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Abstract. A system consisting of two miscible fluids in a microchannel under laminar

flow has been examined with theoretical techniques and simulated using Molecular

Dynamics (MD). We have applied the theory of diffusion to predict the displacement

of particles as they diffuse across a channel perpendicular to a Poiseuille flow. Using

MD simulations, we have studied the presence of obstacles, including a prism-shaped

arrangement of posts, in the flow path and shown that (i) they increase the level of

partial mixing in the vicinity of the obstacles, and (ii) they do not shorten length of

channel required to obtain complete mixing. The presence of the obstacles flatten the

flow profile within a certain range of the obstacles and impart a cross-channel velocity

component to the flow such that it follows a sinuous path through the channel. From

our theoretical predictions and numerical simulations, we show that a flattened flow

profile results in increased levels of partial mixing when compared to a system lacking

obstacles. However, the presence of obstacles does not reduce the channel length

required to achieve full mixing due to the restrictions of laminar flow. Furthermore,

cross-channel flow induced by the obstacles has the effect of increasing contact between

the fluids but the mixing increase is negligible.

PACS numbers: 47.11.Mn,47.61.Ne
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1. Introduction

The essential problem with efficient mixing on small scales is that, in general, flow is

laminar and thus the instabilities produced by turbulent flow that accelerate the fluid

mixing on macroscopic scales (such as the act of stirring cream into coffee) are no longer

present. In the absence of these mixing accelerants, diffusion is the only natural drive to

mixing. Laboratories would like to develop methods to enhance the effects of diffusion

or introduce other phenomena into the system in order to facilitate efficient mixing at

low Reynolds numbers where viscous effects dominate over inertial ones.

This problem has been well studied recently and there have been many successful

attempts which involve processes such as vortices induced by curved flow [1],

electroosmosis [2], electro-hydrodynamics [3], chemically and geometrically patterned

channel walls [4, 5, 6], hydrodynamic focussing (nanojets) [7], and chaos [8]. Reviews

of work in this field can be found in Refs. [9, 10, 11].

Several studies have investigated how the presence of immobile obstacles in a

microchannel might enhance the mixing level at the output. Wang et al. show that

certain obstacle configurations modify the fluid flow laterally and force one species into

the other in a way that may promotemixing [12, 13]. It has also been shown that

diamond-shaped obstacles [14] and a collection of obstacles in V-shaped configuration

[15, 16] enhance mixing in low Reynolds number flows. It has been noted in most of

these studies that the presence of obstacles induces a cross-channel component to the

flow which may increase mixing efficiency [12, 13, 17, 15, 16].

We will demonstrate, using Molecular Dynamics simulations, that the presence of

obstacles enhances partial mixing over short distances but does not decrease the channel

length required for complete mixing. Obstacles enhance partial mixing primarily by

distorting the flow profile and increasing the contact area between the two fluid species.

However, in laminar flows the distance required to attain complete mixing is controlled

by the mean flow rate. This paper is organized in three main segments. First, we

will present the fluidic system along with the relevant hydrodynamic theory outlining

laminar flow, the behaviour of diffusion in channels, and the concept of mixing in channel

flows. Then, we will review the simulation method and how it is applied to our system.

Following that, we present the results in three sections. First, we explore the laminar

hydrodynamic and diffusive properties of the system. Next, we examine the mixing

properties in channels without obstacles. Finally, we will introduce obstacles into the

system and show that their presence affects the mixing characteristics of the system by

lengthening the mixing interface as well as deforming the flow profile. It is this last

effect that will be the focus of our claim that, where complete mixing is required, simple

arrangements of obstacles do not increase mixing efficiency in microchannels.
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Figure 1. Schematic of the fluid-channel system. The two miscible fluid species (A

and B) are separated along the midplane of the channel and travel through the channel

with a Poiseuille flow profile. The fluids are allowed to mix via diffusion which produces

a mixing front between the mixed and unmixed fluid. Also shown here is an example

of the finite bead structure of the channel walls and fluid used in our simulations.

2. System and Theory

Consider a fluidic system such as the one shown in Fig. 1 consisting of two miscible

fluid species (labelled A and B) confined between two parallel plates spaced a distance

W apart. We are examining only a section of length L in the x direction. The fluid

is moving in the x direction with a Poiseuille (parabolic) flow profile. The channel

dimensions are on the order of micrometres and the flow is laminar.

2.1. Laminar Flow

The Reynolds number determines the basic hydrodynamic behaviour when considering

fluid flow confined in channels and can be expressed as

Re ≡ ρ0ūW

η
, (1)

where ū is the average fluid velocity (the flow rate) over the channel cross-section of

width W , η is the shear viscosity (or dynamic viscosity, sometimes denoted by µ) and

ρ0 is the average fluid density. The transition from laminar to turbulent flow can be

indicated by the Reynolds number, laminar flow ocurring for Re . 103 and turbulent

flow for Re & 103. For hydrodynamic flow in channels whose cross section is on the order

of or less than micrometers, then for reasonable ū the system is firmly rooted in the

realm of laminar flow. In the laminar flow regime, the flow is smooth and predictable

and lacks any of the instabilities and rich eddy structure that is found in turbulent flow.

The dynamics are dominated by the viscosity of the system rather than by inertial forces

and the dynamics of all flows are reversible (if we neglect diffusion, which is the topic

of the next section). Because of this reversibility it is not obvious how a finite forest of
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obstacles can actually increase mixing. This is the topic of this investigation.

