

Identifying historical marine heatwaves off eastern Tasmania with a regional ocean model

Eric C. J. Oliver^{1,2}, Véronique Lago^{1,2,3}, Alistair Hobday³, Neil J. Holbrook^{1,2}, Scott Ling¹, Craig Mundy²

¹Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia ²Australian Research Council Centre of Excellence for Climate System Science ³Oceans and Atmosphere Flagship, CSIRO, Hobart, Australia

translating nature into knowledge

Eric is not here because ... his baby girl **Coral was born** quite a bit earlier than expected and he's off work caring for mum and bub

- Global marine climate is warming
- The SW Pacific (Tasman Sea) is a hotspot of change
- Ocean temperature extremes, or marine heatwaves, are often the first expression of climate change
- Impacts on marine ecology are already being felt
- Regional ocean modelling can help us understand historical marine heatwaves:
 - Physical drivers
 - Variability
 - Long-term trends

- Global marine climate is warming
- The SW Pacific (Tasman Sea) is a hotspot of change

- Global marine climate is warming
- The SW Pacific (Tasman Sea) is a hotspot of change
- Ocean temperature extremes, or marine heatwaves, are often the first expression of climate change

2015/16 Tasman Sea Marine Heatwave

- Global marine climate is warming
- The SW Pacific (Tasman Sea) is a hotspot of change
- Ocean temperature extremes, or marine heatwaves, are often the first expression of climate change
- Impacts on marine ecology are already being felt
- Regional ocean modelling can help us understand historical marine heatwaves:
 - Physical drivers
 - Variability
 - Long-term trends

Poor salmon performance

Long-term change in visible surface kelp canopy (Macrocystis pyrifera)

During 2015/16 event:

POMS in Oysters

Abalone mortality

Tropical fish!

- Global marine climate is warming
- The SW Pacific (Tasman Sea) is a hotspot of change
- Ocean temperature extremes, or marine heatwaves, are often the first expression of climate change
- Impacts on marine ecology are already being felt
- Regional ocean modelling can help us understand historical marine heatwaves:
 - Physical drivers
 - Variability
 - Long-term trends

Long-term change in visible surface kelp canopy (Macrocystis pyrifera)

During 2015/16 event:

POMS in Oysters

Abalone mortality

Tropical fish!

Poor salmon performance

ETAS Model

- We modeled the eastern Tasmania continental shelf using the Sparse Hydrodynamic Ocean Code (SHOC) model [Herzfeld, 2006]
- <u>Domain</u>: South Cape to ~Eddystone
 Point and seaward out to shelf break
- <u>Bathymetry</u>: Australian Geological Survey^{42°S}
 Organisation (AGSO) 2002 + SETAS
- <u>Resolution</u>: ~1.9 km resolution
- 43 <u>z-levels</u> in the vertical
- <u>Surface forcing:</u> NCEP CFSR, CFSv2
 <u>Boundary forcing</u>: BRAN, OceanMAPS
 <u>Time period</u>: 1993-2015, daily output
- <u>Publication</u> accepted in CSR

BRAN = Bluelink ReANalysis OceanMAPS = Bluelink Ocean Modelling, Analysis, and Prediction System CFSR = Climate Forecast System Reanalysis CFSv2 = Climate Forecast System version 2 (operational forecast system)

Herzfeld, M. (2006), An alternative coordinate system for solving finite difference ocean models, Ocean Modelling, 14 (3-4), 174-196

Regional Oceanography

- **East Australian Current (EAC)**, a quasi-steady western boundary current, separates from the coast ~33°S.
- The EAC Extension continues southward transport as far as Tasmania, but as an unsteady, eddy-rich "current"
- The **Zeehan Current (ZC)**, part of a current system extending all the way to WA, runs southward and eastward along the west and south coasts of Tasmania [Cresswell 2000]

http://www.marine.csiro.au/~lband/yacht_races/yyzeecur.html

 Along the southeast coast of Tasmania, the EAC Extension is dominant in summer and the Zeehan Current is dominant in winter

Surface Climatology

Oliver, Herzfeld and Holbrook, accepted for publication in Cont. Shelf. Res.

INAS A Marine Heatwave Definition

- A marine heatwave (MHW) definition has been proposed (Hobday et al., 2016)
- A MHW is defined to be a discrete prolonged anomalously warm water event at a particular location
 - **'anomalously warm'**: MHW temperatures are above a baseline 90th percentile climatology
 - 'prolonged': a MHW must persist for at least 5 days
 - 'discrete': a MHW event has well-defined start and end times

Definition includes a set of metrics, including:

- Intensity [°C]
 - both maximum and eventmean
- **Duration** [days]
 - Time from start to end dates

Software implementation in Python freely available here: github.com/ecjoliver/marineHeatWaves

