for

2000-2002 and 1920-1922 (Figure 7.3) show the qualitative behaviour of the reconstructed

index is consistent over these two, widely separated periods. (These periods were chosen

because they both exhibit strong MJO events but similar behaviour is found for other

periods.)

The power spectra of IWH
t , IOT

t over 1979–2008, and IOT
t over the 1905–1978 period

have the same shape (Figure 7.4) but the power of IOT
t is lower by a factor of about 0.69
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Figure 7.3: Comparison of the two components of IOT
t for 2000 to 2002 (top) and 1920 to

1922 (bottom).

(as expected). The reconstructed index is highly coherent and in phase with IWH
t over their

common period. In addition, the two components of IOT
t are highly coherent over the MJO

band (30–90 days) and the phase relationship indicates that the two components are in

quadrature as expected.

At each latitude two-dimensional frequency-wavenumber spectra of pijt (after removing

the annual cycle and its first three harmonics) have been calculated over 96-day segments.

These spectra were then averaged over all segments, and summed over 16◦S–16◦N, follow-

ing Wheeler and Kiladis (1999) in order to generate a frequency-wavenumber diagram for

tropical surface pressure (Figure 7.5, upper panel).

This diagram indicates variability on time- and space-scales that is partially consistent

with classical equatorial wave theory. The dispersion curves for equatorially trapped

Kelvin waves (equivalent depths of 25 m and 70 m), and equatorially trapped Rossby

waves (equivalent depths of 12 m, 30 m, and 10 km) are shown as solid lines. The shallow

equivalent depths are consistent with moist convectively coupled waves (Wheeler and

Kiladis, 1999; Wheeler et al., 2000) and the 10 km equivalent depth represents the gravest

Rossby wave mode permitted in the atmosphere (Diky and Golitsyn, 1968; Kasahara,

1976). Variability with zero wavenumber is present indicating variability in the zonal

mean pressure on a variety of time scales. There also seems to be eastward propagating
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Figure 7.4: Cross-spectral analysis of IWH
t and IOT

t . The power spectral densities lie along
the diagonal panels (scaled by 0.69 for IWH

t ) and the coherence and phase spectra on the
off-diagonal panels. Solid lines indicate that the spectra was calculated from data over the
1979 to 2008 period and dashed lines indicate that it was performed from data over the
1905 to 1979 period. The spectral density for the autoregressive model (with τ1 = 15 days,
τ2 = 2.5 days, and P = 50 days) are shown as red lines in the diagonal panels.

variability present on intraseasonal time scales where we would expect to find the signature

of the MJO. However, this signal is buried within variability associated with Kelvin waves

and the zonal mean.

To demonstrate that the reconstructed index captures the eastward-propagating, intrasea-

sonal surface pressure signal associated with the MJO, the IOT
t -reconstructed pressure

was generated by projecting surface pressure onto IOT
t by linear regression. Its frequency-

wavenumber diagram (Figure 7.5, lower panel) indicates the dominance of intraseasonal,

zonal wavenumber 1, eastward propagating pressure variability, consistent with the ob-

served dynamics of the MJO. These results do not vary significantly with choice of period

(i.e., 1905–2008, 1905–1978, 1979–2008). Additionally, two Hovmöller diagrams for the

IOT
t -reconstructed pressure indicate that the eastward-propagating signature of the MJO is

strongly present in surface pressure in the modern and historical periods (Figure 7.6).

The three-year running variance of IOT
t and IWH

t (Figure 7.7, upper panel) agree well

over the WH04 period after allowing for the attenuation factor mentioned above. Using
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Figure 7.5: Frequency-wavenumber spectra of tropical (16◦S–16◦N) surface pressure.
Spectra are shown for (a) the raw pressure field (pijt, with the annual cycle and first
three harmonics removed) and (b) the IOT

t -reconstructed pressure (see text for details).
In both cases the analysis was performed over the 1905 to 2008 period. This diagram
was generated by following the same calculation for OLR performed by Wheeler and
Kiladis (1999). Lines represent the dispersion curves for equatorially trapped Kelvin waves
(equivalent depths of 25 m and 70 m) and equatorially trapped Rossby waves (equivalent
depths of 12 m, 30 m, and 10 km).
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Figure 7.6: Hovmöller diagram of IOT
t -reconstructed tropical (16◦S–16◦N) surface pressure

for 1 Oct 1987 to 31 Oct 1988 (left) and 1 Oct 1923 to 31 Oct 1924 (right). Note that time
is increasing downwards.
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IOT
t it is possible to calculate low-frequency changes in the variance of the MJO over most

of the last century. Changes in variance of almost a factor of two were found on time

scales of decades and longer (thin line, top panel of Figure 7.7), along with a weak linear

trend. The fact that the MJO seems more variable after the mid-1970s is consistent with

Pohl and Matthews (2007) and Jones and Carvalho (2009).

The three-year running power spectra of IOT
t and IWH

t (Figure 7.7, middle and lower

panels) again show good agreement over the WH04 period. Much of the variability in

the spectral density of IOT
t is associated with changes in the overall power levels. This

is confirmed by a principal component analysis of the running spectra of IOT
t over the

1905–2008 period which shows that most (59%) of the variability in the spectra can be

accounted for by a time-varying modulation of a fixed spectral shape. (The time varying

amplitude agrees well with the running variance as expected). More interestingly, the

second principal component accounts for an additional 24% of the variability in spectral

shape and effectively shifts power with periods of 30 to 50 days to periods longer than 100

days. The effect of this second mode of spectral variation is evident in the extended low

frequency tails of spectral energy of IOT
t at certain times (e.g., 1915–1921, 1995–2001,

middle panel of Figure 7.7). It is encouraging to find that a similar analysis of IWH
t , and

IOT
t over the pre-WH04 period, gave essentially the same results, i.e., over 80% of the

variability in spectral shape could be accounted for by the two modes described above.

The next section explores the reality of the low-frequency variations of IOT
t over the

pre-WH04 period.

7.4 Validity of Reconstructed Low Frequency Variability

To assess the reliability of IOT
t before 1979 two distinct approaches based on analysis

of independent environmental observations have been used. First, each environmental

variable (Table 7.1) is regressed onto IOT
t and IWH

t and the stability of the regression

coefficients is examined. Second, IWH
t is reconstructed for Boreal Winter (DJF) using a

regression model driven by the independent set of environmental variables and changes in

variance and spectral shape are compared to corresponding values based on IOT
t .
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Figure 7.7: Variance and spectral content of IOT
t over most of the last century. Running

3-year variances are shown in the upper panel (IWH
t has been scaled by 0.69). Running

3-year spectral density of IOT
t is shown in the middle panel and IWH

t in the lower panel.
The spectra of the two components of each index have been summed in order to generate
these figures.

7.4.1 Stability of the Relationship Between the MJO and Environmental

Variables

The validity of the low-frequency variability of the reconstructed index is first tested by

examining the stability of its relationship with independent observations of precipitation,

air temperature, and sea level (Table 7.1). Each of the three environmental variables was

regressed onto the two components of IWH
t and then the two components of IOT

t . The

regression was performed over different periods thereby allowing a comparison of the two

indices over their common period, and also an examination of the long term stability of

the regression coefficients. The motivations for choosing each environmental variable are

described below followed by the results.

Precipitation has been demonstrated to have a strong relationship with the MJO in a band

across northern Australia during DJF (Wheeler and Hendon, 2004; Wheeler et al., 2009;

Risbey et al., 2009). Previous studies have found a higher probability of extreme rainfall

during MJO phases 5 and 6 and speculated that this is due to a modulation of the monsoon

by the MJO. Hidayat and Kizu (2009) also found that the MJO strongly modulates DJF

precipitation over the Indonesian Archipelago. The stability of this connection is examined



132

Figure 7.8: Relationship of Australian DJF surface air temperature to IWH
t . Filled contours

show the proportion of standard deviation of DJF surface air temperature that is accounted
for by IWH

t (see Section 2.2.3 for details on this calculation). The white circle shows the
location of Darwin, Australia.

