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which is a novel result for empirical models of the MJO. 
The result that MJO predictability varies with MJO state 
also has relevance for the interpretation of the Maritime 
Continent prediction barrier.
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1 Introduction

The Madden–Julian Oscillation (MJO) is the dominant 
mode of intraseasonal variability in the tropical atmosphere 
(Madden and Julian 1971, 1972, 1994; Zhang 2005). The 
MJO, like weather, has pulses of variability with a finite 
predictability time scale, i.e., future MJO states may be 
predicted up to a certain lead time based on knowledge of 
current and past states. In a recent review, Waliser (2012) 
suggested that the predictability time scale of the MJO is 
at least 2 to 3 weeks. Recent model-based studies have 
estimated the time scale to be 20–24 days using a mixed 
ensemble of statistical and dynamical models (Kang and 
Kim 2010), 20–45 days using ensembles of dynamical 
models (with longer predictability estimates from multi-
model means rather than single ensemble members; Neena 
et al. (2014)), and 32 days using ensembles of modern 
climate forecast systems (Kim et al. 2014). An estimate 
based on observations, using a chaos dynamics approach 
with nonlinear local Lyapunov exponents, found predict-
ability time scales of 36 days for outgoing longwave radia-
tion (OLR), 39 days for 850 hPa zonal wind, 41 days for 
combined OLR, 850 and 200 hPa zonal wind, and 21 days 
for the daily unfiltered (Wheeler and Hendon 2004) MJO 
index (Ding et al. 2010). It should be noted that forecasts 
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of the MJO are typically skillful over time scales much 
shorter than the predictability time scale; the majority of 
forecast models show useful skill out to only 15 days with 
a few having skillful forecasts beyond two weeks (Zhang 
et al. 2013). It has also been suggested that the predict-
ability time scale of an MJO event may depend on the 
amplitude or phase at which the event is initiated (Vintz-
ileos and Pan 2007; Lin et al. 2008; Kim et al. 2009; Kang 
and Kim 2010). The predictability of the MJO is generally 
longer than the predictability limit attributed to weather 
(1–2 weeks) and thus provides potential predictability on 
time scales that bridge the gap between weather and cli-
mate. It has been argued (e.g., Zhang 2013) that a better 
understanding of this phenomenon, and how it influences 
the atmosphere-ocean-climate system, may help with the 
development of a seamless forecasting framework.

The MJO has been modeled statistically in many ways 
in order to understand its statistical behaviour and predict-
ability. von Storch and Xu (1990a) fit a pair of POPs (von 
Storch et al. 1988) to the tropical 200-mb velocity poten-
tial and the resultant POP coefficient acts like a bivariate 
index of magnitude and phase of the intraseasonal oscilla-
tion. This statistical model provides useful forecasts out to 
7 days (von Storch and Xu 1990a; von Storch and Baum-
hefner 1991) with greater skill in Boreal Winter (NDJF) 
than in Boreal Summer (MJJA) and for initial conditions 
of larger magnitude than of weaker magnitude. Lo and 
Hendon (2000) used a reduced set of EOFs of outgoing 
longwave radiation and the 200-mb streamfunction to pre-
dict the full set of EOFs at some forecast lead time. They 
found forecasts with their statistical model were skillful out 
to 15 days and better than those from a dynamical model 
out to about 1 week. Similar models were used by Waliser 
et al. (1999) who forecast the future state of the MJO, using 
present and past fields of bandpassed OLR, and by Jiang 
et al. (2008) who used principal components of combined 
OLR and 200- and 850-mb zonal velocities in a multivari-
ate linear regression model to forecast individual fields 
of these variables. More recently, Maharaj and Wheeler 
(2005) developed a bivariate, stochastically-forced, order 1 
autoregressive model for the Wheeler and Hendon (2004) 
MJO index. They found the model parameters to be differ-
ent when fit over Boreal Summer (May–October) and Aus-
tral Summer (November–April). More recently, Cavanaugh 
et al. (2014) used a linear stochastic model with white 
noise to simulate not only a time series of the MJO but also 
full spatial fields of OLR and winds and Kondrashov et al. 
(2013) developed a low-dimensional stochastic model for 
the MJO which takes into account nonlinearity, seasonal-
ity, and serial correlation in the noise with useful predic-
tion skill out to 30 days. One use of the statistical models 
described above is as a benchmark against which to test the 
performance of numerical model forecasts. For example, 

von Storch and Baumhefner (1991) compared the forecasts 
from their statistical model against those from two general 
circulation models, which were not overall superior to the 
POP forecast, and Rashid et al. (2011) showed the Predic-
tive Ocean Atmosphere Model for Australia (POAMA) pro-
vided a better forecast of the MJO than the Maharaj and 
Wheeler (2005) statistical baseline.