ETAS Regions

- Domain was divided up into 12 sub-regions:
 - 3 deep (D) regions (H>200m)
 - 3 shelf (S) regions (50m<H<200m)
 - **Split** in the along-shelf direction based on dominating influence of the **EAC** or the **ZC**, or in their **confluence**
 - 6 nearshore regions, defined by bays and estuaries
 - → 12 spatially averaged
 daily SST time series
 covering 1993-2015
 - MHW def'n applied to each

LEGEND

EAC+ = East Australian Current, ZC+ = Zeehan Current, C+ = Confluence
+D = Deep (H>200m), +S = Shelf (50m<H<200m)
NEC = Northeast coast, OBMP = Oyster Bay & Mercury Passage
FHNB = Frederick Henry and Norfolk Bays, SB = Storm Bay
DC = D'Entrecasteaux Channel, HE = Huon Estuary

- Event 49 (of 49) in Region 2 (EACD, region with strongest EAC influence)
- Also calculate regional SST, currents, air temp., wind averaged over event duration

- Event 32 (of 36) in Region 5 (ZCS, roughly the "Bruny Island bioregion")
- Also calculate regional SST, currents, air temp., wind averaged over event duration

Average MHW conditions

- Average across all events in Region 5 (ZCS, roughly the "Bruny Island bioregion")
- Grey dots/arrows/± indicate statistical significance (95% confidence)

ARCTIC STUDIES

Average MHW conditions

- Average across all events in Region 5 (ZCS, roughly the "Bruny Island bioregion")
- Grey dots/arrows/± indicate statistical significance (95% confidence)

Average MHW conditions

• Grey dots/arrows/± indicate statistical significance (95% confidence)

- Annual time series' of **maximum and mean intensity** of MHWs
- No consistent trend in MHW intensity

- Annual time series of **Total MHW days** i.e. "the count of MHW days in each year"
- Spatial variation in linear trends

Annual Timeseries

- Annual time series of **Total MHW days** i.e. "the count of MHW days in each year"
- Spatial variation in linear trends and variability → (two modes?)

- Principal Component Analysis of Total MHW Days (linear trend removed)
- Two modes of variability, spatially separated
 - Mode 1: Interannual mode picks 2001, 2007, 2010, 2014 for northern and eastern regions
 - Mode 2: Lower frequency mode (~*decadal*) picks up 2004-2011 low and 2012-2014 high for nearshore southeastern Tasmania

- **ETAS** model can be used to identify and characterise all MHWs off eastern Tasmania over 1993-2015 period, including
 - MHW properties (intensity, duration, etc...)
 - Concurrent oceanographic and atmospheric and conditions
- Averaging across events in all years or in a single year tells us
 - **1.** Typical ocean and atmosphere forcing conditions
 - Clear role of the EAC Extension, possibly offshore eddies also
 - 2. Long-term trends (strong increases in the southeast, "canary in the coalmine" for climate change?)
 - MHWs getting more frequent/longer but not more intense
- Modes of variability indicate two modes with different time scales (interannual, decadal) acting largely independently in two different zones off eastern Tasmania
- **Future work**: relative role of surface and boundary forcing, interaction between offshore eddies and the shelf, influence of ENSO/other modes, quantifying EAC vs. ZC influence, individual case studies (e.g. 2015/16)

<u>Acknowledgements</u>: University of Tasmania Research Enhancement Grant Scheme (REGS) 2016 and ARC Super Science Fellowship and Centre of Excellence for Climate System Science. Modelling help and interpretation: Mike Herzfeld, John Andrewartha, Mark Baird, Farhan Rizwi (CSIRO), Jessica Benthuysen (AIMS)

Extra Slides: Model set-up

ETAS Model

- We modeled the eastern Tasmania continental shelf using the Sparse Hydrodynamic Ocean Code (SHOC) model [Herzfeld, 2006]
- <u>Domain</u>: South Cape to ~Eddystone
 Point and seaward out to shelf break
- <u>Bathymetry</u>: Australian Geological Survey^{42°S}
 Organisation (AGSO) 2002 + SETAS
- <u>Resolution</u>: ~1.9 km resolution
- 43 <u>z-levels</u> in the vertical
- <u>Surface forcing:</u> NCEP CFSR, CFSv2 <u>Boundary forcing</u>: BRAN, OceanMAPS <u>Time period</u>: 1993-2015, daily output
- <u>Publication</u> accepted in CSR

BRAN = Bluelink ReANalysis OceanMAPS = Bluelink Ocean Modelling, Analysis, and Prediction System CFSR = Climate Forecast System Reanalysis CFSv2 = Climate Forecast System version 2 (operational forecast system)

Herzfeld, M. (2006), An alternative coordinate system for solving finite difference ocean models, Ocean Modelling, 14 (3-4), 174-196

Forcing

- <u>Boundary conditions</u> used the recently-developed Dirichlet boundary condition of Herzfeld and Andrewartha (2012)
- <u>Lateral boundaries</u> were forced by velocities, temperature and salinity from **Bluelink** reanalysis and analysis fields
- <u>Surface was forcing</u> was provided from the NCEP Climate Forecast System (CFS) Reanalysis and Reforecast
- <u>Coverage</u>: 1993-2015

