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Eric is not here because … his baby girl Coral was born quite a bit 
earlier than expected and he’s off work caring for mum and bub



  

Overview
IPCC AR5

SST trend: 0.54 
OC/century
(1880-2012)

● Global marine climate is warming

● The SW Pacific (Tasman Sea) is a 
hotspot of change

● Ocean temperature extremes, or 
marine heatwaves, are often the 
first expression of climate change

● Impacts on marine ecology are 
already being felt

● Regional ocean modelling can help 
us understand historical marine 
heatwaves:

– Physical drivers

– Variability

– Long-term trends
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ETAS Model
● We modeled the eastern Tasmania 

continental shelf using the Sparse 
Hydrodynamic Ocean Code (SHOC) 
model [Herzfeld, 2006]

● Domain: South Cape to ~Eddystone 
Point and seaward out to shelf break

● Bathymetry: Australian Geological Survey 
Organisation (AGSO) 2002 + SETAS

● Resolution: ~1.9 km resolution

● 43 z-levels in the vertical

● Surface forcing: NCEP CFSR, CFSv2
Boundary forcing: BRAN, OceanMAPS
Time period: 1993-2015, daily output

● Publication accepted in CSR

BRAN = Bluelink ReANalysis
OceanMAPS = Bluelink Ocean Modelling, Analysis, and Prediction System
CFSR = Climate Forecast System Reanalysis
CFSv2 = Climate Forecast System version 2 (operational forecast system)

Herzfeld, M. (2006), An alternative coordinate system for solving finite difference ocean models, Ocean Modelling, 14 (3-4), 174-196



  

Regional Oceanography
● East Australian Current (EAC), a quasi-steady 

western boundary current, separates from the 
coast ~33OS.

● The EAC Extension continues southward 
transport as far as Tasmania, but as an 
unsteady, eddy-rich “current”

● The Zeehan Current (ZC), part of a current 
system extending all the way to WA, runs 
southward and eastward along the west and 
south coasts of Tasmania [Cresswell 2000]

July 1991 March 1994

● Along the southeast coast 
of Tasmania, the EAC 
Extension is dominant in 
summer and the Zeehan 
Current is dominant in 
winter

http://www.marine.csiro.au/~lband/yacht_races/yyzeecur.html



  

Surface Climatology

Summertime
Dominance of
EAC extension

Wintertime
Dominance of

Zeehan Current

SST (DJF)
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SST (DJF)
Summer

SST (DJF)
Summer

SST (DJF)
Summer

SST (MAM)
Autumn

SST (JJA)
Winter

SST (SON)
Spring

SST (DJF)
Summer

SST (DJF)
Summer

SSS (DJF)
Summer

SST (DJF)
Summer

SSS (MAM)
Autumn

SSS (JJA)
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SSS (SON)
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Oliver, Herzfeld and Holbrook, accepted for publication in Cont. Shelf. Res.



  

Figure from Hobday et al. (2016) Prog. Ocean.

Marine Heatwave Definition
● A marine heatwave (MHW) definition has been proposed (Hobday et al., 2016)

● A MHW is defined to be a discrete prolonged anomalously warm water event at a particular location

– ‘anomalously warm’: MHW temperatures are above a baseline 90th percentile climatology

– ‘prolonged’: a MHW must persist for at least 5 days

– ‘discrete’: a MHW event has well-defined start and end times

Definition includes a set of metrics, 
including:

– Intensity [OC]

● both maximum and event-
mean

– Duration [days]

● Time from start to end dates

Software implementation in 
Python freely available here: 
github.com/ecjoliver/marineHeatWaves



  

ETAS Regions
● Domain was divided up into 

12 sub-regions:

– 3 deep (D) regions 
(H>200m)

– 3 shelf (S) regions 
(50m<H<200m)

● Split in the along-shelf 
direction based on 
dominating influence of 
the EAC or the ZC, or in 
their confluence