Here we develop a forced damped harmonic oscillator 
(FDHO) model for the MJO index in discrete time follow-
ing the autoregressive model developed by Oliver (2011) 
and Oliver and Thompson (2012). This model builds on the 
bivariate autoregressive model of by Maharaj and Wheeler 
(2005) and shares many features with the POP analysis 
performed by von Storch et al. (1988). In fact, the time-
dependent behaviour of the MJO state resulting from the 
POP analysis is linked with the standard damped harmonic 
oscillator equations (von Storch et al. 1988). Those studies 
focused on the predictive skill of statistical models in terms 
of capturing the MJO index. We use our model to better 
understand the predictability of the MJO and test if this 
predictability varies with initial MJO amplitude and phase 
and with season.

This paper is organized as follows. The MJO index, its 
representation in phase space, and the tracking of ensem-
bles of MJO events are presented in Sect. 2. The FDHO 
model, including its statistical properties, is outlined in 
Sect. 3 and fit to the observed MJO index as a function of 
MJO amplitude and phase in Sect. 4. A summary and dis-
cussion of the results are provided in Sect. 5.

2  The Madden–Julian Oscillation

In this section we define and describe the MJO index 
(Sect. 2.1) and visualize ensembles of MJO events in phase 
space (Sect. 2.2).

2.1  MJO index

The index developed by Wheeler and Hendon (2004) is 
used here to characterize the MJO. This index is bivariate 
and consists of the first two principal components of an 
EOF analysis of tropically averaged (15°S to 15°N) fields 
of outgoing longwave radiation (as a proxy for precipita-
tion) and zonal wind at two heights (200 and 850 hPa). 
The intraseasonal signals in each of these three variables 
are primary indicators of the MJO and their multivariate 
combination into the Wheeler and Hendon (2004) index 
further suppresses high frequency signals which are inco-
herent amongst these three variables. A daily time series of 
the Wheeler and Hendon (2004) index, hereafter referred to 
as the MJO index, was obtained from 1 January 1979 to 31 
December 2008 from the Government of Australia Bureau 
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of Meteorology (the Centre for Australian Weather and 
Climate Research, see http://cawcr.gov.au/staff/mwheeler/
maproom/RMM/). The two components have zero mean 
and have been normalized so that each have standard devia-
tion of one.

The two components of this bivariate time series 
describe an oscillating phenomenon with periods between 
30 and 90 days and they are approximately in quadrature. 
The oscillations and relative phase offset of the two com-
ponents is clear from time series plots (e.g., Fig. 1a, b). 
The majority of energy lies in a band of oscillation peri-
ods between 40 and 60 days (Fig. 2a). The two components 
of the index are highly coherent over these time scales 
(squared coherence values of 0.8–0.9; Fig. 2b, solid line) 
and are in quadrature (90° out of phase; Fig. 2b, dashed 
line). (Coherence is confined to lie between 0 and 1 and can 
roughly be thought of as a “frequency-dependent” correla-
tion coefficient while the phase spectra indicates the phase 
offset at a particular frequency.)

2.2  MJO events in phase space

The nature of the MJO index, namely that the two compo-
nents are approximately oscillatory and in quadrature, leads 
to a natural representation of the MJO state in “phase space” 
(Wheeler and Hendon 2004). Phase space is a two dimen-
sional representation of the MJO where the first component 
of the index defines the x1-axis and the second component 
defines the x2-axis (Fig. 1c). The radius and angle of a 
particular point in phase space represents the strength and 
phase of the MJO, respectively. The angle can also be inter-
preted as the region over which the active convection associ-
ated with the MJO is situated. An MJO trajectory in phase 
space typically follows a counterclockwise path as an event 
propagates eastward around the globe (e.g., Fig. 1c). Phase 
space is conventionally divided into 9 regions: a “weak 
MJO” region, defined for amplitude less than one, and eight 
regions (denoted “Phase 1” through “Phase 8”; see Fig. 1c) 
spaced equally around the remainder of phase space. The 

a c

b

Fig. 1  Example MJO time series and phase space trajectory. Time 
series of the MJO index (first component: thick line; second compo-
nent: thin line) over 400 days are shown for 27 October 1979 to 30 

November 1980 (a) and for 30 November 1980 to 4 January 1982 
(b). A trajectory in MJO phase space over 50 days is shown in c for 
27 October 1979 (solid dot) to 16 December 1979 (open dot)

Fig. 2  Power, coherence and phase spectra of the MJO index as a 
function of frequency. a The total power spectra (solid line), calcu-
lated as the sum of the power spectral densities of the two MJO index 
components (dashed and dash-dotted lines). The coherence (solid 

line) and phase (dashed line) spectra between the two MJO index 
components are shown in b. The vertical dashed lines indicate oscil-
lation periods of 40, 60 and 90 days
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centre of MJO convection is over the Western Hemisphere 
and Africa during phases 8 and 1, the Indian Ocean during 
phases 2 and 3, the Maritime Continent during phases 4 and 
5, and the Western Pacific during phases 6 and 7.