Herzfeld, M. and J. R. Andrewartha (2012), A simple, stable and accurate Dirichlet open boundary condition for ocean model downscaling, Ocean Modelling, 43-44, 1-21

BRAN = Bluelink ReANalysis

OceanMAPS = Bluelink Ocean Modelling, Analysis, and Prediction System CFSR = Climate Forecast System Reanalysis

CFSv2 = Climate Forecast System version 2 (operational forecast system)

- <u>Time steps</u>
 - 3D: 60s (CFL: 72.8)
 - 2D: 3.75s (CFL: 4.2s)
- Horizontal mixing scheme
 - Smagorinsky (c=0.1) for diffusivity
 - Viscosity = 370 m²/s for avg. grid size (~1.9 km)
 - Scaled over domain based on changing grid size
- <u>Vertical mixing scheme</u>
 - k-epsilon (Burchard et al. 1998)
 - Background diffusivity and viscosity = 10^{-5} m²/s
- <u>Bottom friction using drag law</u>

River Input

- River input (<u>flow rate and water temperature</u>) required for Derwent River and Huon River
- River inputs predicted from precipitation and air temperature using a lagregression model and then reconstructed over 1993-2014

River Input

- We also require river input (<u>flow rate and water temperature</u>) for the two major rivers in SE Tasmania: Derwent River and Huon River
- We have <u>observed records</u> of flow (m³/s) and water temp for both rivers, but records very short and very recent (Nov/2009 -late/2013; shorter for temp) and we require these quantities over the entire 1993-2013 period
- Therefore, we <u>modeled river flow</u> (F) using precipitation (P) over the river catchments (from CFSR/CFSv2) as a predictor in a multiple lag-regression model:

$$\log(F_t) = \alpha + \sum_{l=0}^{L} \beta_l \log(P_{t-l})$$

And a similar model (without log-transforms) to estimate river temperature from local air temperature

- A two-fold cross-validation was performed to determine which value of *L* provided the best fit
- Given a satisfactory fit, we used historical precipitation and air temperature from CFSR/CFSv2 to <u>reconstruct river flow and temperature</u> over the entire 1993-2013 period

Extra Slides: Model validation

Tide Gauges

• Model captures well sea level at Hobart and Spring Bay tide gauges

* Willmott, C.J. (1982) On the validation of models, *Physical Geography*, 2(2), 184-194

Validation Data

- <u>In-situ time series</u>
 - Maria Island time series [RED]
 - Historical temperature and salinity @ surface and 5 depths
 - Quasi-monthly, 1944 2008
 - Craig Mundy (IMAS-FAC, UTAS), near-bottom temperature gauges [BLUE]
 - Near-bottom temperature in 5-20 m water depths
 - Daily, 2005 present-ish
 - 2 Tide gauges (Hobart, Spring Bay) [BLACK]
 - Sea level
 - Hourly and daily, 1985 2012
- Remotely sensed
 - NOAA OI SST V2: daily, 1/4° x 1/4° resolution maps, 1982-2014

- Maria Island Time Series
- Temperature, model captures well:
 - The total variability at all depths

model

The seasonal cycle

observations

- Maria Island Time Series
- Temperature, model captures well:
 - The total variability at all depths
 - The seasonal cycle
 - The non-seasonal variability

observations —— model

- Maria Island Time Series
- Temperature, model captures well:
 - The total variability at all depths

model

The seasonal cycle

observations -

- The non-seasonal variability
- The inter-annual variability

• Maria Island Time Series

- Temperature, model captures well:
 - The total variability at all depths
 - The seasonal cycle
 - The non-seasonal variability
 - The inter-annual variability
- Salinity:
 - A notable bias in mean salinity throughout the water column
 - May be related to salinity bias in BRAN3, transmitted through boundary conditions

observations —— model

Near-bottom temperatures FOR MARINE AND NTARCTIC STUDIES

d = 0.90

d = 0.92

d = 0.95

 $d^{2012} = 0.96^{2013}$

2012

2012

2011

Swansea

2010

2010

2011

2010

2011

Iron Pot

2010

Near-bottom temperature loggers

Model captures well the total variability (incl. seasonal cycle) ٠

Total temperature

INAS IN Near-bottom temperatures

Near-bottom temperature loggers

• Model captures well the total variability (incl. seasonal cycle) and non-seasonal signal

Remotely-sensed SST

- Model captures well mean SST remotely-sensed by AVHRR (gridded NOAA OI V2 product)
- A slight near-shore warm bias (0.5°C) in the northern 2/3 of the domain.

Remotely-sensed SST

0.75

30

147⁰E

30

148⁰E

30'

149⁰E

Extra Slides: Mean state & seasonal cycle

Surface Climatology

ARCTIC STUDIES

Cross-shelf Structure

 Sections across shelf showing temperature (colours) and along-shelf currents (contours)

ARCTIC STUDIES

 Seasonal alternation of Zeehan Current / EAC Extension, width depthdependent and cross-shelf structure.