Figure 7.9: Relationship between the MJO and three independent environmental variables.
The response of each variable to an MJO cycle of amplitude 2 based on a linear regression
onto IWH

t (thick lines) and IOT
t (thin lines): precipitation at Booby Island, Australia (left),

surface air temperature at Darwin, Australia (centre), and sea level at San Diego, USA
(right) based on a regression over the 1979–2008 period.
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Figure 7.10: Stability of the regression of the three environmental variables onto the
reconstructed index. The amplitude of the regression coefficients (upper panel, scaled to
have a maximum of 1) and phase at maximum response (lower panel, shown as MJO phase)
for precipitation at Booby Island (Australia, black), surface air temperature at Darwin
(Australia, red), and sea level at San Diego (USA, blue).

over much of the last century using a record of DJF precipitation from Booby Island in

northeastern Australia.

Surface air temperature (SAT) was statistically related to the MJO and visualized with

global maps of κ̄ (not shown) using the technique developed in Chapter 4. It was found that

SAT from northwestern Australia had a significant relationship with the MJO. Specifically,

it was found that SAT in this region undergoes a seasonally dependent modulation such

that IWH
t accounts for almost 40% of the standard deviation of DJF surface air temperature1

between Southeast Asia and northwestern Australia (Figure 7.8). A simple explanation for

this statistical relationship is that the mean DJF surface air temperature over the interior

of the Australian landmass is up to 4◦C warmer than the neighbouring Indian Ocean2.

Low-level wind anomalies associated with the MJO advect relatively warm continental

air past northwestern Australia during MJO phases 1-3, and westerly anomalies have the

opposite effect during MJO phases 5-7. Given the above statistical analysis and physical

interpretation, as well as considerations of record length, Darwin surface air temperature

was chosen as the second environmental variable.

Sea level along the Pacific coast of North and South America is known to be influenced

by coastal trapped waves that are remotely forced in the equatorial Pacific (Spillane et al.,

1NCEP/DOE Reanalysis 2 gridded daily surface air temperature (Kanamitsu et al., 2002)
2NOAA/ESRL Physical Sciences Division, Boulder Colorado from their Web site at http://www.

esrl.noaa.gov/psd/



134

1987; Enfield, 1987). Zonal surface wind over the equatorial Pacific is strongly related

to the MJO during Boreal Autumn/Winter (Kessler et al., 1995) and equatorially trapped

Kelvin waves generated by this wind will take approximately 80 days to travel along the

equator and up the coast of North America to affect coastal Southern California (Oliver

and Thompson, 2010). A long record of sea level from San Diego (USA) from September

to December (SOND) and lagged 80 days is used as the third environmental variable.

Details on the location, record length, and completeness are available in Table 7.1.

As mentioned above, each of the three environmental variables was regressed onto

the two components of IWH
t and then the two components of IOT

t over different time

periods. Let the regression coefficients for the first and second components of the MJO

index be β1 and β2 respectively. The response of the three environmental variables to an

idealized MJO oscillation has been estimated by forcing each fitted regression model with a

sinusoidally varying MJO of the form [a cosφ,a sinφ] where φ = −7π/8,−5π/8 . . . 7π/8

(corresponding to the MJO phases 1,2. . .8). This corresponds to a cycle of amplitude

a (a circle of radius a in MJO space). An amplitude of a = 2 was chosen in order to

examine the response to a moderate/strong MJO cycle. It follows that the amplitude of the

response is a
√
β2

1 + β2
2 and the phase of the response is arctan (β2/β1). This is analogous

to calculating composites of the environmental variable based on MJO phase except that

we are assuming a linear relationship.

The predicted responses of precipitation, surface air temperature and sea level to the

idealized MJO forcing is consistent between IWH
t and IOT

t for all three variables (Figure

7.9). By carrying out the regressions using a 15-year sliding window the temporal stability

of the relationship between the MJO and the three environmental variables could be

examined (Figure 7.10). Average correlation over the 1905 to 2008 period was around

0.41 for the precipitation record, 0.29 for the temperature record, and 0.27 for the sea level

record and were very stable for the precipitation and sea level records but more variable

for the temperature record. The drop in amplitude, and change in phase of the regression

coefficients, for temperature in the mid-1940s coincide with the drop in correlation below

0.1. Despite this, it was found that changes in the phase of the predicted response were

remarkably stable over the 1905 to 2008 period. This stability points to the realism of

IOT
t over the last century.
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Figure 7.11: Running three-year variance of IWH
t , IOT

t , and IEV
t for December to January

inclusive. Note that IEV
t and IWH

t have been scaled to have the same variance as IOT
t .

7.4.2 Reconstructing MJO Variability from Long Land-Based Records

An independent estimate of MJO variability over most of the last century was made by

fitting the regression model presented in Section 7.3 to IWH
t using the four observed envi-

ronmental variables presented in Section 7.2.3, and their Hilbert transforms, as predictors

(thus m = 4× 2 = 8). The regression model was first fit to IWH
t over the WH04 period.

The analysis was restricted to DJF because this is the time of year when the connection

between the MJO and most of the predictors is strongest (see Section 7.4.1). The regres-

sion model was then used to predict MJO variability from 1905 to 2008 from the long

environmental records.

The calculation of the Hilbert transforms of the environmental variables was complicated

by gaps in the records (see Table 7.1). Short gaps in the precipitation, temperature, and

sea level were filled by linear interpolation prior to calculating the Hilbert transform. The

long stretches of missing values in the composite pressure record were set to zero before

calculating the Hilbert transform and then reset to missing after the transformation.

The regression of IWH
t onto the environmental variables accounts for 39% of the total

variance of IWH
t . As expected, the skill of this new index, IEV

t , does not fit IWH
t as well as

the pressure based regression model. It can, however, be used to assess the realism of the

low-frequency changes in variance of IOT
t over the last century.

The three-year running DJF variance of IEV
t exhibits many of the peaks and troughs

evident in the corresponding changes of IOT
t (Figure 7.11. The correlation of the three-year

running DJF variances is 0.57 over the pre-WH04 period. Furthermore, the IOT
t and

IEV
t running variances exhibit similar linear trends causing increases of 7% and 5%
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respectively over the full record. Overall the comparison of IEV
t and IOT

t suggests that the

main features of the low-frequency variability evident in IOT
t are real.

7.5 Predictability of the MJO Index

The predictability of the MJO is now examined in order to assess the reliability of the

reconstructed index. In the first subsection three straightforward empirical measures of

predictability are introduced and estimated for both IWH
t and IOT

t . In the second subsection

a simple, physically-based model is used to interpret the empirical measures and also gain

new insights into the predictability of the MJO.

7.5.1 Empirical Measures of Predictability

Consider a scatter plot of a time-varying MJO index with the first component on the x1-axis

and the second component on the x2-axis. This set of realized states can be considered as an

approximation of the probability density function of the true state of the MJO at some time

t0 given no other information (e.g., Ristic et al. (2004)). This distribution will be referred to

as the prior distribution (with zero mean and a variance of σ2
prior). Suppose that a bivariate

observation of the standardized MJO, yobs, becomes available at time t0. It is assumed

that yobs is subject to a normally distributed, zero mean observation error with covariance

σ2
obsI. To update the prior distribution to take into account this new information a Bayesian

approach has been taken. The posterior distribution is approximated by sampling, with

replacement, from the set of observed points in the above scatter plot using weights that

are proportional to the likelihood function, i.e., exp(−|yobs − x|2/2σ2
obs) where x denotes

the true state of the MJO at time t0. As σ2
obs → 0 the posterior distribution will reduce in

spread and become centred more closely on yobs; as σ2
obs →∞ the posterior will revert

back to the prior distribution.

It is straightforward to approximate the posterior distribution of the true state of the

MJO at a future time t0 + k by simply tracking the observed evolution of each point

in the posterior sample by following the original MJO time series. This procedure is

illustrated in Figure 7.12 for k increasing from zero to 35 days. (The two components of

the MJO index have been scaled by their respective sample standard deviations.) The thin

lines in each panel are a representative selection of observed trajectories of the MJO with

the initial positions at time t0 reflecting the posterior distribution. In all of these panels
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the observation is yobs = (
√

2,−
√

2) and the observation error variance is taken to be

σ2
obs = 0.07. It is clear from Figure 7.12 that the ensemble undergoes a counterclockwise

rotation, the amplitude of the ensemble mean (thick line) decreases, and the ensemble

spread (shaded area) increases through time. It can also be seen that the position of the

ensemble members relative to their sample mean at time t0 is lost with increasing time.