– 6 nearshore regions, 
defined by bays and 
estuaries

–  → 12 spatially averaged 
daily SST time series 
covering 1993-2015

– MHW def’n applied to each

LEGEND
 

EAC+ = East Australian Current, ZC+ = Zeehan Current, C+ = Confluence
+D = Deep (H>200m),  +S = Shelf (50m<H<200m)
NEC = Northeast coast, OBMP = Oyster Bay & Mercury Passage
FHNB = Frederick Henry and Norfolk Bays, SB = Storm Bay
DC = D’Entrecasteaux Channel, HE = Huon Estuary



  

● Event 49 (of 49) in Region 2 (EACD, region with strongest EAC influence)

● Also calculate regional SST, currents, air temp., wind averaged over event duration

Individual events
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● Event 32 (of 36) in Region 5 (ZCS, roughly the “Bruny Island bioregion”)

● Also calculate regional SST, currents, air temp., wind averaged over event duration

Individual events
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● Average across all events in Region 5 (ZCS, roughly the “Bruny Island bioregion”)

● Grey dots/arrows/± indicate statistical significance (95% confidence)

Average MHW conditions
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● Average across all events in Region 5 (ZCS, roughly the “Bruny Island bioregion”)

● Grey dots/arrows/± indicate statistical significance (95% confidence)

Average MHW conditions
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MHWs in the southeast 
tend to co-occur with:

1. Anomalously strong 
southward (EAC?) flow

2. An anticyclonic eddy 
of the SE of Tasmania

3. Warm air over the SE 
of Tasmania

4. Weak anomalous 
NE-erlies
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● Average across all events in Region 5 (ZCS, roughly the “Bruny Island bioregion”)

● Grey dots/arrows/± indicate statistical significance (95% confidence)

Average MHW conditions
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● Annual time series’ of maximum and mean intensity of MHWs

● No consistent trend in MHW intensity

Annual Timeseries



  

● Annual time series of Total MHW days i.e. “the count of MHW days in each year”

● Spatial variation in linear trends

Annual Timeseries



  

● Annual time series of Total MHW days i.e. “the count of MHW days in each year”

● Spatial variation in linear trends and variability  → (two modes?)

Annual Timeseries



  

● Principal Component Analysis of Total MHW Days (linear trend removed)

● Two modes of variability, spatially separated

– Mode 1: Interannual mode picks 2001, 2007, 2010, 2014 for northern and eastern regions

– Mode 2: Lower frequency mode (~decadal) picks up 2004-2011 low and 2012-2014 high for
                 nearshore southeastern Tasmania

Modes of Variability



  

Summary and Future Work
● ETAS model can be used to identify and characterise all MHWs off eastern Tasmania 

over 1993-2015 period, including

– MHW properties (intensity, duration, etc…)

– Concurrent oceanographic and atmospheric and conditions

● Averaging across events in all years or in a single year tells us

– 1. Typical ocean and atmosphere forcing conditions

● Clear role of the EAC Extension, possibly offshore eddies also

– 2. Long-term trends (strong increases in the southeast, “canary in the coalmine” 
for climate change?)

● MHWs getting more frequent/longer but not more intense
● Modes of variability indicate two modes with different time scales (interannual, 

decadal) acting largely independently in two different zones off eastern Tasmania

● Future work: relative role of surface and boundary forcing, interaction between off-
shore eddies and the shelf, influence of ENSO/other modes, quantifying EAC vs. ZC 
influence, individual case studies (e.g. 2015/16)

Acknowledgements: University of Tasmania Research Enhancement Grant Scheme (REGS) 
2016 and ARC Super Science Fellowship and Centre of Excellence for Climate System 
Science. Modelling help and interpretation: Mike Herzfeld, John Andrewartha, Mark Baird, 
Farhan Rizwi (CSIRO), Jessica Benthuysen (AIMS)



  

Extra Slides:
Model set-up



  

ETAS Model

BRAN = Bluelink ReANalysis
OceanMAPS = Bluelink Ocean Modelling, Analysis, and Prediction System
CFSR = Climate Forecast System Reanalysis
CFSv2 = Climate Forecast System version 2 (operational forecast system)

Herzfeld, M. (2006), An alternative coordinate system for solving finite difference ocean models, Ocean Modelling, 14 (3-4), 174-196