A scatter plot of all MJO index values is shown in phase 
space in Fig. 3a (grey points). The MJO values are approxi-
mately distributed as a bivariate normal distribution with 
mean zero and a variance of one in both the x1 and x2 direc-
tions. We wish to subset from this distribution to represent 
an observed initial condition for the MJO. We do this by 
taking a Bayesian approach. First we assume that the prior 
distribution is approximated by the grey points (the scat-
ter plot of all MJO index values) and then we assume the 
observed initial condition is imprecise and can be rep-
resented by a probability density function (pdf). We then 
sample from the posterior distribution by applying a weight 
to the grey points according to the pdf of the observed ini-
tial condition and resampling accordingly. For example, if 
the observed initial condition pdf were a bivariate normal 
distribution centred away from the origin (Fig. 3a, black 
dot and circle) the posterior sample, or samples from the 
initial condition, are shown as the red and blue dots in 
Fig. 3a. The mathematical details behind this method for 
choosing an ensemble of MJO events, given an initial con-
dition, are provided in Appendix 1. We consider this subset 
of MJO values to be a statistical representation of the “ini-
tial” state of the MJO at some time t0.

The distribution of the state of the MJO at a future time 
t0 + k is approximated by simply following the evolution, 
according to the original MJO time series starting at time t0,  
of each of the “initial” points in phase space (i.e., the red 
and blue dots). This procedure is demonstrated in Fig. 3 for 
time lag k increasing from zero to 30 days (red and blue 
dots). It is clear that the set of points undergoes a counter-
clockwise rotation and decay of the mean position of the 
ensemble of points towards zero (black dot). The spread of 
points increases through time (black circle). It can also be 
seen that the position of the ensemble members relative to 
their sample mean at time t0 is lost with increasing time. 
This can be thought of as mixing of relative positions in 
phase space within the ensemble. For example, ensemble 
members that were to the clockwise side of the ensemble 
mean at t0 (Fig. 3a, blue dots) are less and less likely to 
remain on that side of the ensemble mean as k increases.

The ensemble statistics are summarized in Fig. 4, for 
ensembles of trajectories with initial conditions (the ini-
tial state, or “observation”) in four widely separated parts 
of phase space. The evolution of the ensemble mean (i.e., 
rotation and decay in MJO space; Fig. 4, black line) is rem-
iniscent of the spiraling behaviour of a forced, damped har-
monic oscillator, when the oscillator velocity is plotted ver-
sus oscillator position (e.g., Marion and Thornton 1995). 
We also note that rates of decay of the mean and increase 

of the variance appear to depend on initial condition (e.g., 
the variance (shaded area) increases faster in Fig. 4b than in 
Fig. 4c) and that these rates are fast compared to the oscil-
lation frequency. This behaviour will be further demon-
strated and quantified in Sect. 4.

Fig. 3  Evolution of an ensemble of MJO events with initial condi-
tion in the vicinity of a specified location. The grey points in a show 
all values of the MJO index in phase space. The blue and red points 
in a show a sample of MJO index values representing the initial 
condition at time t0 (sampled from a bivariate normal distribution 
with mean and 95 % enclosure indicated by the black dot and cir-
cle respectively). The blue and red points have a coordinate value to 
the clockwise side and the counterclockwise side of the initial mean 
value respectively. This ensemble of MJO trajectories are shown for b 
k = 1, c 2, d 3, e 5, f 10, g 20 and h 30 days, where k is the number of 
time steps following the initial time t0
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3  The forced damped harmonic oscillator model

A forced damped harmonic oscillator (FDHO) model is 
described in Sects. 3.1–3.3 and its statistical properties are 
then reviewed in Sects. 3.4–3.5.

3.1  Damped harmonic oscillator model in discrete time

A forced damped harmonic oscillator model (e.g., Marion 
and Thornton 1995) can be expressed in discrete time as 
follows (see Priestley 1981 for more details):

where xt = [x1 x2]′t is the bivariate state vector at time t  
(′ denotes a transpose), A1 is the 2× 2 transition matrix that 

(1)xt+1 = A1xt + f t+1,

carries the state forward one time step, and f t is a bivariate 
forcing process. For an underdamped harmonic oscillator, 
A1 can be written

where 0 < γ1 < 1 is the damping coefficient and θ �= 0 
is the rotation rate. In the absence of forcing the oscil-
lator rotates through an angle θ over one time step, and 
its amplitude is scaled by a factor γ1. The damping coef-
ficient γ1 and the rotation rate θ can be expressed in terms 
of a decay time scale τ1 and a rotation period P (see 
Table 1). Hereafter we will primarily discuss the model 
parameters in their time scale form (using a time step of 
∆t = 1 day).