For example, if an ensemble member is to the left of the ensemble mean at t0, then the

probability of the member remaining to the left of the mean decreases as k increases.

Based on the above discussion of the evolution of the posterior distribution three

empirical measures of predictability are proposed: the rate of decay of the posterior mean

towards zero, the increase of the variance, and the decrease of the correlation between the

MJO state at time t0 and t0 + k. Let µt0+k denote the mean of the posterior distribution

at time t0 + k. The first measure of predictability is taken to be the time required for

|µt0+k|/|µt0| to drop below a specified critical value (henceforth τµ). Let σ2
t0+k denote

the total variance of the posterior distribution at time t0 + k. The second measure of

predictability is the time required for σ2
t0+k/σ

2
prior to exceed a specified critical value

(henceforth τσ2). Let ρt0,t0+k denote the proportion of standard deviation of the MJO at

time t0 + k that can be accounted for by the MJO at time t0 according to the evolved

posterior distribution. The final measure of predictability is the time for ρt0,t0+k to fall

below a specified critical value (henceforth τρ).

The measures of predictability based on the mean and the variance are similar to those

developed using information theory (e.g., Schneider and Griffies (1999); Kleeman (2002)).

These two quantities measure the predictability of the system by comparing the current

state of an MJO event ensemble to either the initial condition (i.e., |µt0+k|/|µt0 |) or the

equilibrium distribution (i.e., σ2
t0+k/σ

2
prior). On the other hand, the correlation ρt0,t0+k is

a fundamentally different measure of predictability. This measure can be thought of as

measuring the loss of information due to “mixing” that occurs within an ensemble.

To compare IWH
t and IOT

t over different periods their corresponding predictability

measures have been calculated. There have been suggestions that the time scale for the

loss of predictability of a given MJO event depends on the time at which the event is

initially defined (Lin et al., 2008; Kim et al., 2009; Kang and Kim, 2010). An additional

set of experiments has been performed with |yobs| equal to 1.5 and the phase angle of yobs

taking on eight values centred on each of the MJO phases. For these additional runs the
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Figure 7.12: Evolution of the MJO in phase space given an imperfectly observed initial
condition. The statistical properties of a 4000-member ensemble with yobs = (

√
2,−
√

2)
and σ2

obs = 0.07 are shown over the following 35 days for (a) IWH
t , (c) IOT

t (1979-2008),
and (d) IOT

t (1905-1978). Trajectories calculated using the autoregressive model are shown
in panel (b) for 35 time steps. (Model parameters are τ1 = 15 days, τ2 = 2.5 days, and
P = 50 days.) For clarity, only 20 representative trajectories are shown. The thick black
line shows the mean of the full ensemble and shaded region shows the standard deviation
of the full ensemble about this mean. Note that each index component has been scaled by
its standard deviation.
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Figure 7.13: Predictability measures for the Wheeler and Hendon MJO index and damped
harmonic oscillator model. Decay of the mean (top left), increase of variance (top right),
decrease of correlation (bottom left), and increase in angular position (bottom right) are
shown. Results are shown for initial ensembles of IWH

t within each of the eight MJO
phases (thin lines), i.e., ensembles are initialized for yobs in each of the eight MJO phases.
Corresponding measures calculated using the damped harmonic oscillator model (τ1 = 15
days, τ2 = 2.5 days, and P = 50 days) are shown by the thick lines. Critical values used
to calculate predictability times scales are e-folding for the mean and the variance and 0.5
for the correlation (shown as horizontal lines). The e-folding critical value for the mean
is simply e−1 and for the variance it is σ2

t0
+ e−1(σ2

prior − σ2
t0

). In order to reproduce the
“kinks” visible in the mean, variance and correlation over the first∼5 days it was necessary
to include autoregressive forcing and to properly specify the initial condition.
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Figure 7.14: Time scales for loss of predictability of a canonical MJO event. The e-folding
times for the mean (circles), variance (squares), and lag at which the correlation drops
to 0.5 (triangles) as a function of MJO phase for IWH

t (left), IOT
t over the 1978–2008

period (middle), and IWH
t over the 1905–1978 period (right). The dashed lines represent

predictions from the damped harmonic oscillator model using τ1 = 15 days, τ2 = 2.5 days,
and P = 50 days.

observation error was kept fixed at 0.25. All of the results are discussed below.

The variation of the three predictability measures (|µt0+k|/|µt0|, σ2
t0+k/σ

2
prior and

ρt0,t0+k) are plotted as a function of k for IWH
t in Figure 7.13. For all three measures

there is a short period (2 to 3 days) over which the initial values persist followed by a

slower relaxation to their asymptotic values (the mean and correlation decay to zero and

the variance increases towards 2 which is the total variance of the normalized MJO series).

The critical values are also shown in this figure; once they are defined it is straightforward

to read off τµ, τσ2 , and τρ.

The time scales for loss of predictability are shown in Figure 7.14. The most important

feature of Figure 7.14 is that the predictability scales are consistent amongst IWH
t and

IOT
t over the WH04 period, and IOT

t over the pre-WH04 period. Overall, the predictability

scales for IWH
t and IOT

t are independent of phase (Figure 7.14). However, there does appear

to be phase dependence of τµ for IWH
t that is not reproduced by IOT

t .

The time evolution of the angular position of the mean is approximately linear especially

in the early part of each event (bottom right of Figure 7.13). The slope of the phase line

versus time leads to an estimate of the period of the MJO. It is found that the period is

stable with respect to MJO phase and is between 48 and 54 days for IWH
t and IOT

t over
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their shared period. Over the pre-WH04 period it was estimated to be about 4 days shorter.

Note that τµ, τσ, and τρ are smaller than the MJO period indicating that an average event

lifetime is short compared to the dominant oscillation time scale.

Note that the three predictability measures are all different: the time scale depends on

the chosen statistic. I found typical time scales of 18 days for the mean, 10 days for the

variance, and 5 days for the correlation. These results are not sensitive to changes in |yobs|
and σ2

obs (tested by doubling and halving the values given above). The dependence of τρ on

the observation error is discussed in Section 7.6. The fact that the correlation time scale is

short compared to the other properties indicates that, for time scales more than a few days,

there is no useful information in the initial position of an ensemble member relative to the

initial ensemble mean and the best prediction is simply given by the mean and variance

alone.

It should be noted that the choice of critical values upon which the predictability time

scales are defined is somewhat arbitrary. It is possible to choose critical values leading to

the same time scale for all three predictability measures. For example, τρ could be made

equal to τµ = 18 days by choosing a critical value of approximately 0.17. However, if we

consider the practical predictability of this system, a correlation of 0.17 is very low and

therefore does not properly represent the time scale for loss of correlation. I am confident

that the choices made here, though somewhat arbitrary, give a useful picture of the complex

relationships amongst the predictability measures for this system.

7.5.2 Predictability and the Damped Harmonic Oscillator

The evolution of the posterior distribution described above (i.e., rotation and decay in MJO

space) is reminiscent of the behaviour of a forced, damped harmonic oscillator (e.g., Marion

and Thornton (1995)). In this subsection a forced, damped harmonic oscillator model

is developed in order to explain the different values of the three predictability measures.

Similar empirical models have been used in the examination of ENSO predictability (e.g.,

Penland (1996), Kleeman (2008), Newman et al. (2009)).

Consider the autoregressive model of a damped harmonic oscillator, with autocorrelated

stochastic forcing, presented in Section 2.3.3:

xt+1 = Axt + εt+1, (7.2)
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where xt is a 4× 1 state vector at time step t, A is a 4× 4 transition matrix that carries

the state vector forward one time step, and εt is a stochastic forcing process. The state

of the oscillator is defined by the first two elements of the state vector (analogous to the

position and velocity of a one dimensional oscillator); the last two elements define the

autocorrelated stochastic forcing that drives the oscillator away from a state of rest. The

transition matrix depends on three model parameters (γ1, γ2, θ) and they are expressed in

terms of time scales: θ = 2π/P , γ1 = exp(−1/τ1), and γ2 = exp(−1/τ2).