● We modeled the eastern Tasmania 
continental shelf using the Sparse 
Hydrodynamic Ocean Code (SHOC) 
model [Herzfeld, 2006]

● Domain: South Cape to ~Eddystone 
Point and seaward out to shelf break

● Bathymetry: Australian Geological Survey 
Organisation (AGSO) 2002 + SETAS

● Resolution: ~1.9 km resolution

● 43 z-levels in the vertical

● Surface forcing: NCEP CFSR, CFSv2
Boundary forcing: BRAN, OceanMAPS
Time period: 1993-2015, daily output

● Publication accepted in CSR



  

Forcing

● Boundary conditions used the 
recently-developed Dirichlet 
boundary condition of Herzfeld 
and Andrewartha (2012)

● Lateral boundaries were forced 
by velocities, temperature and 
salinity from Bluelink 
reanalysis and analysis fields

● Surface was forcing was 
provided from the NCEP 
Climate Forecast System 
(CFS) Reanalysis and 
Reforecast

● Coverage: 1993-2015

BRAN = Bluelink ReANalysis
OceanMAPS = Bluelink Ocean Modelling, Analysis, and Prediction System
CFSR = Climate Forecast System Reanalysis
CFSv2 = Climate Forecast System version 2 (operational forecast system)

Herzfeld, M. and J. R. Andrewartha (2012), A simple, stable 
and accurate Dirichlet open boundary condition for ocean 
model downscaling, Ocean Modelling, 43-44, 1-21



  

Model Parameters

● Time steps

– 3D: 60s (CFL: 72.8)

– 2D: 3.75s (CFL: 4.2s)
● Horizontal mixing scheme

– Smagorinsky (c=0.1) for diffusivity

– Viscosity = 370 m2/s for avg. grid size (~1.9 km)

– Scaled over domain based on changing grid size
● Vertical mixing scheme

– k-epsilon (Burchard et al. 1998)

– Background diffusivity and viscosity = 10-5 m2/s
● Bottom friction using drag law



  

River Input
● River input (flow rate and water temperature) required for Derwent River and 

Huon River

● River inputs predicted from precipitation and air temperature using a lag-
regression model and then reconstructed over 1993-2014

corr. = 0.73
L = 15 days

corr. = 0.69
L = 4 days

corr. = 0.95
L = 20 days

corr. = 0.90
L = 3 days



  

River Input
● We also require river input (flow rate and water temperature) for the two 

major rivers in SE Tasmania: Derwent River and Huon River

● We have observed records of flow (m3/s) and water temp for both rivers, 
but records very short and very recent (Nov/2009 -late/2013; shorter for 
temp) and we require these quantities over the entire 1993-2013 period

● Therefore, we modeled river flow (F ) using precipitation (P ) over the river 
catchments (from CFSR/CFSv2) as a predictor in a multiple lag-regression 
model:

And a similar model (without log-transforms) to estimate river 
temperature from local air temperature

● A two-fold cross-validation was performed to determine which value of L 
provided the best fit

● Given a satisfactory fit, we used historical precipitation and air 
temperature from CFSR/CFSv2 to reconstruct river flow and temperature 
over the entire 1993-2013 period



  

Extra Slides:
Model validation



  

d = 0.89

d = 0.91

● Model captures well sea level at Hobart and Spring Bay tide gauges

observations model

Tide Gauges

Willmott skill score (0 to 1)*

* Willmott, C.J. (1982) On the validation of models, Physical Geography, 2(2), 184-194



  

● In-situ time series

– Maria Island time series [RED] 

● Historical temperature and salinity @ 
surface and 5 depths

● Quasi-monthly, 1944 - 2008

– Craig Mundy (IMAS-FAC, UTAS), near-bottom 
temperature gauges [BLUE]

● Near-bottom temperature in 5-20 m 
water depths

● Daily, 2005 – present-ish

– 2 Tide gauges (Hobart, Spring Bay) [BLACK]

● Sea level

● Hourly and daily, 1985 - 2012

● Remotely sensed

– NOAA OI SST V2: daily, 1/4O x 1/4O resolution 
maps, 1982-2014

Validation Data



  

