Extreme Surface and Near-Bottom Current Speeds in the northwest Atlantic

Eric Oliver, Jinyu Sheng, Keith Thompson, Jorge Urrego-Blanco

> POMSS December 8, 2011

Introduction

- The **prediction of extreme ocean currents** is of interest from both a purely scientific point of view as well as for practical applications.
- **Scientific**: What roles do the mean flow or atmospheric forcing conditions play in driving extreme surface currents? What is the vertical structure of extreme currents?
- **Practical**: when designing and insuring offshore oil platforms or subsurface pipelines it is important to have estimates of what extreme conditions might be experienced by these devices
- Aim:

Use predictions of tidal and non-tidal currents to describe and map extreme currents in the northwest Atlantic

Outline:

- 1. Data sources
- 2. Background flow
- 3. Predicting and mapping extreme currents
- 4. The importance of tides
- 5. Physical interpretations
- 6. Conclusions and future work

Data:

- Non-tidal currents: 17-year hindcast (1988-2004) of the ocean state using a general circulation model
- Tidal currents: Predictions of tidal currents at all model grid points using WebTide and 8 tidal constituents (ack. Kyoko Ohashi)
- Sea level: Long hourly records of sea level at Halifax (91 years) and Wakkanai, Japan (44 years) used to demonstrate the external analysis techniques

Hindcast Model

- 3D general circulation model: **NEMO v2.3**
- 1/4 degree horizontal resolution, 46 z-levels with thicknesses increasing from 6 m at the surface to 250 m at the bottom
- Bathymetry derived from **ETOPO2** [Smith and Sandwell, 2007]

Hindcast Model

- 3D general circulation model: **NEMO v2.3**
- 1/4 degree horizontal resolution, 46 z-levels with thicknesses increasing from 6 m at the surface to 250 m at the bottom
- Bathymetry derived from ETOPO2 [Smith and Sandwell, 2007]
- Forced by 6-hourly wind, temperature, and humidity (10 m), 12-hourly longwave and shortwave radiation, and monthly precipitation at a resolution of 2 degrees [Large and Yeager, 2004]
- Lateral BCs: (i) free slip at coast, (i) adaptive open boundary condition elsewhere (e.g., Sheng and Tang, 2003)
- Spectral nudging to climatological seasonal cycle (annual and semi-annual)
- Smoothed semi-prognostic method to correct for differences between observed and modeled density fields.

Pêches et Océans Canada

Français	Contact Us	Help	Search	Canada Site
Home	What's New	DFO National	Site Map	Media

FISHERIES AND OCEANS CANADA

Ocean and Ecosystem Science (OES)

SUBJECTS

OES Home

Climate & Variability

Marine Ecosystems

Shelf Oceanography

Monitoring

Data

Centres

Seminars

Publications

Links

Tools

Staff Directory

Contact OES

SCIENCE INFO BY:

A-Z Index

Organization

WebTide Global Data (v0.65)

Tidal Predictions

- \bullet Tidal constituent i oscillations sinusoidally with frequency ω_i , amplitude A_i and phase ϕ_i
- ullet WebTide code provides **predictions** of A_i and ϕ_i
- Tidal currents are reconstructed from:

$$u_t^{\mathrm{T}} = \sum_{i} A_i^{(u)} \cos(\omega_i t + \phi_i^{(u)})$$

$$v_t^{\mathrm{T}} = \sum_{i} A_i^{(v)} \cos(\omega_i t + \phi_i^{(v)})$$

sum over tidal constituents: M2, K1, N2, S2, O1, M3, M4, and M6

Background State

- The background state is defined as the time-mean of the hindcast current speeds
- Dominated by the Gulf Stream, the North Atlantic Current and the Labrador Current, and flow along the shelf break
- Seasonality: currents are generally stronger in fall/winter (SONDJF) than in spring/summer (MAMJJA)

Simulated Maximum Currents

- Maximum of 17-year hindcast current speeds
- Background flow, flow over shallow regions, shelf break...