(2)A1 = γ1

[

cos θ − sin θ

sin θ cos θ

]

Fig. 4  Evolution of the sta-
tistics of an ensemble of MJO 
events. The statistical properties 
of a 4000-member ensemble 
of MJO events are shown from 
some initial state at time t0 for 
the following 35 days. Four 
initial ensembles are chosen, 
one in each of the four corners 
of MJO space (b corresponds to 
the example shown in Fig. 3). 
The thick black line shows the 
mean, the shaded area shows 
the standard deviation about this 
mean, and the thin lines show 
a subset of 20 representative 
trajectories

Table 1  Model parameters (first column), relationship to time scales (second column), and interpretation (third column)

The time step ∆t is chosen to be 1 day leading to a unit of days for the time scale parameters

γ1 τ1 = −1/ log γ1 State decay rate (γ1) or time scale (τ1) [Models 1 and 2]

γ2 τ2 = −1/ log γ2 Forcing decay rate (γ2) or time scale (τ2) [Model 2 only]

θ P = 2π/θ Angular rotation frequency (θ) or oscillation period (P) [Models 1 and 2]
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3.2  Damped harmonic oscillator model with white 
noise forcing

If the oscillator model presented in Sect. 3.1 is forced by a 
Gaussian white noise process, ǫt, then it can be represented 
by Eq. 1 with f t = ǫt, a model equivalent to a stochasti-
cally forced complex order one autoregressive, or AR(1), 
model (e.g., von Storch and Xu 1990b; von Storch and 
Baumhefner 1991):

where the covariance of ǫt is given by Σǫ = σ 2
ǫ I where σ 2

ǫ  
is the variance of the white noise process and I is a 2× 2 
identity matrix. The noise variance σ 2

ǫ  is chosen so that the 
steady state variance of the two oscillator components of 
xt are each unity. This model is henceforth referred to as 
“Model 1”. This AR(1) model is nearly equivalent to the 
bivariate AR(1) model developed by Maharaj and Wheeler 
(2005) with the exception that the model transition matrix 
(A1) has just two parameters (γ, θ) instead of four, essen-
tially requiring the two oscillator components to have iden-
tical statistical properties.

3.3  Damped harmonic oscillator model 
with autoregressive forcing

We now consider the case where the white noise stochastic 
forcing is replaced by coloured noise stochastic forcing f t,  
given by a bivariate AR(1) process. In other words, f t in 
Eq. 1 is a bivariate AR(1) process and the combined oscil-
lator/forcing system can be written as a pair of coupled 
bivariate processes:

where Model 1 is now nested within this model (as Eq. 4) 
and is supplemented by the equation to generate the autore-
gressive stochastic forcing (Eq. 5). The transition matrix 
for the autoregressive forcing is given by

and the covariance of ǫt is again given by Σǫ = σ 2
ǫ I. The 

bivariate forcing process f t is modeled as a pair of inde-
pendent AR(1) processes each with the same autoregressive 
parameter γ2 (Eq. 5) and these force the oscillator (Eq. 4). 
As with the damping parameter γ1, the autoregressive 
parameter γ2 can be expressed as an autoregressive time 
scale τ2 (see Table 1). The memory of the forcing is there-
fore controlled by the parameter γ2 which is constrained 
to be between 0 and 1. In the present context the forcing 
is taken to represent the effect of short time-scale weather 

(3)xt+1 = A1xt + ǫt+1,

(4)xt+1 =A1xt + f t+1,

(5)f t+1 =A2f t + ǫt+1,

(6)A2 = γ2

[

1 0

0 1

]

,

events on the longer time-scale MJO. The introduction of 
the parameter γ2 allows us to control the auto-correlation 
(or, equivalently, the typical duration) of these weather 
events. This new model is now defined by three parameters 
(P, τ1, and τ2) and is henceforth referred to as “Model 2”.

Model 2 can also be represented by the following quad-
rivariate stochastically forced AR(1) model:

where yt is now a vector of length 4 combining the oscil-
lator and forcing components (yt = [xt f t]′), A is a 4× 4 
transition matrix, and εt is the quadrivariate stochastic noise 
process that drives the system away from a state of rest. 
The first two components of yt are referred to as the oscil-
lator components (they represent the oscillator described 
by Eq. 4) and the last two components are referred to as 
the forcing components as they represent the autoregressive 
forcing (desribed by Eq. 5). The transition matrix takes the 
partitioned form

This quadrivariate AR(1) process is itself driven by an 
independent white noise process with the 4× 4 covariance 
matrix

so that the white noise process only directly influences 
the third and fourth components of yt (i.e., the forcing 
components).

3.4  Statistical properties of the damped harmonic 
oscillator model

It is straightforward to calculate the statistical properties of 
the damped harmonic oscillator model. The following dis-
cussion focuses on Model 2; these properties also hold for 
Model 1 with the substitution of xt for yt, A1 for A, and Σǫ 
for Σε.

The process defined by Eq. 7 is asymptotically station-
ary to second order if 0 ≤ (γ1, γ2) < 1. Its steady state 
covariance matrix Σ∞ satisfies

with the solution given by

where vec denotes the vectorization of a matrix, performed 
by sequentially stacking the columns of the specified 
matrix (e.g., Harvey 1991) and ⊗ denotes the Kronecker 
product. Equation 11 allows us to specify Σε in order to 
achieve a desired asymptotic covariance Σ∞ (i.e., Σ∞ = I,  

(7)yt+1 = Ayt + εt+1,

(8)A =
[

A1 I

0 A2

]

.

(9)Σε = σ 2
ǫ

[

0 0

0 I

]

(10)Σ∞ = AΣ∞A′ +Σε

(11)vec(Σ∞) = [I− A⊗ A]−1vec(Σε),
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over the oscillator components, in the case of unity oscilla-
tor variance).