Consider a fluid confined between two plates parallel to the xz-plane with the origin

of the coordinate system midway between them. For low Reynolds numbers, the flow

profile generated by a pressure difference, p′, along the x-direction in a channel is of the

Poiseuille type and has the quadratic form

u(y) = u0

(
1− y2

y2
0

)
, (2)

where u0 = −y2
0p
′/2η and ±y0 are the positions of the two channel walls. Note that

we are assuming no-slip at the boundaries, which will be sufficient for our studies (see

Refs. [18, 19, 20] for explorations of slip length in Molecular Dynamics simulations of

laminar flow). In practice, Poiseuille flow is usually generated by a pressure gradient

along the channel but it can also be generated by a gravity-like acceleration g in which

case we can make the substitution −p′ = ρ0g in Equation 2.

2.2. Diffusion

Since turbulence does not exist in a laminar flow environment, we cannot rely on it to

mix the fluids as we would in a turbulent system. Therefore, the drive behind fluid

mixing is the relatively slow diffusion of one fluid into the other at their interface. The

Peclet number, Pe, is a measure of the relative influences of advection and diffusion for

flows in channels and is defined as

Pe ≡ ūy0

D
, (3)

where D is the diffusion coefficient. We use the length scale y0 = W/2 (half the cross-

sectional width) since it is the largest distance in our system that particles need to

diffuse in order to initiate mixing. Large Pe implies that fluid motion is dominated by

advection (flow) rather than diffusion. When Pe is large, it is difficult to mix fluids by

diffusion alone as a long channel (i.e., much longer than its width) is then required to

allow diffusion to take its course.

The average time, 〈tD〉, needed for molecular diffusion to transport fluid a distance

d in one dimension is given by the Einstein relation

〈tD〉 =
d2

2D
. (4)

If the fluid is being transported along the channel at a constant velocity u then we can

deduce the average distance 〈l〉 the fluid travels along the channel in the flow direction

while diffusing a distance d in the perpendicular direction:

〈l〉 = u 〈tD〉 =
ud2

2D
. (5)

Given channel geometry and flow speed and using Equations 4 and 5 we can calculate

both the time required 〈tD〉 and the total distance travelled 〈l〉 along the channel for

particles diffusing a distance d from the channel centre. The choice of the initial position

is important since the result shown above will be dependent on the velocity which itself
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is position dependent. We choose the original position to be the centre since, as we

will see later, the mixing interface originates as particles in the channel centre diffuse

towards the wall). Let L0 be the channel length where the particles have diffused the

full width required: y0. From Equations 5 and 3 this length is given by L0 = y0Pe/2.

It should be noted that the above expression relating 〈l〉 and d (Equation 5) only

applies for a constant velocity profile (i.e., u(y) = u ≡ const.). We will be examining

diffusion in a channel where the flow is not flat but spatially dependent, namely a

Poiseuille flow profile. The equivalent expression to Equation 5 becomes

〈l〉 =
u0d

2

2D

(
1− 1

2

d2

y2
0

)
. (6)

The first term is identical to Equation 5 and the second term involves a correction due

to the quadratic nature of the flow profile. The derivation of this expression can be

found in Appendix A and a graphic representation of Equations 5 and 6 can be found

in Fig. 2. The phenomena presented in this figure will be discussed in the following

section. We will refer to curves showing the average length along the channel a particle

has travelled, 〈l〉, while diffusing a distance d (such as those deduced from Equations

such as Equation 5 and Equation 6) as flow-diffusion profiles. Note that this entire

discussion assumes that the diffusion coefficient D is independent of spatial position

and identical for the two fluids. In reality, due to the presence of the rigid walls, there

may be some spatial dependence [21, 22] but we will assume its effect to be negligible.

2.3. Mixing

Diffusion is inherently linked to mixing in laminar flow systems of multiple fluid species.

As mentioned above, due to the lack of instabilities caused by turbulence, diffusion is

the only mechanism that can mix fluids in simple laminar channel flows. As fluids of

different species diffuse into each other we can qualitatively describe the level of mixing

to have increased, until the point where both concentrations are equal and we would

consider the fluid to be fully mixed. Later we will present a quantitative mixing function

to be used with our numerical simulations, but for the following discussion consider a

hypothetical measure (or disorder parameter) that is maximized when the fluids are fully

mixed and zero when they are completely separated. If we examine the flow-diffusion

profiles due to various flow profiles we can think of the curves as roughly corresponding

to the position of the mixing front. By mixing front we refer to the division between

unmixed fluid and mixed fluid (the region containing the latter widens as the fluids flow

along the channel). In practice this front is not clearly defined since diffusion is a process

which results in a wide distribution of particle positions; however this expression would

correspond to the mean position of the front (or some inflection point).

Now, consider different flow profiles, u(y), but with the same flow rate, ū =∫ y0
−y0 u(y)dy/2y0. Equations 5 and 6 predict that if the average flow rate is the same

then a particle diffusing from the centre of the channel (where we are considering the

initial interface between different fluid species to be) will travel the same length down
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Figure 2. The flow-diffusion profile for various flows. The results are shown for

both a flat profile, u(y) = u0/2, and a Poiseuille profile, u(y) = u0(1 − y2/y20), as

well as a general “flattened” Poiseuille flow profile lying somewhere in between. For

flow profiles with the same average velocity, ū, particles will on average take the same

channel length, L0, to reach the channel wall, y0, by diffusion.

the channel, L0 = y0Pe/2, when it reaches the position of the wall, y0. This is intuitive

as the time taken to diffuse that distance is always the same (simply Einstein’s relation

〈tD〉 = y2
0/2D) and so if the average velocity felt is always the same then the average

distance travelled will be the same (there is no coupling between the motion in x and

y). As a demonstration we have shown a hypothetical “flattened” Poiseuille flow profile

(with the same average flow rate), whose d-vs-〈l〉 curve should lie somewhere between

the flat profile and the pure Poiseuille profile (as seen in Fig. 2). (A numerical method of

determining this curve from the flow profile data is outlined in Appendix B.) Therefore,

as long as the channel length, L, is greater than L0 then the measured level of mixing at

the channel outlet will always be 100%. However, if the channel length is less than L0

then the measured level of partial mixing will depend on the shape of the flow profile.