Extremal Analysis

- Can calculate maximum over 17 years.... but what about longer return periods? Extremal analysis!
- ullet Consider a sequence of **N** iid random variables $\{\eta_t|t=1,2,\ldots,N\}$
- Let M_n denote the maximum of the first n in the sequence:

$$M_n = \max(\eta_1, \eta_2, \dots, \eta_n)$$

- ullet As $n o \infty$ the probability that M_n is less than or equal to x converges to one of three distribution types: Gumbel (Type I), Frechet (Type II), or Weibull (Type III)
- These distributions are conveniently summarized by the GEV dist.:

$$P_{\text{GEV}}(x \ge M_n) = \exp\left\{-\left[1 + \xi\left(\frac{x-a}{b}\right)\right]^{-\frac{1}{\xi}}\right\}$$

The Gumbel Distribution

The GEV distribution

$$P_{\text{GEV}}(x \ge M_n) = \exp\left\{-\left[1 + \xi\left(\frac{x-a}{b}\right)\right]^{-\frac{1}{\xi}}\right\}$$

reduces to the Type I (or Gumbel) distribution as $\xi o 0$

$$P_{\mathrm{I}}(x \ge M_n) = \exp\left[-\exp\left(-\frac{x-a}{b}\right)\right]$$

This distribution has often been used to model extreme values (e.g., sea level)

It lends itself well to predicting long return-period extreme events

- Use sea level from Halifax and Wakkanai to illustrate the extremal analysis method (i.e., fitting the Gumbel distribution)
- Why did I choose these stations?
 - Long (>40yrs): useful to test predictions of long return-period extremes
 - Halifax is tidally dominant while Wakkanai is tidally weak
- Consider the annual maximum sea level:

- Fit the **GEV** distribution to these annual maxima using maximum likelihood and get estimates of the GEV parameters $(a, b \text{ and } \xi)$.
- ξ is not statistically different from **zero** (5% significance level) so fit the **Gumbel distribution** instead and get estimates of a and b.

- Fit the **GEV** distribution to these annual maxima using maximum likelihood and get estimates of the GEV parameters $(a, b \text{ and } \xi)$.
- ξ is not statistically different from **zero** (5% significance level) so fit the **Gumbel distribution** instead and get estimates of a and b.
- Plot the annual maxima against the quantiles of the Gumbel distribution

- Fit the **GEV** distribution to these annual maxima using maximum likelihood and get estimates of the GEV parameters $(a, b \text{ and } \xi)$.
- ξ is not statistically different from **zero** (5% significance level) so fit the **Gumbel distribution** instead and get estimates of a and b.
- Plot the annual maxima against the quantiles of the Gumbel distribution

- Fit the **GEV** distribution to these annual maxima using maximum likelihood and get estimates of the GEV parameters (a, b and ξ).
- ξ is not statistically different from **zero** (5% significance level) so fit the **Gumbel distribution** instead and get estimates of a and b.
- Plot the annual maxima against the quantiles of the Gumbel distribution

50-Year Extreme Currents

• Use this method to predict the **50-year extreme** current speeds at each location from 17 annual maxima:

The Importance of Tides

- We have ignored the influence of **tidal currents** which can be large, and even **dominant**, in some parts of the **northwest Atlantic**.
- Write current velocity (u,v) as a sum of tidal and non-tidal components:

$$(u_t, v_t) = (u_t^{\text{NT}} + u_t^{\text{T}}, v_t^{\text{NT}} + v_t^{\text{T}})$$

 To quantify the importance of tides at each location, take the ratio of the total standard deviation of tidal currents to the total standard deviation of non-tidal currents:

$$\frac{\sigma^{\mathrm{T}}}{\sigma^{\mathrm{NT}}} = \frac{\sqrt{(\sigma_u^{\mathrm{T}})^2 + (\sigma_v^{\mathrm{T}})^2}}{\sqrt{(\sigma_u^{\mathrm{NT}})^2 + (\sigma_v^{\mathrm{NT}})^2}} \quad <>>1 \text{ tidally dominant}$$
 <<1 tidally weak

The Importance of Tides

• $\frac{\sigma^{\mathrm{T}}}{\sigma^{\mathrm{NT}}}$ mapped at each location in the northwest Atlantic

- Black contour shows ratio of 1 (tidal and non-tidal components equal)
- Tides are dominant in shallow regions, especially near the bottom.