If the mean and variance of xt0 are µt0 and Σt0,t0 respectively, then the mean and

variance of xt0+k are given by

µt0+k = Akµt0 (7.3)

and

Σt0+k,t0+k = AkΣt0,t0A
′k +

k−1∑
j=0

AjΣεA
′j (7.4)

respectively, and the covariance between xt0 and xt0+k is given by

Σt0+k,t0 = AkΣt0,t0 . (7.5)

The squared correlation, calculated as the proportion of variance of the oscillator state at

t0 + k that can be accounted for by the initial state, is given by

ρ2
k =

tr(Σt0+k,t0Σ
−1
t0,t0Σt0,t0+k)

tr(Σt0+k,t0+k)
, (7.6)

where the trace refers only to the first two components of xt.

The variance of the white noise process, σ2
ε , is chosen to make the steady state variance

of the oscillator components of xt each unity. The model and its covariance structure are

now defined by the three model parameters: P , τ1, and τ2. Given an initial distribution

(i.e., posterior distribution, see Appendix E) of xt at t0 the evolution of its mean, variance,

and correlation is followed through time and three predictability time scales defined in

Section 7.5.1 can be calculated.

The damped harmonic oscillator model depends on 3 parameters. The physical in-

terpretation of the three parameters is straightforward: P is the period of the dominant

oscillation; τ1 is the decay scale of the oscillation; τ2 is the decay scale of the forcing.

Once they are defined it is straightforward to calculate the three predictability time scales
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defined above. It is encouraging to find that the time scales calculated from the oscillator

model with a single choice of parameters (P = 50 days, τ1 = 15 days, and τ2 = 2.5 days3)

are remarkably similar to the empirical measures (thick line, Figure 7.13 and dashed line,

Figure 7.14). It is also encouraging to find that the same set of parameters predicts a spec-

tral density of the MJO that agrees well with the spectral shape of IWH
t and IOT

t (diagonal

panels of Figure 7.4).

Sample trajectories from the model are shown in Figure 7.12 (upper right panel). Note

that the model trajectories do not reproduce the behaviour of many of the trajectories of

IWH
t and IOT

t which appear to move away from the origin before decaying. The normality

of the damped, harmonic oscillator transition matrixA1 leads to a monotonic decrease in

µt (see Section 2.3.2). If this normality was not assumed in the original model then it may

be possible to better represent this initial increase of perturbations present in the observed

MJO trajectories.

7.6 Summary and Discussion

Using long records of surface pressure from the Twentieth Century Reanalysis Project

(Compo et al., 2011) and a simple regression model, the Madden-Julian Oscillation index

of Wheeler and Hendon has been reconstructed over the period 1905 to 2008. Wheeler

and Hendon generated their index using tropical fields of OLR and zonal wind. Surface

pressure was chosen because of the availability of observations over much of the last

century and the long recognized connection of pressure to the MJO (Madden and Julian,

1971, 1972).

The number of pressure predictors was limited by taking into account (i) the strength

of their relationship with the MJO, (ii) decorrelation lengthscales of pressure, and (iii)

the quality of the reanalysis. Twelve pressure predictors, and their Hilbert transforms,

were chosen to reconstruct the MJO. A seasonally dependent model was also considered

but it was found that its impact on the skill of the regression was negligible. This is not

surprising considering that the algorithm used by Wheeler and Hendon did not seasonally

3These values were determined by comparing statistical properties of the predictions and observations by
eye. Given the observed covariance matrices Σt0,t0 and Σt0+k,t0 then the matrixA (and thus P , τ1, and
τ2) could have been determined using Equation 7.5. However, this method assumes the model is correct.
Given that the model is very simple I have instead opted for a more holistic approach in fitting the model to
the observations.
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stratify their input data.

The reconstructed index accounts for 69% of the variance of Wheeler and Hendon’s

index, has a similar spectral shape and lead-lag relationship between components, and

captures the low frequency changes in variance over the shared period (1979–2008). The

reconstructed index was validated for the pre-1979 period using a set of independent

environmental variables. The environmental variables were also used independently to

reconstruct the index as well as to examine the stability of their connection to the MJO.

It was found that (i) the low frequency changes in MJO variance over 1905–2008 were

reproduced by this independent reconstruction, (ii) a slight increase in MJO variability from

1905 to 2008 was present in both the reconstruction and the new independent estimate, and

(iii) the timing of the connection between the MJO and the aforementioned environmental

variables is stable over the 1905–2008 period. These results give us confidence in the

low-frequency behaviour of the MJO reconstruction.

The reconstruction was also tested by examining time scales for the loss of predictability

based on the decay of the mean (τµ), increase in the variance (τσ2), and loss of the

correlation (τρ) of an ensemble of MJO events centred on a prescribed initial state. It was

found that the time scales for the measures were quite different: τµ ' 18 days, τσ2 ' 10

days, and τρ ' 5 days. These results applied to both the Wheeler and Hendon index and

the reconstructed index. For the Wheeler and Hendon index, some dependence of τµ on

the phase of the MJO was observed: greater predictability was found for events initialized

in phases 1, 2, 6, 7, and 8. This phase dependence was not reproduced by the historical

reconstruction.

The loss of predictability measured by the correlation (τρ) is strongly dependent on the

observation error variance (σ2
obs). More specifically, τρ increases with σ2

obs. When σ2
obs

is large, the initial ensemble fills a relatively large part of MJO space and an individual

ensemble member will retain its position relative to the mean for a longer period of time

than when σ2
obs is small. Therefore, the size of σ2

obs will determine the time scale over

which a prediction of individual ensemble members relative to the mean is useful. Beyond

this time scale there is only value in forecasting the mean and variance.

The complex behaviour of the three predictability measures, and their dependence on

the observation error variance, can all be explained in terms of a simple damped harmonic

oscillator model specified by three parameters. The damped harmonic oscillator model fits
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the original and reconstructed indices well with a single set of parameters: P = 50 days,

τ1 = 15 days, and τ2 = 2.5 days. Note, the ratio τ2/τ1 = 0.17 is much less than one and

this indicates that the memory of the atmospheric forcing is much shorter than the lifetime

of the MJO. More interestingly, the ratio τ1/P = 0.3 is also less than one and thus the

lifetime of an MJO event is predicted to be much shorter than its period, suggesting that

the MJO can be thought of as a sequence of pulse-like events rather than a quasiperiodic

oscillation.

The predictability time scale based on the mean (τµ) is consistent with previous estimates.

Waliser (2005) suggested that this time scale is between 20 to 30 days. Other studies

have estimated the time scale to be 2 weeks using a coupled ocean-atmosphere circulation

model (Vitart et al., 2007), 15 days using autoregressive models (Lo and Hendon, 2000;

Maharaj and Wheeler, 2005), and 15 days using a multivariate lag-regression model Jiang

et al. (2008).

There are great variations in the density of surface pressure observations over the 1905–

2008 period and this led to the exclusion of many potential predictors from the regression

model. Indeed, a more accurate reconstruction could have been developed over a more

recent period, 1950-2008 for example, by including predictors that have been excluded

here (e.g., predictors from the Western Pacific or other variables such as zonal wind). It is

recognized that there is an inevitable degree of subjectivity in the selection of predictors.

However, given the large number of sensitivity studies that have been performed, a slightly

different set of predictors that respect the restrictions outlined in this chapter would yield

very similar results for the present study period.



CHAPTER 8

SUMMARY AND DISCUSSION

A wide selection of techniques, including statistical analysis of observations, ocean mod-

elling, and dynamical analysis have been used to explore the influence of the Madden-Julian

Oscillation on ocean variability and its predictability. A summary of this thesis will be

presented below followed by a general discussion.