A flat profile will yield a higher level of mixing than a Poiseuille profile. Similarly, so

will a flattened Poiseuille profile.

We will show that the primary effect produced by placing obstacles in the flow path,

which is what was studied in Refs. [12, 13], is simply to flatten its quadratic flow profile so

that the level of partial mixing observed at some measuring length, LM < L0, is greater

than that observed by a perfectly quadratic flow profile. However, as demonstrated

above, if LM ≥ L0 then the measured level of mixing for any profile will be 100% in any

case. In other words, the obstacles merely change the transient behaviour.
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3. Simulation and Measurement Method

In order to substantiate our claim in Section 2.3 we will explore the mixing properties of

channels with and without obstacles by explicit simulation of the fluid and solid walls.

We consider the size of the system presented in Section 2 to be very large in the z

direction. All forces and geometries will be isotropic in the z-direction and so we will

make the approximation that the flow in any two-dimensional slice of the system parallel

to the xy-plane will be identical. Therefore, we will confine our simulations to two

dimensions which will both retain the essential physics as well as increase computational

efficiency.

3.1. Molecular Dynamics

We model the system described in Section 2 as an ensemble of interacting beads and

simulate their dynamics using the Molecular Dynamics (MD) computational algorithm.

The beads obey the Lennard-Jones (LJ) potential that acts between a pair of particles

i and j

Uij =

 4ε

[(
σ
rij

)12

− cij
(
σ
rij

)6
]

+ ε0 if rij ≤ rc

0 if rij > rc

(7)

where ε and σ are constants that set the energy and length scales for a particular

substance. All particles in the system interact with the LJ potential except for wall-

wall interactions since the positions of the wall particles are fixed (their interactions

with each other are ignored). For efficient numerical operation, we do not consider the

pure LJ potential up to r =∞ but instead neglect long range interactions. We do this

by cutting it off at a certain radius rc so that the potential is zero for r > rc and a

constant ε0 = −U(rc) is added to ensure continuity [23]. We choose rc = 2.5 σ which

retains the repulsive core and most of the attractive tail. The average density of the

fluid is ρ0 = 0.8/σ2 and the thermal energy is kBT = 1 ε and all particles have mass m.

The Molecular Dynamics algorithm consists of integrating Newton’s equations of

motion for each particle in the system using finite difference methods. Methods such

as linked neighbour and cell lists are used to facilitate the efficient operation of the

algorithm [23]. It should be noted that in order to keep the temperature of the system

constant a thermostat is employed and since the system we are studying is not in

equilibrium we must choose a thermostat that can be applied to nonequilibrium MD.

The thermostat used here is based on the method of dissipative particle dynamics (DPD)

which conserves momentum and reproduces hydrodynamic interactions [24]. Care has

been taken to ensure that known time step effects when using DPD are avoided [25].

As mentioned earlier, we have chosen to work in two dimensions (xy) for the

simplicity of the algorithm. This can be justified as follows: if the channel size in the

dimension perpendicular to the two dimensions considered (z) is much larger than its

width in y then any xy slice we take should be identical. Therefore, by simulating this
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slice independently we can recreate its flow characteristics. The channel we consider

is rectangular in xy with walls containing the fluid along y and periodic boundary

conditions along x. Three system lengths were used: L = 55.9 σ (for a small test system

demonstrating laminar flow), L = 447.21 σ (for mixing in channels with obstacles)

and L = 559.02 σ (for mixing in channels without obstacles) and the width is always

W = 55.9 σ with the wall particles taking up a width w = 2.24σ (two particle layers)

on each side. The total number of particles in these three systems are N = 2500,

N = 20000 and N = 25000, respectively.

3.2. Mixing Value: A Per-particle Quantification of the Mixing Level

Mixing is a highly qualitative state; qualitatively fluids can be mixed or unmixed but

mixing does not have a rigid scientific definition. In the past, measures have been

proposed to quantify the level of mixing between two fluids including those based on

concentration in slices across the channel [12, 13] or entropy [26]. We propose an

expression that will quantify the local level of mixing associated with each particle

in a system of binary fluids. From there, one is free to average in many different ways

in order to represent the mixing of the bulk fluid.