Maria Island Time Series
d = 0.96

d = 0.97

d = 0.98

d = 0.97

d = 0.96

d = 0.96

observations model

Total temperature

● Maria Island Time Series

● Temperature, model captures well:

– The total variability at all depths

– The seasonal cycle



  

Maria Island Time Series
d = 0.81

d = 0.82

d = 0.77

d = 0.76

d = 0.77

d = 0.76

observations model

Non-seasonal

● Maria Island Time Series

● Temperature, model captures well:

– The total variability at all depths

– The seasonal cycle

– The non-seasonal variability



  

Maria Island Time Series
d = 0.85

d = 0.87

d = 0.80

d = 0.81

d = 0.81

d = 0.80

observations model

Inter-annual

● Maria Island Time Series

● Temperature, model captures well:

– The total variability at all depths

– The seasonal cycle

– The non-seasonal variability

– The inter-annual variability



  

Maria Island Time Series
d = 0.59

d = 0.59

d = 0.57

d = 0.57

d = 0.57

d = 0.55

observations model

Total salinity

● Maria Island Time Series

● Temperature, model captures well:

– The total variability at all depths

– The seasonal cycle

– The non-seasonal variability

– The inter-annual variability

● Salinity:

– A notable bias in mean salinity 
throughout the water column

– May be related to salinity bias in 
BRAN3, transmitted through 
boundary conditions



  

Near-bottom temperatures

d = 0.94

● Near-bottom temperature loggers

● Model captures well the total variability (incl. seasonal cycle)

Total temperature

d = 0.99

d = 0.98

d = 0.94

d = 0.68

d = 0.96

d = 0.99

d = 0.98

d = 0.96

d = 0.97

d = 0.90

d = 0.92

d = 0.95

d = 0.96



  

Near-bottom temperatures

d = 0.67

● Near-bottom temperature loggers

● Model captures well the total variability (incl. seasonal cycle) and non-seasonal signal

Total temperature

d = 0.77

d = 0.83

d = 0.77

d = 0.59

d = 0.72

d = 0.84

d = 0.83

d = 0.84

d = 0.81

d = 0.74

d = 0.66

d = 0.70

d = 0.77



  

Remotely-sensed SST

● Model captures well mean SST remotely-sensed by 
AVHRR (gridded NOAA OI V2 product)

● A slight near-shore warm bias (0.5OC) in the 
northern 2/3 of the domain.

Obs.
mean
SST

Obs.
mean
SST

Mod.
mean
SST

Diff.

OCOCOC



  

Remotely-sensed SST

● Model captures well mean SST remotely-sensed by 
AVHRR (gridded NOAA OI V2 product)

● A slight near-shore warm bias (0.5OC) in the 
northern 2/3 of the domain.

● Remotely sensed SST variations are also well 
captured with skill generally >0.9

Obs.
mean
SST

Obs.
mean
SST

Mod.
mean
SST

Diff.

OCOCOC

Obs-Mod
Skill Score



  

Extra Slides:
Mean state & seasonal cycle



  

Surface Mean State

Mean SST and Circulation Mean SSS and Circulation

10 cm/s
2 m/s

10 cm/s
2 m/s



  

Subsurface Mean State

Mean T and Circulation @ 56 m Mean S and Circulation @ 105 m

10 cm/s
2 m/s

10 cm/s
2 m/s



  

Surface Climatology
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Subsurface Climatology

SST (DJF)
Summer

SST (DJF)
Summer

Temp (DJF)
Summer

SST (DJF)
Summer

Temp (MAM)
Autumn

Temp (JJA)
Winter

Temp (SON)
Spring

SST (DJF)
Summer

SST (DJF)
Summer

Temp (DJF)
Summer

SST (DJF)
Summer

Temp (MAM)
Autumn

Temp (JJA)
Winter

Temp (SON)
Spring



  

Cross-shelf Structure

● Sections across shelf 
showing temperature 
(colours) and along-shelf 
currents (contours) 

● Seasonal alternation of 
Zeehan Current / EAC 
Extension, width depth-
dependent and cross-shelf 
structure.


