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Introduction B Regional Connections: Local and Remote Forcing by the MJO

There is growing interest in extending the range of weather ® Three regions are examined using frequency-dependent EOF @ In each case a peak in coherence with the MJO occurs ~75 days
forecasts and ultimately developing a seamless prediction (FDEOF) analysis. The frequency is chosen based on the peak in co- and the forcing is shown to be a combination of local and remote
capability that bridges both weather and climate. herence between a set of sea level time series and the MJO. effects - with different dynamics in each region.

The main prospect for predictability on intraseasonal tim- A. Wave Propagation and the MJO: Remote Forcing of Sea Level along Eastern Boundaries
escales is the Madden-Julian Oscillation (MJO). Under-

standing the dynamics of the MJO, its interactions with the
extratropics and its coupling with the ocean has been an

® Sea level time series were chosen along the Equatorial Pacificand e The first FDEOF mode of sea level in the northeastern Indian Ocean

- ctive research 1obic in recent vears. In this context there Coastal Americas (northern and southern hemisphere). The first explains 25% of the variance.
is an important rore for empiric)al\l studies which use s”catisti— FDEOF mode explains 67% of the variance [3]. | O Th.e intraseasonally .varying sea level exhil?its complex dynamics in
cal techniques to explore the relationship between the ® Intraseasonal waves propagate along the equator a.s Kelvin waves this region. Eq.uatonally trapped waves excite energy along tche coast
MJO and global distributions of atmospheric and oceanic (see also [4]) and then pg)leward ao|0n9 the Americas as coastal of Sumatra which propagates around the Bay of Bengal / India. Furth-
variables. trapped waves as far as 37°N and 33°S. termore, Rossby waves are radiated into the basin along 5.5°N [3,5].
In this study, we first examined the global connections be- 70 It PDEOF mode for Fq.Pacific/ Cc?astal Americas 1100 1st FDEOF mode for NE Indian Ocean
tween variability in sea level height and the MJO. A statisti- 760 Equatorial . N. Hemisphere {0
cal metric to quantify this connection was developed and ) Pacific 0 o6 o8 g
its spatial distribution was mapped (Section 2). =Y o < o {70

o o _
Next, three regions are identified for which the connection § O © % 28
is strong: Equatorial Pacific and Coastal Americas, North- £ 30
east Indian Ocean, the Gulf of Carpentaria. In each region, < 20l S.Hemisphere oS :19%0
the physical mechanisms relating to the MJO-sea level rela- 2 o 32 - 180
tionship are examined using a combination of statistical ' M 170
and dynamical tools (Section 3). S 096 o altimeter re oJe * 160
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MJO and Global Ocean Variability B. Local Wind Forcing: Gulf of Carpentaria

Composite of observed wind and modeled

® The first FDEOF mode ex- sea level + circulation with MJO phase 7 | . | | .
® Data: plains 349% of the variance X : 60 °E 72 °E 84 °E 96 °E 108 °E 60 °E 72 °E 84 °E 96 °E 108 °E
e MJO: Daily bivariate MJO index which consist of the first in the Gulf of Carpentaria __,,_““\::.,,,::
two principal components of the combined tropical OLR regiqn [3]. This MOd? IS - o f o0 0% TRoE 008 00 _O&Lde :mp"flﬂe poz 003 004 00 A%
and zonal wind fields after removing seasonal and inter- dominated by a standing 10°S k.- ivemrrrs
annual variability [1]. wave in the Gulf. oy
® Sea Level: Weekly values of sea level anomaly are avail- ¢ Cc?mposites of local wind Conclusions and Future Work
able globally on a 1/4° grid which we take over the with MJO phases show a 1,° k=g
period from 14 October 1992 to 12 May 2007 [2]. These strong connection [6]. , | | o ,
data are high-pass filtered with a cutoff period of 120 o . MJO provides a mechanism for enhancing predictability on in-
) : e ® Predictions using a nu- traseasonal timescales (weeks to months)
days in order to remove interannual variability. : '
merical model forced by . , o -
surface winds (NCEP Re- 14°S N— We have presented the global distribution of the statistical con-
NNV :
spectral density of data analysis) match observa- S nection between the MJO and sea level.
® The area under the curves rep- tions and are consistent We focused on three regions and physically explained the sea
72 resent the variance of the ob- with simple set-up model. ;g0 level variability and the connection with the MJO using statisti-
0 . Ser‘é?dtszat)'e‘t’ﬁl (,?/:j‘g)(a”d‘i that c ' . / cal techniques and a numerical model.
predicted by the red). ® 5tron seasonalit IN 1.67 m/s : : : :
@ Op strenSth of intrase;’sonal m ® ;ncar;(] Further exploration on the physical dynamics and MJO-driven
% f(w) ® The ratio represents the.pro- variability (strongest in response of the Northeastern Indian Ocean will be performed
Q portion of variance predicted 5 IWY J 136° 137° 138% 139° 140°E 141° 1427 using a nested global ocean circulation model.
by the MJO [3]: oreal Winter). DALHOUSIE
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