Our model is composed of discrete particles that have a type associated with them

which defines which fluid species that particle belongs to. The method we have employed

is to associate a level of mixing with each individual particle based on its surrounding

environment. Consider all the particles contained within a radius rmix about a given

particle (particle i) ignoring the centre particle. In a binary mixture, we will have NLi

particles of the same type as particle i and NUi
particles of different type from particle i

such that Ni = NLi
+NUi

is the total number of particles contained in rmix. We propose,

as the expression to quantify the local level of mixing, Mi, associated with particle i,

the product of NUi
/Ni and NLi

/Ni (both of which run from 0 to 1) and normalized to

equal 1 at NUi
= NLi

= Ni/2:

Mi = 4
NUi

NLi

N2
i

, (8)

So, M = 1 when the fluids are perfectly mixed and M = 0 when they are completely

unmixed. This produces a function that is quadratic in NUi
(or NLi

since they sum to

the constant Ni) with zeros at NUi
= 0 (NLi

= Ni) and NUi
= Ni (NLi

= 0) and a value

of 1 at NUi
= NLi

= N/2. Note that we ignore the centre particle in these calculations,

otherwise there is an error on Mi of the order N−2
i . Clearly, Mi is a function of rmix

(since the number of particles will be a function of rmix) and so it is necessary to choose

rmix larger than the average interparticle spacing but smaller than the bulk features of

the system such as fluid spacing or obstacle sizes. If rmix is too small then we will have

poor statistics but if it is too large it will no longer be local.

The utility of the expression presented above can be illustrated with a few test cases.

Consider a particle i surrounded by particles of the same type. We would consider this

particle to be completely unmixed and thus the expression gives us Mi = 0. Next,
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Figure 3. Velocity data taken as averages along 50 slices in the x direction (circular

data points) and a fit to the data using Equation 2 (solid black curve) with y0 and

η as free parameters yielding y0 = 24.83 ± 0.20 σ and η = 12.20 ± 0.10
√
mε/σ. The

force on each particle is mg = 0.005 mσ/τ2. Also shown, with arbitrary units, is

the particle distribution profile demonstrating the positions of the fixed wall particles

(black vertical lines) and the fluid layering near the walls (grey oscillating curve which

levels off in the centre, demonstrating bulk properties there). We can see that the first

layer of liquid is essentially immobile.

consider a case less obvious than the first, that the same particle is surrounded by

particles all of a different type. The fluid is definitely not mixed as both species are not

present in equal amounts. Therefore, our mixing function also gives a value of Mi = 0.

Finally, consider half the particles surrounding particle i to be of like type and the other

half to be of unlike type. Conceptually, this particle would be considered to be fully

mixed and appropriately we obtain a mixing value of Mi = 1. The function Mi(rmix)

will blur the mixing level at an interface over a distance rmix; for example, particles

within a distance rmix of the interface between two segregated fluids will have M > 0

when they are clearly not mixed but this is a minor point.

4. Results I: Hydrodynamic Properties

In order to generate a Poiseuille flow we have applied a constant force on each fluid

particle in the system. In a similar fashion to a pressure difference, and due to friction

at the walls, this method has been shown to reproduce the desired Poiseuille flow

characteristics in MD simulations [27]. For a basic channel with straight, molecularly

smooth walls, no obstacles (so L = 559.02 σ), an external acceleration of g = 0.005 σ/τ 2
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Figure 4. Streamlines demonstrating laminar flow around post of radius R = 3.77 σ.

Flow is generated by applying a force of mg = 0.025 mσ/τ2 to fluid particles in a

W = 55.9 σ by L = 55.9 σ two-dimensional channel. Streamlines were found by taking

contours of the streamfunction ψ which itself was found by integrating the velocity

field according to the definitions ∂ψ/∂y = u and ∂ψ/∂x = −v where u and v are the

x and y components, respectively, of the fluid velocity. The simulation was run for

4× 107 steps (t = 4× 105 τ) in order to obtain smooth data.

or force mg applied to each fluid particle, and periodic boundary conditions along x we

recover a nearly quadratic flow profile (see Fig. 3). Using Equation 2 we can perform

a fit to the flow profile data and recover the effective position of the wall (the true

position is indeterminate due to the soft nature of our MD beads) y0 = 24.83 ± 0.20 σ

and the shear viscosity η = 12.20 ± 0.10
√
mε/σ. We have defined the position of the

wall as the position of no fluid slip (i.e., u(y0) = 0). Furthermore, with the viscosity we

can determine the Reynolds number from Equation 1. Using h = 2y0 and ū ' 0.1 σ/τ

(which is appropriate for what we observe, see Fig. 3) we can calculate the Reynolds

number for our flow to be approximately Re ' 2.84, which is clearly in the laminar

flow regime. This demonstrates that our MD fluid flow simulations are certainly in the

laminar regime, and as such they are relevant for microfluidics.

As a further demonstration of laminar flow, we have performed simulations of

fluid flow around a single obstacle. These simulations were on a system of dimensions

W = 55.9 σ by L = 55.9 σ and with an applied force of mg = 0.025 mσ/τ 2 (which is

larger than that used above to calculate Re and so this system will have a slightly larger
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Reynolds number). A circular post of radius R = 3.77 σ (consisting of 32 LJ beads fixed

in position) is placed in the centre of the channel and the fluid is forced to flow past

the post. According to laminar flow, we should see smooth streamlines around the post

as well as identical streamlines at the input and output, indicating that the presence of

the post has not disrupted the flow before and after the post (this has been observed

previously in 2D MD simulations [28]). We observe exactly this in Fig. 4 where the

streamlines are presented (calculated from the time-averaged velocity field). It is due

to this property that we believe posts will not enhance mixing in channels.

From a simulation of a system similar to the one above but lacking the solid

post the diffusion coefficient D was calculated from the Einstein expression [23]. For

diffusion in one dimension across the channel in the y-direction the diffusion coefficient is

Dy = (3.25± 0.14)× 10−2 σ
√
ε/m. From this value we can calculate the Peclet number

from Equation 3 (again, using ū ' 0.1 σ/τ and y0 = 24.83 ± 0.20 σ) which yields

Pe ' 75 � 1. This clearly demonstrates that advection is dominant over diffusion in

this system and mixing will be slow.