Consider sea level at Halifax and Wakkanai and write:

$$\eta_t = \eta_t^{
m NT} + \eta_t^{
m T}$$
tide gauge residual predicted from T_TIDE

ullet Annual maximum of $\eta_t^{
m NT}$ and η_t :

- The joint probabilities method (JPM) includes the **effect of tides** to extract reliable return-periods for extreme sea levels over **long periods**
- Assumes tidal and non-tidal components are independent and convolves the probability distributions to obtain the joint probability distribution
- Here we take an equivalent Monte Carlo approach
- The non-tidal component is repeated M times and each time adding a tidal component with randomized phase:

$$\eta_t = \eta_t^{\text{NT}} + \eta_t^{\text{T}_1}, \text{ for } t = 1, 2, \dots, N$$
 $\eta_t = \eta_t^{\text{NT}} + \eta_t^{\text{T}_2}, \text{ for } t = N + 1, N + 2, \dots, 2N$
 $\eta_t = \eta_t^{\text{NT}} + \eta_t^{\text{T}_3}, \text{ for } t = 2N + 1, 2N + 2, \dots, 3N$
 \vdots
 $\eta_t = \eta_t^{\text{NT}} + \eta_t^{\text{T}_M}, \text{ for } t = (M - 1)N + 1, (M - 1)N + 2, \dots, MN$

where the η^{T_j} are tidal predictions with phase relative to η_t^{NT} randomized for each j

- The joint probabilities method (JPM) includes the **effect of tides** to extract reliable return-periods for extreme sea levels over **long periods**
- Assumes tidal and non-tidal components are independent and convolves the probability distributions to obtain the **joint probability distribution**
- Here we take an equivalent **Monte Carlo** approach

- Fit the **GEV** distribution to these annual maxima using maximum likelihood and get estimates of the GEV parameters $(a, b \text{ and } \xi)$.
- ξ is not statistically different from **zero** (5% significance level) so fit the **Gumbel distribution** instead and get estimates of a and b.
- Plot the annual maxima against the quantiles of the Gumbel distribution

- Fit the **GEV** distribution to these annual maxima using maximum likelihood and get estimates of the GEV parameters (a, b and ξ).
- ξ is not statistically different from **zero** (5% significance level) so fit the **Gumbel distribution** instead and get estimates of a and b.
- Plot the annual maxima against the quantiles of the Gumbel distribution

- Fit the **GEV** distribution to these annual maxima using maximum likelihood and get estimates of the GEV parameters (a, b and ξ).
- ξ is not statistically different from **zero** (5% significance level) so fit the **Gumbel distribution** instead and get estimates of a and b.
- Plot the annual maxima against the quantiles of the Gumbel distribution

- The joint probabilities method (JPM) includes the **effect of tides** to extract reliable return-periods for extreme sea levels over **long periods**
- Assumes tidal and non-tidal components are independent and convolves the probability distributions to obtain the joint probability distribution
- Here we take an equivalent Monte Carlo approach
- The non-tidal component is repeated M times and each time adding a tidal component with randomized phase:

$$\eta_t = \eta_t^{\text{NT}} + \eta_t^{\text{T}_1}, \text{ for } t = 1, 2, \dots, N$$
 $\eta_t = \eta_t^{\text{NT}} + \eta_t^{\text{T}_2}, \text{ for } t = N + 1, N + 2, \dots, 2N$
 $\eta_t = \eta_t^{\text{NT}} + \eta_t^{\text{T}_3}, \text{ for } t = 2N + 1, 2N + 2, \dots, 3N$
 \vdots
 $\eta_t = \eta_t^{\text{NT}} + \eta_t^{\text{T}_M}, \text{ for } t = (M - 1)N + 1, (M - 1)N + 2, \dots, MN$

where the η^{T_j} are tidal predictions with phase relative to η_t^{NT} randomized for each j