We are particularly interested in the evolution of the sta-
tistical properties of the model from a known initial state at 
time t0. If the mean and variance of yt at time t0 are µt0 and 
Σ t0,t0 respectively, the mean and variance at time t0 + k are 
given by

and

respectively. The covariance between yt0 and yt0+k is given 
by

The proportion of total variance of the oscillator state at 
t0 + k that can be accounted for by the initial oscillator 
state is given by

where the trace acts only over the first two (oscillator) com-
ponents. Finally, the cross-spectral matrix of yt is given by 
Priestley (1981)

where * denotes a conjugate transpose and fεε(ω) is the 
cross-spectral matrix of εt. For white noise (Model 1) 
fεε(ω) is simply σ

2
ǫ

2π
I.

Three measures of oscillator predictability are now 
defined. The first is based on the oscillator amplitude, given 
by the length of the mean |µt0+k| (this is analogous to the 
ensemble mean MJO amplitude, and is the distance to the 
origin in MJO phase space), which allows us to monitor 
the decay rate of the oscillator. The second predictability 
measure is based on the total oscillator variance given by 
σ 2
t0+k = tr2(Σ t0+k,t0+k). It measures the rate at which tra-

jectories with similar initial conditions diverge. (The length 
and trace operations act only over the oscillator compo-
nents of yt.) The third predictability measure is the corre-
lation ρk (Eq. 15). It measures the rate at which the infor-
mation on the initial relative position of an event within 
an ensemble of oscillator events is lost. For normal white 
noise forcing (Model 1) the expressions for the oscillator 
amplitude, total oscillator variance, and correlation can be 
calculated explicitly given the model time scales τ1 and P. 
For autoregressive forcing (Model 2) the statistical proper-
ties involve complicated correction terms due to the initial 

(12)µt0+k = Akµt0

(13)Σ t0+k,t0+k = AkΣ t0,t0A
′k +

k−1
∑

j=0

AjΣεA
′j

(14)Σ t0+k,t0 = AkΣ t0,t0 .

(15)ρ2
k =

tr2(Σ t0+k,t0Σ
−1
t0,t0

Σ t0,t0+k)

tr2(Σ t0+k,t0+k)
,

(16)fyy(ω) =
[

eiωI− A
]−1

fεε(ω)
[

eiωI− A
]∗−1

,

conditions of the autoregressive forcing. Therefore, we do 
not state them explicitly here and simply calculate them 
numerically using Eqs. 12–15.

We now define three time scales of predictability given 
these three statistics. First, τµ, the rate of decay of the oscil-
lator amplitude towards zero, given by its e-folding time 
scale. Second, τ 2σ, the increase of total oscillator variance, 
given by the e-folding time scale towards the asymptotic 
variance of σ 2

∞ = 2. Third, τρ, the decrease of correlation 
between the oscillator state at time t0 and t0 + k, given by 
the time at which the correlation drops below 0.5. Note that 
the three predictability time scales can also be calculated 
from the observed MJO index. This is done by replacing 
µt0+k, σ 2

t0+k, and ρk with classic definitions of the ensem-
ble sample mean, ensemble sample variance, and within-
ensemble correlation and simply reading off the time-lag 
at which these quantities reach the critical values defined 
above. This will be used as a form of model validation in 
Sect. 4.

3.5  Model behaviour

A realization of xt for Model 1 with model parameters 
τ1 = 15 days and P = 50 days (taken from Oliver and 
Thompson 2012) is shown in Fig. 5a–c. The variance of 
the noise process is σ 2

ǫ = 1.25× 10−1 and the time step ∆t 
is chosen to be 1 day. The components of xt are clearly in 
quadrature (Fig. 5a) and when plotted in phase space (i.e., 
x2,t vs. x1,t) evidence of counterclockwise rotation (i.e., 
oscillation) and stochastic forcing is clear (Fig. 5c, thick 
line). The white noise forcing process (Fig. 5b) determines 
the noisy behaviour of xt (e.g., abrupt changes in direction 
of the trajectory in phase space over a single time step; 
Fig. 5c, thin line).

A realization of yt for Model 2 with model param-
eters τ1 = 15 days, τ2 = 2 days, and P = 50 days is 
shown in Fig. 5(d–f). The variance of the noise process 
is σ 2

ǫ = 2.28× 10−2; the value of σ 2
ǫ  for Model 2 differs 

from that for Model 1 since the two models have differ-
ent responses to stochastic forcing and so different values 
are required in order to achieve a variance of one for the 
oscillator components. The oscillator components of yt 
are approximately in quadrature as expected (Fig. 5d) and 
when plotted in phase space, evidence of counterclockwise 
rotation and stochastic forcing is again clear (Fig. 5f, thick 
line). As expected both the oscillator and forcing compo-
nents vary more smoothly when the forcing processes is 
autoregressive (compare Fig. 5d, e with Fig. 5a, b).