5. Results II: Purely Diffusive Mixing With No Obstacles

As a benchmark result, we ran simulations of two physically identical fluid types

(A and B) in a channel with a Poiseuille flow profile (generated by a uniform force

mg = 0.005 mσ/τ 2 in the x direction). The fluids are initially separated along the

midplane of the channel (type A for y > 0 and type B for y < 0) and they are bounded

by walls at y = ±y0. We have applied periodic boundary conditions in the x direction

with the modification that particles flowing past the boundary on the right side have

their type (A or B) reset so that the two fluids are always entering the channel in a

completely unmixed state (again, type A for y > 0 and type B for y < 0). The channel

length is L = 559.02 σ and we have y0 = 24.83± 0.20 σ.

The flow is purely laminar and thus, as described in Section 2.1, the only drive

for mixing is the diffusion of one fluid species into the other. We calculate the mixing

associated with each particle using Equation 8 (with rmix = 6 σ, a value we found to

strike a balance between computational efficiency and good statistical averaging) and

then take averages of rmix in (i) small xy bins and (ii) slices along x. These data can be

seen in Fig. 5. We can see that as the fluid travels further down the channel its mixing

level rises (Fig. 5a) as the two fluid species diffuse into each other. Furthermore, we

can visualize the mixing front in two dimensions in Fig. 5b which exhibits an initial
√
x

form and then displays an inflection point about midway along the channel, the same

qualitative structure as the flow-diffusion profile for Poiseuille flow given by Equation 6.

This is expected since the mixing front should roughly correspond to the average position

of the diffusing particles in Poiseuille flow. Clearly, with our channel we do not achieve

100% mixing but we can use the Peclet number in order to obtain an estimate on the

length of channel L0 required in order to obtain full mixing, L0 = Pe · y0/2 ' 925 σ,

which is nearly twice the channel length we use. The question that we explore in the
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Figure 5. Mixing levels (using rmix = 6 σ) for a channel with no obstacles and

smooth Poiseuille flow. (a) demonstrates average mixing level along the length of the

channel in one hundred 5.59σ-wide slices. We observe the mixing level increase as the

fluids flow along the channel and diffuse into each other. Note that M 6= 0 at x = 0

since there will be a finite level of mixing measured due to the contact between fluids

at the initial interface (rmix is finite). (b) demonstrates the mixing level averaged

in 5.59σ-a-side square bins in xy and over time once the system has reached steady

state. White represents M < 0.5 and black represents M > 0.68 with a grayscale

continuum in between (therefore, white does not represent unmixed nor does black

represent mixed). The values are chosen so that we can best observe the qualitative

inflected shape of the mixing front which matches what is expected from the flow-

diffusion profile for Poiseuille flow (see Fig. 2). The data contributing to this image

has been modified by applying a Gaussian blur.

rest of this article is whether the addition of obstacles in this channel can increase the

level of mixing.

6. Results III: Mixing With Obstacles

6.1. Prism-like Obstacle Configurations

Now, we take the previously mentioned system and place arrays of obstacles in the

channel to explore their effect on the mixing efficiency of the channel. We have

considered prism-like obstacle configurations (similar to those used by Wang et al.

[12, 13]) as well as properly chosen deconstructions of these configurations in order to

test the effect of prisms versus simplified obstacle placement. The exact configurations
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Figure 6. Schematics of the 5 obstacle configurations used in the MD simulations.

Configuration 0 is used as the base and has two prism like structures inverted from

each other. The centre of the first prism is a distance d1 = 67.08 σ from the channel

inlet and the centre of the second prism is a distance d2 = 100.62 σ from the centre of

the first. The obstacles are placed dx = 16.77 σ apart along x and dy = 15.09 σ apart

along y and have a radius of R = 3.77 σ. Each configuration following configuration

0 is formed by succesively removing some obstacles: First, the second prism. Then,

obstacles from each end of the prism (so that configuration 3 is symmetric in the y

direction). The final configuration is produced by reducing the radius of the circular

obstacles in configuration 1 (radius is now R = 2.26 σ). Also shown here is the exact

Lennard-Jones bead configuration for each obstacle size.

used as well as their dimensions can be found in Fig. 6. Due to the reversibility of

laminar flows the streamlines will be identical at the inlet and outlet of the channel

whether or not obstacles are present (for a good discussion on this point, see the recent

microfluidics book by Tabeling [29]). This concept was mentioned in the discussion of

the Reynolds number in Section 2.1 and demonstrated for a single post in Section 4.

The flow obstruction by the presence of obstacles has two effects: (i), a local disruption

(i.e., flattening) of the flow profile that decays back into a parabolic profile eventually

well past the obstacles, and (ii), increasing the length of the interfacial boundary per

unit length along x by inducing a weak and localized lateral component to the flow.
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Figure 7. Mixing levels for all channels simulated (“Poiseuille flow” refers to the

channel with no obstacles). The inset shows the raw data for each simulation averaged

in 5.59σ-wide slices along x. The grey area shows the region affected by the presence

of the obstacles (region defined as x ∈ [33.54, 201.24] σ, the maximum extent of the

obstacles in configuration 0). The main figure compensates for different flow rates

and the data for the obstacle-laden channels are scaled as if they have the same flow

rate as the pure diffusion case. This is done for each case by the transformation:

x∗ = x · (ū0/ū) where ū is the average flow rate for the simulation in question and ū0
is the average flow rate for the Poiseuille case. The inset shows the data without this

transformation.