8.1 Summary

Satellite altimetry was used in Chapter 4 to show that the Madden-Julian Oscillation (MJO)

has three main regions of influence on global sea level1. A novel statistical measure, κ̄

which exploits the quasi-periodic nature of the MJO, was used to generate maps of the

proportion of sea level variability accounted for by the MJO. The three regions identified

with significant connections were: (i) the equatorial Pacific and Coastal Americas, (ii) the

Gulf of Carpentaria, and (iii) the northeastern Indian Ocean. In each region it was found

that sea level variability was coherent with the MJO index at a period of about 75 days.

For each of the three regions the variability associated with the MJO was characterized

using a frequency dependent EOF analysis centred on a period of 75 days and the resulting

pattern was explained in terms of simple physical processes. In the Pacific, the 75 day

mode consists of equatorially trapped waves propagating eastward across the Pacific with

a wave speed of 2.6 m s−1, consistent with a first baroclinic mode equatorially trapped

Kelvin wave. Upon reaching the eastern boundary these waves excite poleward propagating

waves along the coast of the Americas with wave speeds of 5.6 m s−1 (northward) and

1A version of this chapter has been published as Oliver, E. and K. Thompson, The Madden-Julian
Oscillation and sea level: Local and remote forcing, Journal of Geophysical Research, 115, C01003, 2010.
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3.3 m s−1 (southward). The 75 day FDOEF mode in the Gulf of Carpentaria showed a

standing wave over the entire Gulf. A simple dynamical balance showed that most of

this variability can be accounted for by sea level set-up due to surface wind over the Gulf

which is itself strongly related to the MJO. In the northeastern Indian Ocean, the 75 day

mode indicated a complex pattern with signatures of eastward propagating waves along the

equator, poleward propagating waves near the coast, westward propagating waves just off

the equator. It was speculated that these waves were baroclinic equatorially trapped Kelvin

waves, Rossby waves and coastal trapped waves. It was also noted that sea level in each

region is either locally forced (Gulf of Carpentaria), remotely forced (equatorial Pacific

and coastal Americas), or possibly a combination of the two (northeastern Indian Ocean).

The connection between the MJO and sea level in the Gulf of Carpentaria was examined

in more detail in Chapter 52. Sea level from three local tide gauges and surface wind over

the Gulf were shown to be coherent with the MJO on intraseasonal time scales. In addition,

the wind was most coherent with the MJO when oriented such that it would produce a

strong sea level set-up in the Gulf.

A general circulation model was used to reconstruct sea level and depth-averaged

circulation in the Gulf for the 1979–2009 period which was validated using the observed

tide gauge records. The model predictions were able to capture the observed seasonal

cycle and were strongly coherent with observations on intraseasonal time scales. In this

manner it was confirmed that the sea level response is simple wind-driven set-up and it was

also shown that this connection is seasonally dependent with the strongest response during

the Australian-Indonesian monsoon in Austral Summer. The sea level and associated

circulation has a predictable pattern given the strength and phase of the MJO: coastal sea

level can vary by as much as ±6 cm and velocities can reach 5 m s−1 over an MJO cycle

with the strongest response for phase 2 (set-down) and phase 7 (set-up) along with an

associated anticyclonic and cyclonic circulation in the Gulf. In addition, the low-frequency

sea level variations not captured by the model were shown to be related to propagation of

ENSO-related variability in the Pacific through the Indonesian Throughflow and along the

Australian shelf edge.

The connection between the MJO and sea level in the northeast Indian Ocean was
2A version of this chapter has been published as Oliver, E. and K. Thompson, Sea level and circulation

variability of the Gulf of Carpentaria: Influence of the Madden-Julian Oscillation and the adjacent deep
ocean, Journal of Geophysical Research, 116, C02019, 2011.
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examined in more detail in Chapter 63. Sea level from altimeters and tide gauges, sub-

surface currents from ADCP profiles, and reanalyzed surface wind forcing were shown

to have a strong relationship to the MJO in the northeastern Indian Ocean. Additionally,

the MJO-related pattern of surface wind forcing was shown to be well-suited to generate

equatorially trapped waves.

A general circulation model was used to reconstruct the sea level and three-dimensional

circulation in the northeastern Indian Ocean for the 1979–2006 period. By comparison with

observed sea level from tide gauges and altimeters, and observed subsurface currents from

ADCP profiles, it was shown that the model reproduced well the observed connection with

the MJO. The model provided predictions of the complete three-dimensional circulation

which were then examined to map the MJO-expression at depth. Significant horizontal

circulation and vertical upwelling anomalies were found down to a depth of 1000 m along

the equator corresponding to the eastward propagating equatorially trapped Kelvin waves

and along the coast of Sumatra, Java and the Bay of Bengal corresponding to the coastally

trapped waves. Additionally, cyclonic and anticyclonic circulation cells about regions of

upwelling and downwelling were found off the equator corresponding to the westward

propagating Rossby waves.

Dynamical Modal Analysis (DMA) was used, along with dynamical equatorial wave

modes, to identify the observed waves as primarily second baroclinic mode Kelvin waves

and second baroclinic mode, first meridional mode Rossby waves. The limitations of DMA,

due to specification of incorrect dynamical modes, were discussed in Chapter 6. A set of

process studies were used to show that wind stress is the dominant forcing mechanism for

setting up the observed MJO-related sea level pattern in the northeastern Indian Ocean. It

was also found that both local and remote MJO-related wind forcing play significant roles

in driving the variability.

The connection of the observed variability to the MJO leads to predictability in the

system. For example, upwelling and downwelling events off the coast of Sumatra can lead

to temperature changes of ±4◦C with the strongest responses in phase 6 (downwelling)

and phase 2 (upwelling). These upwelling and downwelling events will no doubt also

contribute to variability in nutrients and, in turn, biological productivity.

Low-frequency variability of the MJO and possible interactions between the MJO and

3A manuscript version of this chapter is in preparation.
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other climate phenomena could be examined if a long record of MJO variability was

available. The Wheeler and Hendon (WHO4) MJO index was reconstructed in Chapter 7

over the period 1905 to 2008 using atmospheric surface pressure from a global historical

reanalysis4. The choice of pressure predictors was restricted by taking into account the

strength of the connection with the MJO, the quality of the reanalysis, and the spatial

decorrelation lengthscales of surface pressure. These predictors were then used as inputs

to a multivariate linear regression model to predict the WHO4 index over the 1979–2008

period. The reconstruction captures the temporal and spectral properties of the WH04 index

over this period and was also shown to capture the eastward propagating, intraseasonal,

zonal wavenumber 1 signal in surface pressure which is associated with the MJO. The

index was then hindcast back to 1905. Over the historical period the reconstructed

index was validated using observations of independent environmental variables. First, an

independent reconstruction was generated using sea level, sea level pressure, surface air

temperature, and precipitation records directly from measurement stations as predictors.

Although not as good of a fit to the WH04 index it nevertheless captured much of the

interdecadal and multidecadal variability observed in the reconstructed index. Second, the

long reconstruction was used to predict the records of sea level, surface air temperature, and

precipitation. The timings of these predictions with respect to MJO phase were shown to

be stable over the last century. The low-frequency behaviour of the MJO can be examined

now that a long MJO index exists.

Finally, the statistical behaviour of a canonical MJO event was examined and three

measures of predictability were developed to further validate the historical reconstruction

as well as gain insight into the predictability of the MJO. From these three measures,

time scales were calculated for the loss of predictability in the mean, the variance, and

within-ensemble correlation. The results were largely consistent between the historical

reconstruction and the WH04 index with time scales of 18 days for the mean, 10 days for

variance, and 5 days for correlation. In addition, it was noted that a canonical MJO event

behaves like a forced damped harmonic oscillator. To test this, an autoregressive model

of a damped harmonic oscillator with autoregressive stochastic forcing was developed

and the predicted time scales were found to match well with the WH04 and historical

reconstruction. This model depends on three parameters which may give insight into the

4A manuscript version of this chapter has been submitted to the Journal of Climate under the title A
Reconstruction of MJO Variability from 1905 to 2008 and is currently under revision.
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fundamental characteristics of the MJO. For example, the oscillation period is much longer

than the damping time scale indicating that an MJO event behaves more like a quickly

decaying pulse than an oscillation.