The spectral properties of the two models, for the model 
parameters given above, demonstrate that the power of the 
oscillator is confined to a narrow band about the natural 
oscillation frequency of 2π/P (Fig. 6a). It is also clear that 
the oscillator components are highly coherent with each 
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other and are in quadrature (90° phase shift; Fig. 6b). It 
is interesting to note that the coherence and phase spectra 
for Model 1 and Model 2 are identical. Both Model 1 and 

Model 2 consist of the same general process: a bivariate 
damped harmonic oscillator forced by bivariate stochastic 
noise. The only difference is the nature of the stochastic 

Fig. 5  Damped harmonic oscillator model in discrete time with nor-
mal white noise forcing (Model 1, upper panels) and autoregressive 
stochastic forcing (Model 2, lower panels). On the left, the oscilla-
tor components (a, d) and the forcing components (b, e) of the mod-
els are plotted for time steps 300–700. The first 300 time steps are 
discarded to avoid transient effects from the initial conditions x0 =

[0.574, −1.39] (equivalent to an MJO index value with amplitude 
1.5 in phase 3). In c and f, the second oscillator component is plot-
ted against the first oscillator component (thick line) and the second 
forcing component is plotted against the first forcing component (thin 
line) for time steps 300 (closed circle) to 350 (open circle)

a b

Fig. 6  Spectral properties of the damped harmonic oscillator mod-
els. a The power spectral densities of the first oscillator component 
(solid lines) and the first forcing component (dashed lines, scaled by 
a factor of 75) of xt are plotted as a function of frequency for Model 
1 (thin lines) and Model 2 (thick lines). b The coherence (solid line) 

and phase (dashed line) between the two oscillator components of xt.  
Note that the coherence and phase spectra for Model 1 and Model 2 
are identical (not obvious as the lines are overplotted). The dashed 
vertical lines show the natural oscillation frequency (2π/P)
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noise: white noise (Model 1) or an auto-regressive process 
(Model 2). This difference contributes to a difference in 
power spectra with Model 2 having more energy at lower 
frequencies than Model 1 due to the “coloured” noise forc-
ing (Fig. 6a). However, in both cases the two components 
of the bivariate stochastic noise are independent (uncorre-
lated with one another) and so will not contribute to any 
covariation between the two oscillator components. There-
fore, the coherence and phase spectra for Model 1 and 
Model 2 arise from the nature of the harmonic oscillator 
dynamics (i.e., the A1 matrix which is identical between 
models) and not from the stochastic forcing.

There is clearly strong similarity in the spectral proper-
ties of the model and the observed MJO index (Figs. 6, 2). 
The evolution of modeled ensemble statistics also exhibit 
the same features as the observed MJO index (Fig. 7), 
namely the rotation and decay of the mean and the increase 
of the variance with time.

4  Model fitting and predictability

The two models described in Sect. 3 are now fit to the 
observed MJO index. First, we fit both Model 1 and Model 
2 to the complete MJO index time series and compare the 
two models (Sect. 4.1). The preferred model is then fit 

to MJO ensembles, initiated over a broad range of MJO 
amplitudes and phases, in order to map the model param-
eters (Sect. 4.2), and predictability time scales (Sect. 4.3), 
in phase space.

4.1  Model selection

Parameter estimation was performed using maximum 
likelihood estimation with the likelihood function given 
in Appendix 2. Estimated model parameters are shown in 
Table 2. Estimated parameters for Model 1 are τ1 = 51.0 
days and P = 54.5 days (with σǫ = 0.1961). Note that the 
estimated model parameters for the bivariate AR(1) model 
of Maharaj and Wheeler (2005) have forms nearly identi-
cal to that of Model 1 (i.e., approximately in the form of 
A1, see Eq. 2). Writing their model parameters into this 
form (by averaging cross-diagonal elements and setting 
them equal to γ1 cos θ and γ1 sin θ) we can transform their 
model parameters into the parameters of Model 1, yield-
ing P = 49.8 days (61.4 days) and τ1 = 44.3 days (34.7 
day) for Southern Summer (Northern Summer). These val-
ues are broadly consistent with our maximum likelihood 
estimates.

Estimated model parameters for Model 2 are τ1 = 16.2 
days, τ2 = 1.58 days and P = 53.4 days (with σǫ = 0.1697).  
Note that the estimated value of τ1 for Model 2 is more 
than a factor of three smaller than for Model 1. This is 
because autoregressive models are effectively estimated by 
fitting the model’s autocovariance function (ACF) to the 
observed ACF for small lags. Model 1, a bivariate AR(1) 
process, fits to the lag one ACF while Model 2, which can 
be expressed as a bivariate AR(2) process (Appendix 2), 
fits to the ACF for lags one and two. The reason the τ1 esti-
mates for Model 2 are much less than the corresponding 
estimates for Model 1 is that Model 2 was able to better 

Fig. 7  Evolution of the statistics of an ensemble of MJO events.  
a The statistical properties of a 4000-member ensemble of MJO 
events with an initial observation at (

√
2,−

√
2) and with error 

σ 2
obs

= 0.1 are shown for the following 35 days (as in Fig. 4b). The 

statistical properties of b Model 1 and c Model 2. The thick black line 
shows the mean, the shaded area shows the standard deviation about 
this mean, and the thin lines show 20 representative trajectories

Table 2  Estimated model parameters, in units of days

Parameters estimated by maximum likelihood using the entire MJO 
index time series. Parameters are shown in units of days

τ1 τ2 P

Model 1 51.0 – 54.5

Model 2 16.2 1.58 53.4
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capture the curvature of the MJO index ACF near zero lag 
(not shown).