6.2. Mixing Levels

We performed simulations on channels similar to those in Section 5 except with a shorter

length (L = 447.21 σ) and a stronger force (mg = 0.01 mσ/τ 2). As before, fluids

enter the channel separated and diffuse as they flow down the channel except that now

there is an additional contribution to the flow characteristics due to the presence of

the obstacles. Average mixing values along the length of the channel were computed

and are presented in Fig. 7 along with the data for the channel with no obstacles (pure

diffusion). The inset shows the raw data which demonstrates larger mixing for channels

with obstacles. However, each simulation does not have the same flow rate since we

are keeping g constant, not ū, and different obstacle configurations and numbers will

result in different flow rates. In general, a stronger acceleration is needed as the number

of obstacles increases since they will pose as barriers to the fluid flow. In fact, some

flow rates are over 50% smaller than the pure Poiseuille case due to the hydrodynamic

resistance created by the obstacles.
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Figure 8. Inset: The difference between the mixing curves for the obstacle-laden

channels and the purely Poiseuille flow channel. We can see a maximum of about

10%-20% difference in partial mixing about x∗ ∈ [200, 300] σ for obstacle configuration

1. For large x∗ the difference decreases and they converge when 〈M〉 ' 1 for all cases.

Main plot: convergence to full mixing for large x∗ using the transformation 1/
√
x∗.

We see the convergence to 〈M〉 ' 0.98 for obstacle configuration 0 (the thin dashed

line shows 〈M〉 = 0.98)

From Equation A.4 (or Equation 6), the average length along the channel a particle

travels while diffusing a certain distance (or equivalently, achieving a certain level of

mixing) is proportional to the average velocity: 〈l〉 ∝ ū; therefore we scale the mixing

data so that each obstacle-laden channel has the same flow rate as the channel with no

obstacles (in absence of turbulence, such a rescaling can be done without changing the

physics). This normalization operates as follows: x∗ = x · (ū0/ū), where ū is the average

velocity in an obstacle laden channel and ū0 is the average velocity in the Poiseuille

case. We observe that the channels with obstacles have a higher level of mixing for

about x∗ > 150 σ which is after the obstacles will begin affecting the mixing (Fig. 7).

However, since this difference decreases after about x∗ = 350 σ (the curves converge)

the enhanced level of mixing is merely due to the fact that we are measuring before the

natural point of 100% mixing (i.e., LM < L0).

This theory suggests that the distance required to achieve full mixing is unchanged

in the presence of our obstacle configurations. All that is being accomplished is a

transient deformation of the flow profile and under such conditions the mixing curves

still converge for 〈M〉 → 1. Our channels are too short to observe total convergence

(since Pe > L/2y0) but there is an onset of convergence for large x∗ especially if we
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look at the normalized difference between the mixing curves in the obstacle-laden cases

(〈M(x∗)〉) and the Poiseuille case (〈M0(x∗)〉):

∆Mnorm =
∆M

M̄
=
〈M〉 − 〈M0〉

1
2

(〈M〉+ 〈M0〉)
. (9)

This can be seen in the inset to Fig. 8 for each of the obstacle configurations.

The mixing curves should all converge at the same point and that should correspond

to when they reach 〈M〉 = 1. The mixing level seems to saturate around 〈M〉 = 0.98

rather than 1.0 which we believe is due to the presence of the walls and the finite nature

of rmix. To examine this closer we transform the position by taking ξ = 1/
√
x∗. This

will allow us to extrapolate for large x∗ (the square root is used to filter the first order

behaviour of diffusion which is of that form, see Section 2.2 for details). Convergence

can clearly be seen in Fig. 8 for configuration 0. If we take 〈M〉 = 0.98 as the measure

of full mixing, then configurations 0 reaches the maximum at x∗ ' 937.5 σ. For the

other configurations we will extrapolate using an empirical fit to a saturating function

constrained to the last ∼15% of the transformed data. The fit follows the equation:

〈M〉 =
M1(ξ0 − ξ)
ξ1 + (ξ0 − ξ)

+M0, (10)

where M0, M1, ξ0 and ξ1 are the fitting parameters. The fits predict full mixing at

x∗ ' 920.0 σ, x∗ ' 898.6 σ, x∗ ' 917.2 σ, x∗ ' 932.4 σ and x∗ ' 856.0 σ (for

configurations 1, 2, 3, 4 and the purely diffusive case respectively). The cases with

obstacles clearly increase the distance required for full mixing when compared to the

purely diffusive case. The fits can be seen as light dashed curves in Fig. 8. All of these

values lie near the position x∗ = 896.8 σ ± 4.5% and thus all reach full mixing around

the same point.

6.3. Lengthening of Mixing Interface due to Cross-Channel Flow

An aspect of the system that may affect the mixing characteristics is the effective amount

of contact between the two fluid species, the contact length: LC. In a plain channel

with no obstacles the interface between the fluids (effectively the streamline that passes

through (x, y) = (0, 0)) is straight and thus the contact length is equal to the length of

the channel: LC = L. However, if the fluids are perturbed laterally, then this streamline

will follow a sinuous path down the channel and LC will be the contour length of this

streamline which will have the property: LC > L.