8.2 Discussion and Future Work

The dynamical understanding of modes of variability in the ocean and atmosphere, and the

coupling between variability in these two media, are of primary importance in our ability

to reliably predict weather and climate. The MJO provides predictability on timescales

that bridge the gap between the traditional ranges of weather and climate. The dynamical

understanding of some of its connections to the ocean may help provide predictability on

these timescales for the regions identified in this thesis. This understanding was obtained

by various techniques including analysis of observations, the use of statistical techniques,

the application of dynamical theory, and the use of numerical general circulation models.

Each of these techniques possesses its own advantages and and disadvantages.

The analysis of observations is most important amongst the techniques. Observations are

needed to establish the reality of a given phenomenon and its known properties. However,

observations are limited by data scarcity: what observations we do possess are distributed

unevenly across time and space. Observing systems are also limited by technology: we

cannot observe the ocean at all depths, latitudes, and longitudes simultaneously every day.

Statistical techniques allow simple patterns to be extracted from complex data sets. For

example, the MJO index is calculated from an EOF analysis of tropical atmospheric data.

However, statistical models are limited by data quality and data scarcity as was noted in

the historical reconstruction study undertaken in Chapter 7. Statistical techniques can be

very technical and the patterns detected are often difficult to interpret physically. Finally,

the assumption of linearity, which has been virtually ubiquitous in this thesis, may not

always hold.

Dynamical models can provide useful predictions based on simple physics. The govern-

ing process are rooted in fundamental balances (e.g., conservation of energy, conservation

of momentum, etc.) and as such can be interpreted physically and used to gain insight

into the governing dynamics. However, these dynamical concepts are often based on

unsupportable assumptions (e.g., no forcing, flat bottom, inviscid fluid motion, etc) which

break down when applied to the real ocean.
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Numerical general circulation models can predict the ocean state in a way which fills

in the gaps left by missing observations and does not rely on restrictive assumptions that

simple models must. Additionally, numerical models allow specific dynamical processes

to be examined through sensitivity studies by changing certain aspects of the model

(e.g., bathymetry, forcing fields, etc.). However, due to inaccurate forcing, inappropriate

boundary conditions, or poor parameterizations of subgrid-scale processes, among other

things, these models are often incomplete and do not capture the observed variability

properly.

The dynamics involved in weather and climate phenomena, such as those presented in

this thesis, are best examined by using the combined strengths of the tools described above.

The weaknesses of certain approaches (i.e., the scarcity of observations, the difficulty

in interpreting statistical model results) can be compensated by the strengths of other

approaches (i.e., ocean predictions at all locations and times from numerical models,

the fundamental physical balances found using simple dynamical models). This is the

approach which has been taken in this thesis.

Future work following on from this thesis may include the following. The long re-

constructed MJO index can be used to examine low-frequency changes in the observed

MJO connections in long station records (e.g., Alaska SAT). These low frequency changes

may shed light on interactions, possibly nonlinear, between the MJO and other climate

phenomena such as El Niño / La Niña, the Pacific Decadal Oscillation or the Indian Ocean

dipole. Second, a series of process studies using a general circulation model could be

performed to test the sensitivity of the MJO-response in the northeastern Indian Ocean

to bathymetry. This sensitivity may be critical in generating the reflected Rossby waves

seen in the observed sea level signal. Finally, the Madden-Julian Oscillation provides

predictability in certain regions of the oceans. A sound MJO prediction system could

potentially lead to useful forecasting systems for both coastal communities and the deep

ocean. For example, the detection of sea level anomalies in the western equatorial Pacific

associated with an MJO event could act as a signal to forecasters of the possibility of

predictable coastal anomalies at a later date in the Americas. The passage of coastally

trapped waves can lead to anomalies in temperature, salinity, and nutrients near the surface

(i.e., in the euphotic zone) due to upwelling and downwelling which will have significant

impacts on biological productivity and important human activities such as fisheries or
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recreation.



APPENDIX A

A MONTE CARLO METHOD FOR THE

CALCULATION OF STATISTICAL

SIGNIFICANCE

A worked example is outlined here for determining the statistical significance of the

calculated proportion of variance of an environmental variable time series that is accounted

for by the MJO index (κ̄, see Section 2.2.3) using a Monte Carlo method based on the

assumption of no relationship between the two time series.

To illustrate the technique we calculate the proportion of San Diego sea level variance

that can be predicted by the MJO index. An hourly time series of sea level measured by a

tide gauge in San Diego, USA was obtained for the period 1/1/1979 to 31/12/2008 and the

inverse barometer effect was removed using daily 20th Century Reanalysis mean sea level

pressure (see Section 7.2.2). The adjusted sea level was de-tided using a Doodson X0 filter

(Doodson, 1928), detrended, and subsampled to daily values. The annual cycle and its first

two harmonics were removed by linear regression.

The multiple coherence between the MJO index and San Diego sea level (thin line,

Figure A.1a) was modified (thick line) by adding a small constant to the spectral density

of the MJO index (shaded area). This constant was equal to 2% of the maximum spectral

density of the MJO index. Using the modified coherence, the proportion of variance

accounted for by the MJO index over this period was found, using Equation 2.18, to be

κ̄ = 0.39 (the unmodified coherence gave a value of κ̄ = 0.41 and so the results are not

strongly sensitive to this modification). Given this value of κ̄ what can we say about its

statistical significance?
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Figure A.1: Illustration of the calculation of statistical significance of κ̄ between the MJO
index and San Diego sea level. (a) Coherence between the MJO index and San Diego sea
level without modification (thin line) and modified (thick line) by adding a small constant
to the spectral density of the MJO index (shaded area). (b) Distribution of κ̄ under the
assumption of no relationship between the MJO index and San Diego sea level (calculated
using a sample of 1000 cloned MJO indices). The values above the 5% significance level
are shown in red (κ̄5% = 0.24).

The 5% significance level, κ̄2
5%, was calculated by first generating 1000 clones of the

MJO index with the same mean, variance and spectral density but randomized phases.

The proportion of San Diego sea level standard deviation accounted for (i.e., κ̄) by each

one was then calculated. This yielded a distribution of κ̄ under the assumption of no

relationship between the MJO index and San Diego sea level (Figure A.1b). The value for

which 95% of the samples fall below, κ̄5%, is the 5% significance level. It was found that

κ̄5% = 0.24 and therefore the value of κ̄ quoted above (0.39) is statistically significant at

the 5% significance level.



APPENDIX B

EQUATIONS FOR INCOMPRESSIBLE

AND INVISCID FLOW

The equations governing an incompressible and inviscid fluid on a sphere observed with

respect to a rotating system of coordinates are (Kundu, 1990)

∂u

∂t
+ u · ∇u+ 2Ω× u = −1

ρ
∇p− g (B.1)

∇ · u = 0. (B.2)

where u(x, y, z, t) = ux̂ + vŷ + wẑ is the fluid velocity, Ω is a vector with magnitude

equal to the rotation rate and direction along the axis of rotation, ρ(x, y, z, t) is the fluid

density, p(x, y, z, t) is the fluid pressure, and g = gẑ is gravitational acceleration. A hat

indicates a unit vector in the stated direction. Equation B.1 is known as the momentum

equation and Equation B.2 as the continuity equation.