The models were compared using a twofold cross-val-
idation procedure in order to choose a preferred model to 
use in the following predictability analysis. First both mod-
els were fit over the first half of the observed MJO index 
(the training period) and the properties of the fitted mod-
els were compared against those of the MJO index over the 
remaining period (the validation period). The procedure 
was then repeated with the training and validation periods 
swapped. Three properties were used to evaluate model 
performance over the validation period. First, a measure 
of the oscillator predictability was defined by calculating 
the total variance of the oscillator at time t0 in the valida-
tion period that is explained by the oscillator at time t0 + k 
for lags of k = 0 . . . 30 (Fig. 8, left panels). It is clear from 
these results that Model 2 provides a much closer fit to the 
observed MJO index predictability than Model 1. It is also 
clear that Model 2 fits the observed predictability over the 
first two lags (k = 1, 2) while Model 1 only fits the first 
lag (k = 1). Second, Models 1 and Model 2 were used as 

forecast models in which a 50-day forecast was produced 
once every 50 days. All of the forecasts were then strung 
together as a time series and compared against the observed 
MJO index (Fig. 8, right panels). The initial condition 
for the forecasts were given by the observed MJO index 
immediately preceding the initial time of each forecast, 
simulating an operational system. The forecasts by Model 
2 predicted the observed MJO index variability better than 
Model 1: the total variance of the forecast errors (observed 
index minus forecasts over all time, restricted to the vali-
dation period) were lower for Model 2 than for Model 1 
(Table 3). By breaking down the total variance of the fore-
cast errors into successive 15-day blocks of lead times it 
is clear that Model 2 outperforms Model 1 over all lead 
times but particularly over leads of 15–30 days and 31–45 
days (Table 3). The difference in performance of Model 1 
and Model 2 is much weaker over the first 15 days and the 
performance of model forecasts for lead times less than 5 
days was nearly indistinguishable between Model 1 and 
Model 2. Third, we calculated the the Q-factor for the spec-
tral peak of Model 1 and Model 2 and compared it against 

Fig. 8  Cross-validation results for Model 1 and Model 2. Left pan-
els show the proportion of MJO index variance at time t0 explained 
by the oscillator at time t0 + k, for lags of k = 0 . . . 30, for Model 
1 (upper) and Model 2 (lower). Results are shown for both valida-
tion periods; there are two black lines and two red lines in each panel 

but are so similar as to be difficult to distinguish. Right panels show 
subsets of results (over the validation period) using Model 1 (upper) 
and Model 2 (lower) as forecast models in which 50-day forecasts 
(dashed lines) were produced from a initial conditions (circles) every 
50 days taken from the observed MJO index (solid lines)

Table 3  Cross-validation statistics for Model 1 and Model 2

Results for each of the two iterations (m = 1, 2) of the twofold cross-validation procedure are shown by each row. The total variance of the fore-
cast errors for Model i is denoted σ 2

err,i. The total variance is shown over the whole forecast period (1–50 days) and also over successive 15-day 
lead times (1–15 days, 16–30 days, and 31–45 days). The Q-factor (see text) for the MJO index (Model i) is denoted QMJO (Qi). All statistics 
were calculated over the validation period

m 1–50 days 1–15 days 15–30 days 31–45 days QMJO Q1 Q2

σ 2
err,1 σ 2

err,2 σ 2
err,1 σ 2

err,2 σ 2
err,1 σ 2

err,2 σ 2
err,1 σ 2

err,2

1 1.78 1.62 0.99 0.90 1.95 1.67 2.23 2.11 1.18 2.98 0.84

2 1.79 1.64 1.09 1.01 2.08 1.87 2.20 2.03 0.94 2.92 0.84
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that for the observed index over the validation period. The 
Q-factor is a non-dimensional number defined as the ratio 
of the central frequency to the width of a spectral peak 
(defined as the full width at half maximum). The Q-factor 
has an interpretation in classical mechanics as the degree to 
which a harmonic oscillator is underdamped: an oscillator 
is underdamped for Q > 0.5 and critically damped or over-
damped for Q ≤ 0.5 (e.g., Marion and Thornton 1995). The 
observed MJO index is clearly underdamped with a Q-fac-
tor in the range 0.94–1.18 and Model 2 provides a much 
closer estimate of this Q-factor than Model 1 (Table 3).