In the presence of an asymmetric (in y) configuration of obstacles we observe that

the fluid velocity in the channel acquires a y component that is not present in absence

of these obstacles (see Fig. 9a). Furthermore, by looking at the calculated mixing values

in two dimensions we determine that the fluid follows a sinuous path down the channel

(indicated by the white line in Fig. 9b). If we estimate where the interface is (by

following the maximum in the mixing function) we can determine the contour length of

the interface and thus LC. For obstacle configuration 1 (which is representative of the

others) we find LC = 451.43 σ which is ∼1% longer than the channel length L. From
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Figure 9. (a) The x and y components of the fluid velocity for obstacle configuration

1 (averaged over the regions in the vicinity of the prism and immediately after the

prism, respectively). We clearly see that the obstacles resist the flow in regions (i.e.,

slices in y) containing more obstacles resulting in an asymmetric flow profile. Also, we

see that after the prism the fluid velocity has acquired a nonzero y-component. (b) The

mixing observed in two-dimensions shown for x between 0 and L/2 and with the same

averaging bins as in Fig. 5. The white line shows the central streamline (determined

by eye) which exhibits sinuous flow behaviour. The contour length of this line is ∼1%

longer than the length of the system: LC ' 1.01L. The sinuous flow is damped out

far from the obstacles and begins to return to a Poiseuille-like flow profile with no

transverse component.

Equation 6, d and thus the position of the mixing front should scale (to first order) as√
〈l〉 and thus the difference in contact length we observe will result in the mixing front

(approximately determined by d in Equation 6) being closer to the wall by less than one

percent.

The calculation given above depends on the length L of the channel used in the

experiment: a longer channel would result is a smaller difference between L and LC.

This can be partly alleviated by examining the flow only over the section of channel that

is disturbed in the cross-channel direction by the presence of the obstacles (i.e., that
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Figure 10. Flow profiles for the channel with no obstacles and for obstacle

configuration 3. Each velocity profile has been normalized by its mean flow rate, ū.

This representation allows us to see how the flow deforms in the presence of obstacles

in comparison to the Poiseuille case. We can see that the obstacles deform the flow

profile with repect to the quadratic Poiseuille case by flattening it. The solid grey line

shows the average value of the flattened profile and the dashed grey line is a quadratic

fit to the Poiseuille profile, both constrained to the region x ∈ [−10, 10] σ.

section of the channel over which the flow follows a sinuous path). This corresponds to

∼L/2 for obstacle configuration 1 (see Figure 9b) and so the mixing interface is only

∼2% longer over that section of the channel. Therefore, the lengthening of the mixing

interface we observe will not significantly affect the mixing properties.

6.4. Flattened Flow Profile

We also measured the average flow profile over the range 67.08 σ < x < 186.34 σ

immediately after the position of the obstacles configuration 3 (the symmetric obstacle

configuration) in order to compare it with the flow profile from the Poiseuille case

(see Fig. 10, where the flow has been normalized by ū for comparison). It is clear by

comparing the profiles that the presence of obstacles flattens the flow profile in the centre

of the channel. This observation is less clear from the other obstacle configurations

(not shown) as the asymmetric obstacle placement (in the y direction) produces an

asymmetric flow profile. Furthermore, as we saw in the previous section, the flow profile

also varies along the length of the channel and recovers a Poiseuille-like profile far from

the obstacles. Essentially, the flow deformations are damped as the fluid travels farther
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from the obstacles and we would expect to recover a Poiseuille flow far from the obstacles.

Since the flow profile is flattened in the centre of the channel, we expect this to affect

the mixing. According to the theory outlined in Section 2.3, this effect should increase

the level of partial mixing we observe. Clearly, the mixing levels we measured in Section

6.2 rise in the presence of obstacles, compared to the Poiseuille case, immediately after

the position of the obstacles. Also, we observe that the configurations with asymmetric

profiles (not shown) also appear to increase the level of mixing. Overall, these profiles

are also “flatter” than the Poiseuille case. If the channel length is such that the outlet

is immediately after the obstacles, then it would give the impression that the presence

of obstacles increases mixing efficiency, when in fact only the partial mixing will have

been improved. Unfortunately, both flattened and non-flattened flow profiles will reach

full mixing at the same point.

7. Conclusions

We have presented a basic theory for diffusion (and thus mixing) in channels with both

flat and Poiseuille flow profiles. Under conditions where the flow rate is the same then

all channels of length greater than L0 (which has a universal value for channels with

the same flow rate) will achieve 100% mixing by the outlet. We have also proposed

a function to quantify the level of mixing in a fluid and associate a unique value to

each element in a system consisting of an ensemble of particles (such as a Molecular

Dynamics simulation of Lennard-Jones beads). In macroscopic models (or experimental

observations) this expression can be generalized in terms of densities or concentrations

of the individual species.

We have predicted using theory and demonstrated with MD simulations that the

presence of obstacles in channels with fluid flow will disrupt the flow by flattening

the profile across the channel (at least over a finite channel length) and introduce

a lateral component to the velocity. In systems where the flow is composed of two

identically-interacting species, the former effect causes the measured mixing to be larger

if the point of measurement is less than L0 and the latter effect lengthens the contact

between fluids but does not contribute much to mixing. It is the former effect, the

flow profile flattening, that may lead to obstacles being considered as mixing enhancers

in some channel configurations. Generally, one wishes to shorten the distance and/or

time required to attain complete mixing and we have demonstrated that it cannot be

accomplished by placing simple localised obstacle arrangements in microchannels.