B.1 Three Dimensional Equations of Motion

The rotation vector is written Ω = Ω(cosφx̂ + sinφŷ) where Ω is the angular frequency

of the Earth’s rotation and φ denotes latitude. The Coriolis term in Equation B.1 can now

be written 2Ω × u = 2Ω[(w cosφ − v sinφ)x̂ + u sinφŷ − u cosφẑ]. If the thin shell

approximation is made (i.e., the vertical scale of motion is much smaller than the horizontal

scale of motion) and noting that gravity dominates the Coriolis effect in the vertical, the

Coriolis term simplifies to 2Ω× u = −fvx̂ + fuŷ where f(φ) = 2Ω sinφ is called the

Coriolis parameter.
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In the vertical, the momentum equation is now

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂p

∂z
− g. (B.3)

In the ocean, large-scale motions in the vertical are dominated by the gravitational accel-

eration and the pressure gradient terms (Gill, 1982). Therefore, it is useful to define an

equilibrium pressure p0(z) and density ρ0(z) that satisfy this dominant balance

dp0

dz
= −gρ0. (B.4)

Perturbations from this equilibrium state are denoted pp(x, y, z, t) and ρp(x, y, z, t) and

are defined by

p = p0 + pp, ρ = ρ0 + ρp. (B.5)

Assuming the horizontal scale of motion is much larger than the vertical scale of motion,

the perturbation pressure and density also satisfy the hydrostatic equation (Gill, 1982):

∂pp

∂z
= −gρp. (B.6)

This effectively neglects the acceleration and nonlinear terms in the vertical momentum

equation governing perturbations to the equation of state. The result is known as the

hydrostatic approximation.

The equations governing perturbations to the equilibrium state reduce to

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fv = − 1

ρ0

∂pp

∂x
(B.7)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu = − 1

ρ0

∂pp

∂y
(B.8)

∂p

∂z
= −gρ (B.9)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (B.10)

where the Boussinesq approximation has been made so that density is replaced by the

equilibrium density everywhere except in Equation B.9. This approximation is valid if

the fluid is incompressible and if the vertical scale of motion is small compared with the

vertical scale over which density varies.
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B.2 The Shallow Water Equations

Consider an ocean of uniform density ρ0 = const. Let the ocean bottom lie at z =

−H(x, y) and the free surface at z = η(x, y, t). Uniform density leads to the expression

p0 = −gρ0z from Equation B.4. The atmospheric pressure at the surface is assumed

constant and so we have a perturbation pressure pp(z = η) = −p0(z = η) = gρ0η. Since

density is uniform everywhere, ρp = 0 and so Equation B.6 implies that pp = gρ0η for all

z. Therefore, the pressure gradient terms in Equations B.7–B.8 can be written in terms of

the height of the free surface η and the momentum equations become

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fv = −g ∂η

∂x
(B.11)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu = −g∂η

∂y
. (B.12)

The fluid velocity is now only a function of x and y since η is not a function of depth.

Integrating the continuity equation with respect to depth from −H to η leads to

∂η

∂t
+

∂

∂x
[(H + η)u] +

∂

∂y
[(H + η)v] = 0,

where the surface boundary condition w(z = η) = dη/dt has been used. Furthermore,

ignoring nonlinear terms leads to

∂η

∂t
+

∂

∂x
(Hu) +

∂

∂y
(Hv) = 0. (B.13)

Equations B.11–B.13 are known as the shallow water equations.



APPENDIX C

REFLECTION AND TRANSMISSION OF

EQUATORIAL WAVES AT AN EASTERN

BOUNDARY

The treatment given here follows Clarke and Shi (1991) and the same results can also be

found in Clarke (1992) and Grimshaw and Allen (1988).

Consider fluid motion on an equatorial β-plane (Equations 3.18–3.20)

ut + yẑ× u = −∇φ (C.1)

φt + ∇ · u = 0 (C.2)

where the equations of motion have been expressed in vector form and the primes have

been dropped, a subscript denotes a partial derivative, u(x, y, t) = ux̂ + vŷ is the depth-

averaged fluid velocity, φ(x, y, t) is the height of the free surface expressed as geopotential

height, and a hat indicates a unit vector in the stated direction. All variables have been

nondimensionalized as described in Section 3.3.1.

Performing the operation
(
∂
∂t
− ẑ×

)
on Equation C.1 leads to

u+
1

y2
utt = − 1

y2
∇φt +

1

y
ẑ×∇φ. (C.3)

If a wave solution with low frequency (ω2/y2 � 1) is assumed then 1
y2
utt is small
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Figure C.1: Coordinate systems at eastern ocean boundaries. Two boundaries are con-
sidered: (a) meridional and (b) non-meridional. Normal and tangential coordinates (n, s)
used for nonmeridional boundary are shown with their relationship to the eastward and
northward coordinates (x, y).

compared to u and Equation C.3 simplifies to

u = − 1

y2
∇φt +

1

y
ẑ×∇φ. (C.4)

Substituting this expression for u into Equation C.2 leads to

φxxt + φyyt −
2

y
φyt + φx − y2φt = 0. (C.5)

This equation is subject to boundary conditions that depend on the geography. The cases

of a meridional boundary and a nonmeridional boundary are presented below.

C.1 Meridional boundary

Consider a meridional eastern boundary at x = 0 (Figure C.1a). Along this boundary the

flow must be zero and the boundary condition (using Equation C.4) at x = 0 is

0 = − 1

y2
∇φt +

1

y
ẑ×∇φ.
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Assuming a wave solution of the form φ ∼ eiωt, this equation leads to

−iωφx − yφy = 0

which implies that the ratio of the length scale in x to the length scale in y is ω/y. Using

this relationship between length scales allows us to neglect φtyy with respect to φtxx and

φyt/y with respect to φx in Equation C.5, to an error of order ω2/y2. Near the boundary,

this yields the governing equation

φxxt + φx − y2φt = 0.

Assuming a wave solution of the form φ = A(y)eλx−iωt leads to the following dispersion

relation

λ2 − i

ω
λ− y2 = 0.

If λ is imaginary, then waves will propagate offshore in the x direction; if λ is complex,

then the real part will cause the wave amplitude to decay offshore such that waves are

trapped near the coast. Solving for λ gives two cases. The first case, for ω < 1/2y, yields

a completely imaginary solution

λ = i
1

2ω

[
1±

√
1− (2yω)2

]
(C.6)

and the second case, for ω > 1/2y, yields a complex solution

λ = i
1

2ω
± y

√
1− 1

(2yω)2
. (C.7)

At a fixed frequency a critical latitude can be defined, yc = 1/2ω, equatorward of which

waves radiate offshore (Equation C.6) and poleward of which waves remain trapped to

the boundary and are able to propagate along the coast (Equation C.7). Similarly, at a

fixed latitude a critical frequency can also be defined, ωc = 1/2y, above which waves are

trapped to the boundary and below which they radiate offshore.
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C.2 Nonmeridional boundary

Consider the case of a nonmeridional eastern boundary (Figure C.1b). The dispersion

relation, which now includes the effect of coastline angle, is given by

λ2 − i

ω
cos θλ− y2 = 0. (C.8)

The derivation of Equation C.8 can be found in Clarke and Shi (1991). As above, solving

for λ gives two cases. The first case, for ω < cos θ/2y, yields a completely imaginary

solution

λ = i
cos θ

2ω

1±

√
1−

(
2yω

cos θ

)2
 (C.9)

and the second case, for ω > cos θ/2y, yields a complex solution

λ = i
cos θ

2ω
± y

√
1−

(
cos θ

2yω

)2

. (C.10)

Thus, at a fixed frequency, a critical latitude can be defined

yc =
cos θ

2ω
, (C.11)

equatorward of which waves radiate offshore (Equation C.9) and poleward of which waves

remain trapped to the boundary and are able to propagate along the coast (Equation C.10).

Similarly, at a fixed latitude the critical frequency is defined as ωc = cos θ/2y. Above this

critical frequency waves are trapped to the boundary and below this frequency they radiate

offshore. Note that for θ = 0 these results simplify to those given above for a perfectly

meridional boundary.



APPENDIX D

RESTRICTION OF PRESSURES FOR

INCLUSION IN THE HISTORICAL

RECONSTRUCTION

Three restrictions limiting the number of predictors in the regression model (Chapter 7)

are outlined below.

D.1 Strength of Linear Relationship with the MJO

The strength of the linear relationship between surface pressure and IWH
t is measured by

κ̄2
p =

∫ [
κ2

1,p(ω)f1(ω) + κ2
2,p(ω)f2(ω)

]
dω∫

[f1(ω) + f2(ω)] dω
, (D.1)

where κ2
1,p and κ2

2,p are the squared coherence between paijt and the first and second

components of IWH
t respectively, and f1 and f2 are the corresponding power spectral

densities of the first and second components of IWH
t . The integral of f1 is the variance

of the first component of IWH
t ; the integral of the product of f1 and κ2

1,p is the variance

of the first component of IWH
t that can be accounted for by pa

ijt. The statistic κ̄ is a

number between zero and one representing the proportion of the total standard deviation

of IWH
t that is accounted for by paijt (see Section 2.2.3 for details).