- The joint probabilities method (JPM) includes the **effect of tides** to extract reliable return-periods for extreme sea levels over **long periods**
- Assumes tidal and non-tidal components are independent and convolves the probability distributions to obtain the joint probability distribution
- Here we take an equivalent **Monte Carlo** approach
- The non-tidal component is **repeated** *M* times and each time adding a tidal component with **randomized phase**:

where the η^{T_j} are tidal predictions with phase relative to η_t^{NT} randomized for each j

50-Year Extreme Currents

• 50-year extreme current speeds at each location from 17 annual maxima and predictions of tidal currents (Monte Carlo JPM):

Selected Locations and Transects

Selected Transects

Selected Transects

Selected Depth Profiles

Selected Depth Profiles

Physical Interpretation

• The geographic patterns of extreme currents given above are interpreted in terms of **simple physical principles**:

1. variability about the background flow

2. response to surface wind forcing

3. flow along isobaths

Variability About Background Flow

• Ratio of 50-year extreme currents (non-tidal) to time-mean flow

 The wind-driven currents at the surface and near the bottom can be estimated using steady-state Ekman theory:

$$ifU_{
m e}=rac{\partial}{\partial z}\left(\murac{\partial U_{
m e}}{\partial z}
ight)$$
 vertical mixing coef.

where $U_{
m e}=u+iv$, and is subject to the **boundary conditions**

$$\mu \frac{\partial U_{\rm e}}{\partial z} = \frac{\tau^{\rm s}}{\rho_0} \quad \text{at} \quad z = 0 \quad \text{(surface)}$$

$$\mu \frac{\partial U_{\rm e}}{\partial z} = rU_{\rm e} \quad \text{at} \quad z = -H \quad \text{(bottom)}$$
 linear bottom friction coef.

• The **solution** is given by:

water depth

$$U_{\rm e} = \alpha_1 \frac{\cosh((1+i)(H+z)/\delta_{\rm E}) + \alpha_2 e^{-i\pi/4} \sinh((1+i)(H+z)/\delta_{\rm E})}{\sinh((1+i)H/\delta_{\rm E}) + \alpha_2 e^{-i\pi/4} \cosh((1+i)H/\delta_{\rm E})}$$
 (...holy crap...)

where
$$lpha_1= au^{
m s}\delta_{
m E}e^{-i\pi/4}/\sqrt{2}\mu
ho_0$$
 and $lpha_2=r\delta_{
m E}/\sqrt{2}\mu$

• The Ekman depth and vertical mixing coefficients are calculated from

$$\delta_{
m E}=0.1\sqrt{ au^{
m s}/
ho_0}/f$$
 and $\mu=\delta_{
m E}^2f/2$

[Csanady, 1982]

- Model each grid point independently using steady-state Ekman theory
- Use 50-year extreme wind-stress (stress from Large and Pond '81 formula)

- Model each grid point independently using steady-state Ekman theory
- Use 50-year extreme wind-stress (stress from Large and Pond '81 formula)

Along- and Cross-isobath Flow

- The flow may be strongly constrained by **bathymetry**
- Bathymetry is smoothed with a uniform 7x7 box and then calculate the gradient to get along- and cross-isobath vectors

Along- and Cross-isobath Flow

• Project *u* and *v* onto these vectors and calculate 50-year extreme current speeds **componentwise**

Summary and Conclusions

- We have used a three-dimensional general circulation model, along with tidal predictions, to describe and map extreme currents in the Northwest Atlantic
- Extreme currents were mapped for 17-year and 50-year return-periods and the role of tides was examined along three transects and for three depth profiles.
- Seasonal changes were also examined by performing the analysis independently on fall/winter and spring/summer.
- Finally, the extreme currents are **interpreted physically** in terms of (i) the background flow, (ii) wind-driven currents, and (iii) the steering of flow along lines of constant bathymetry.

Future Work

- Extreme currents in a projected future climate?
- Idea: run model with forcing fields that represent a possible future climate (B1?) and examine the extreme currents

- Are the extreme currents stronger? Weaker? Does the spatial pattern change?
 - this is being undertaken now