In the future it would be interesting to explore modifications to the relative

strengths of the attractive and repulsive components of the Lennard-Jones potential

in order to simulate immiscible fluids. This technique can also simulate hydrophobicity

and various degrees of wall wetting. It would also be of interest to examine the mixing

properties of very small channels where the nanoscopic structure of the fluids becomes

apparent and will affect the physical properties of the system. Furthermore, since we

have used Molecular Dynamics to model this system it would be trivial to simulate
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complex fluids, such as those composed of dimers, oligomers and polymers, a task that

is difficult using traditional macroscopic models.
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Appendix A. Probabilistic Derivation of the Poiseuille Flow-diffusion

Profile

From the solution of the one-dimensional diffusion equation we have that the probability

distribution for finding a particle in space and time is

p(y, t) =

√
1

4πDt
exp

(
− y2

4Dt

)
. (A.1)

For some parameter γ(y, t) we can find its average value 〈γ〉 over all space and in the

range t ∈ [0, T ] from the following [30]:

〈γ〉 =

∫∞
−∞

∫ T
0
p(y, t)γ(y, t)dtdy∫∞

−∞

∫ T
0
p(y, t)dtdy

. (A.2)

Let us define the distance along the channel a particle has travelled while diffusing

a distance d across the channel as l (ignoring reflections from the channel walls). The

average distance can be expressed as 〈l〉 = 〈u〉tD where 〈u〉 is the average velocity and

tD = d2/2D is Einstein’s relation for the average time taken for a particle to diffuse a

distance d. We are assuming a Poiseuille flow profile that varies only in space given by

u(y) = u0

(
1− y2

y2
0

)
.

Using the probabilistic arguments outlined above (with the temporal range t ∈ [0, tD])

we can calculate the average velocity to be

〈u〉 = u0 −
u0D

y2
0

tD = u0

(
1− 1

2

d2

y2
0

)
. (A.3)

This is as expected: the average speed at d = 0 should be the peak of the flow profile

(u0) since this is the centre of the channel and thus the maximum velocity and it reduces

to u0/2 at the wall (d = y0) which is expected for Poiseuille flow. For particles starting

in the centre (y(t = 0) = 0) we calculate 〈l〉 by multiplying Equation A.3 by tD:

〈l〉 = 〈u〉tD =
u0d

2

2D

(
1− 1

2

d2

y2
0

)
, (A.4)
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which demonstrates the correction to Equation 5 due to the quadratic nature of

Poiseuille flow.

Appendix B. Discretized Derivation of the Poiseuille Flow-diffusion Profile

Given a generic flow profile which varies as a function of y, u = u(y), we derive a

numerical as well as analytic method of finding the average position along the channel

a particle has travelled, 〈l〉, while diffusing a distance d across the channel. We will

discretize the profile y > 0 into N slices. We will define the following: ∆h is the width

of the slices and hi is the distance to the ith slice from the centre of the profile. The

distance hi can be expressed as hi = i∆h where i = 0, 1, . . . , N − 1, N and hN = y0.

The velocity profile is discretized as ui = u(hi).

We have discretized the velocity profile along y and consider each slice to have a

constant velocity of ui. Starting from the centre (y = h0 = 0) the average time taken

to diffuse to the end of the ith slice can be found from Equation 4:

〈tDi
〉 =

h2
i

2D
.

Therefore, the average time a particle spends in the ith slice, 〈ti〉, is the time taken to

diffuse to the end of that slice minus the time taken to diffuse to the beginning of that

slice (or to the end of the previous slice): 〈ti〉 = 〈tDi
〉 − 〈tDi−1

〉. Now, we can write the

average distance travelled along the length of the channel (in the direction of the flow)

while a particle is in the ith slice, 〈λi〉, as this time multiplied by the velocity in the slice

〈λi〉 = ui〈ti〉 = ui
(
〈tDi
〉 − 〈tDi−1

〉
)
.

Therefore, the average distance travelled along the channel after diffusing to the nth

slice is

〈ln〉 =
n∑
i=1

〈λi〉 =
n∑
i=1

ui
(
〈tDi
〉 − 〈tDi−1

〉
)

=
1

2D

n∑
i=1

ui
(
h2
i − h2

i−1

)
.

We can rewrite the inner portion as follows

h2
i − h2

i−1 = (hi + hi−1)(hi − hi−1) = ∆h(hi + hi−1)

and so the sum is now

〈ln〉 =
1

2D

n∑
i=1

ui(hi + hi−1)∆h. (B.1)

This equation represents a numerical method of solving 〈l〉 as a function of d (where

d = hn) by discretizing the spatial coordinate and the velocity profile.

If we take the limit of Equation B.1 as ∆h→ 0:

lim
∆h→0

〈ln〉 = lim
∆h→0

1

2D

n∑
i=1

ui(hi + hi−1)∆h (B.2)
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then we can turn it into an integral over h:

〈l〉 =
1

2D

∫ d

0

u(h)(h+ h)dh

=
1

D

∫ d

0

u(h)hdh. (B.3)

This expression can give an analytic result but may not be useful in all cases (such

as if u(y) cannot be integrated or is only known numerically). Note that this entire

treatment is for a particle diffusing from the centre of the channel towards the wall at

y = y0. However, due to the symmetry of the velocity profile the result will hold for a

particle diffusing from the centre in the negative y direction as well.

As an example, we substitute the Poiseuille profile for u(h) (from Equation 2) and

evaluate the integral in Equation B.3:

〈l〉 =
u0

D

∫ d

0

(
1− h2

y2
0

)
hdh

=
u0d

2

2D

(
1− 1

2

d2

y2
0

)
, (B.4)

which demonstrates the correction due to the quadratic nature of the profile. We can see

that the method derived here gives the same result as the probabilistic method derived

in Appendix A.
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