This statistic is a function of latitude and longitude and is strongest in the tropical

Indo-Pacific where κ̄ is about 0.65 (Figure 7.1). There are also indications of the eastward-

propagating nature of the MJO in the broad region of influence across the open Pacific
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Ocean as well as the blocking produced by the western slopes of the Andes and the East

African Highlands. This pattern is consistent with Donald et al. (2006) who showed similar

global behaviour using composites of sea level pressure based on MJO phase. All potential

pressure predictors are required to have κ̄ ≥ 0.33.

D.2 Accuracy of the Reanalysis Pressure

The standard deviation of the 56-member ensemble at a given grid point and time (∆pijt)

is a measure of the quality of the hindcast pressure. The following relative measure of the

quality of the hindcast pressure has been calculated:

∆ijt =
∆pijt
sij

, (D.2)

where sij represents the standard deviation of paijt through time. This normalization allows

for the fact that pressure is more variable at some locations. Time series of ∆ijt for selected

locations are shown in Figure D.1.

To measure the overall level, and trend, of ∆ijt it is approximated by the model

∆ijt = α0ij − α1ij(t− th) + εt (D.3)

where t denotes time, th represents the midway point between 1905 and 2008, and εt is an

error term representing effects not included in the model. (Note the negative sign for α1ij

was introduced because it is anticipated that the trend in relative error will be negative,

reflecting more accurate hindcasts in later years). The coefficient α0 measures the relative

error in the middle of the last century (i.e., t = th). As expected it is generally low in

regions with a large number of observations over 1905–2008 (top panel, Figure D.2). The

coefficient α1 reflects local changes in the observing system and tends to be low where

the number of observations have been consistent over time (bottom panel, Figure D.2).

Predictors are rejected from regions where α0 > 0.8 and α1 > 1.76 · 10−5 days−1 (thick

contours, Figure D.2). The critical value for α1 represents a change in ∆ijt of 67% over

1905–2008. The thick contour in Figure 7.1 shows the intersection of the rejection regions

based on the critical values of κ̄, α0, and α1.
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Figure D.1: Relative error of Twentieth Century Reanalysis pressure at selected locations.
The relative error ∆t is calculated following Equation D.2. Pressure series from the Western
Pacific and Eastern Pacific locations shown above would be rejected due to excessive trend
and mean relative error, respectively, based on the restrictions outlined in Section D.2.
Pressure from the Eastern Indian location would not be rejected.
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Figure D.2: Mean and trend in the relative error of surface pressure ∆ijt. Top: mean of
∆ijt (α0ij) with thick contour showing the critical value (0.8). Bottom: trend of ∆ijt (α1ij)
with thick contour showing critical value (1.76 · 10−5 days−1). White circles show the
chosen locations of predictors used in the regression model.

D.3 Pressure Decorrelation Lengthscales

A set of sensitivity studies was carried out to determine the effect of spatial separation

on the choice of pressures for inclusion as predictors in the regression model. In one

experiment the zonal and meridional separation of equispaced pressures along the equator,

and two adjacent zonal lines, were varied and the impact on the fit of the regression was

assessed. The regressions were trained onto the first half of the WH04 period (1/1/1979–

28/2/1994) and validated on the second half (1/3/1994–31/12/2008). A two-dimensional

plot of the total error variance over the validation period as a function of longitudinal and

latitudinal separation distance was constructed (not shown). As the longitudinal spacing

decreases, more predictors are included; the regression is eventually overfit to the pressure

data over the training period, and the skill reduces over the validation period. The error

variance over the validation period reaches a minimum with a longitudinal separation of

18◦ and a latitudinal separation of 14◦ (see Figure D.3, thick line). Excluding the Hilbert

transform of each predictor significantly reduced the skill of the regression model for both

components (Figure D.3, thin line). Switching the training and validation periods yielded

essentially the same results.

Although the above sensitivity study is straightforward, it does not allow for geographi-

cally varying decorrelation scales. If the pressure decorrelation lengthscale is defined as

the distance required for the correlation of pressure to drop to 0.5 then the north-south

decorrelation scale is fairly homogenous with values between 14◦ and 18◦. The east-west
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Indian Pacific Atlantic
14◦N 20◦ 20-30◦ 20◦

Equator 25-30◦ 40-50◦ 50◦

14◦S 20◦ 20-30◦ 40◦

Table D.1: Longitudinal decorrelation lengthscales of pa
ijt in each basin along the equator,

14◦N, and 14◦S. The lengthscale is a function of latitude and ocean basin and is given as a
single values or range for each region. The basins are defined as lying between the three
major topographic features in the tropics: the Andes, the East African Highlands, and the
Maritime Continent.

Figure D.3: Fit of the regression model to IWH
t over the validation period (1/3/1994–

31/12/2008). Left: the total error variance is shown as a function of east-west spacing
assuming a north-south spacing (of three lines) of 14◦. Right: the total error variance is
shown as a function of north-south spacing (of three lines) assuming an east-west spacing
of 18◦. Note that the total error variance has been normalized by the total variance of
IWH
t over the validation period.
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decorrelation scale however depends on both latitude and longitude (Table D.1). When

choosing the predictors included in the model, no two locations (white circles, Figures 7.1

and D.2) were chosen closer than the decorrelation scales defined in Table D.1.



APPENDIX E

CALCULATING THE POSTERIOR

DISTRIBUTION

In accordance with the multivariate autoregressive model for a stochastically forced,

damped harmonic oscillator presented in Chapter 2, assume the oscillator and associated

forcing at time t0 are stored in the first and last pair of elements of the four dimensional

state vector x respectively. Further assume that the prior distribution for x at time t0
is normal with zero mean and covariance matrix Σprior. In the notation of Chapter 2,

Σprior = Σ∞.

Assume a multivariate observation becomes available at time t0 and it is related to the

state vector by yobs = x+ ν where ν is the observation error which is taken to be normally

distributed with zero mean and covariance matrix Σobs. It is straightforward to show that

the posterior distribution of the state given this observation is also normal with mean and

covariance

µpost = Σprior (Σprior + Σobs)
−1µobs (E.1)

Σpost =
(
Σ−1

prior + Σ−1
obs

)−1 (E.2)

These results follow directly from the product of a pair of normal probability densities

which is also normal.

Assume yobs and the observation error covariance matrix take the form

yobs =

[
yosc

obs

yfor
obs

]
Σobs =

[
σ2

obsI 0

0 αI

]
(E.3)
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where α represents the variance of the uncertainty of the observed forcing. We will

consider the case in which the uncertainty on the observed forcing becomes very large

(α→∞). This implies that we only have observational information on the oscillator and

not on the associated forcing. What are the implications of the new observation? Can we

say something about the forcing despite not observing it?

In the limit α→∞ the mean of the posterior distribution is given by

µpost =
1

1 + σ2
obs

[
I

Σ21Σ
−1
11

]
yosc

obs, (E.4)

where Σij refers to the ij th block of Σprior when arranged in four 2×2 blocks. Note that

as σ2
obs tends to infinity the posterior mean reverts to the prior mean as expected; as σ2

obs

tends to zero the posterior mean for the oscillator is simply the observation itself and the

mean forcing comes from a linear regression of the forcing components onto the oscillator

components. This tells us that, even in the absence of any observation of the forcing, an

observation of the oscillator can be used along with the prior to infer the mean of the

forcing.

The covariance of the posterior distribution is given by

Σpost =
1

1 + σ2
obs

[
σ2

obsΣprior +

[
0 0

0 Σ22 −Σ21Σ
−1
11 Σ12

]]
(E.5)

In the limit σ2
obs tends to infinity the posterior covariance reverts to the prior covariance as

expected; in the limit σ2
obs tends to zero, the posterior covariance of the forcing is simply

the variance of the residuals from a linear regression of the forcing components onto the

oscillator components.
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