The models were also compared using a likelihood-
ratio test (e.g., Wilks 2011), the Akaike Information Cri-
terion (AIC; Akaike 1974), and the Bayesian Information 
Criterion (BIC; Schwarz 1978). The likelihood-ratio test is 
based on the ratio of the likelihood functions for the two 
fitted models and expresses how much more likely the data 
are under one model or the other. Using the likelihood-ratio 
test the data is significantly more likely under Model 2 than 
Model 1 (with a p value of <0.01). The AIC and BIC are 
measures of relative model quality that allow a trade off 
between goodness-of-fit, which always improves with more 
free model parameters, and model complexity. When com-
paring two models, the one with the lower AIC or BIC val-
ues is to be favoured. The AIC and BIC values are lower 
for Model 2 (AIC = −55,806, BIC = −55,782) than for 
Model 1 (AIC = −49,480, BIC = −49,464).

Based on all the above results we conclude that Model 2 
is the preferred model.

4.2  Model fitting conditioned on initial condition

Model 2 was fit to ensembles of MJO events, as described in 
Sect. 2.2, over a range of specified initial observations. Each 
ensemble consisted of 4000 observed trajectories (sampled 
with replacement) and each member trajectory spanned 35 
days following the initial observation point. Initial observa-
tions were laid out in a grid across phase space with grid 
points in the amplitude direction from 0.5 to 2.5 (in steps 

of 0.1) and in the phase direction from 0.5 to 8.5 (in steps 
of 0.25). Note also that we have omitted the region within 
0.5 amplitude of the origin from the analysis as these cor-
respond to a very weak MJO which (i) cannot be expected 
to have much predictability, and (ii) is of little interest from 
the perspective of MJO dynamics and impacts. Note that an 
integer phase value corresponds to the angle which passes 
through the centre of the eight bins defined in Fig. 1c with 
decimal phases varying linearly between them. The model 
parameters were estimated by maximum likelihood estima-
tion (see Appendix 2, which includes a discussion of the 
issue of fitting to relatively short trajectory lengths).

The estimated model parameters (τ1, τ2, and P) show con-
siderable variation in phase space (Fig. 9a–c). The damp-
ing time scale τ1 (Fig. 9a) is largest for phases 8 and 1–2 
(τ1 = 16–20 days) and lowest for phases 4–5 (τ1 = 13–16 
days). While there is a clear dependence of τ1 on phase, 
its dependence on MJO amplitude is more complex, par-
ticularly in phases 3 (decreasing with amplitude) and 6–7 
(increasing with amplitude). The autoregressive time scale 
τ2 for the forcing (Fig. 9b) shows less variation in phase 
space, only varying between 1.5 and 1.75 days, being lowest 
in phases 8 and 1–2 (τ2 = 1.5–1.6 days) and exceeding 1.75 
days for the largest amplitudes in phase 4. The oscillation 
period P (Fig. 9c) shows very little dependence on phase but 
clearly decreases with MJO ampitude: it is larger for ampli-
tudes less than one (P = 52–60 days) and smaller for larger 
amplitudes (P = 46–52 days). The only exception to this is 
in phase 6 where the dependence of P on MJO amplitude 
is very weak, never dropping below 52 days. The oscillator 
forcing magnitude, σǫ, varies very little (~6 %; not shown) 
with lowest values in phases 6–8 (0.165–0.170) and largest 
values in phases 3–5 (0.170–0.177).

4.3  Predictability measures

The three oscillator statistics (|µt0+k|, σ 2
t0+k and ρt0,t0+k,  

see Sect. 3.4) are plotted as a function of k for both the 
MJO index and Model 2 in Fig. 10 (solid and dashed lines 
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Fig. 9  Model 2 parameter time scales as a function of phase space. 
The model was fit to an ensemble of MJO events given an initial 
observation indicated by the position in phase space and an obser-

vation error of σ 2
obs

= 0.1 (e.g., see Fig. 4 for four examples). The 
model time scales τ1 (left), τ2 (centre) and P (right), are shown in 
units of days

Author's personal copy



170 E. C. J. Oliver, K. R. Thompson

1 3

respectively) for initial MJO amplitude 2 and phases 2, 4, 
6 and 8. For each of the statistics, the initial values persist 
over a short period of 2–3 days before slowly relaxing to 
their asymptotic values (zero for the oscillator amplitude 
and correlation; σ 2

∞ = 2, which is the total variance of the 
normalized MJO index, for the total oscillator variance). 
Model 2 captures well the variation of the predictability 
statistics with lag and provides a smooth curve leading to 
more reliable estimates of predictability time scales. Given 
the critical values defined in Sect. 3.4 (Fig. 10, dashed 
lines) it is straightforward to read off the modeled predict-
ability time scales τµ, τσ 2, and τρ.

The predictability time scales show considerable varia-
tion in phase space (Fig. 11). The time scale for the decay 
of the oscillator mean τµ (Fig. 11a) is longest for phases 8 
and 1–2 (τµ = 17–21 days). The value of τµ also reaches 
these levels in phases 6–7 for amplitudes greater than one. 
Elsewhere, τµ is in general lower (14–17 days). The time 
scales for increase of total oscillator variance τσ 2 (Fig. 11b) 
and for the loss of correlation τρ (Fig. 11c) exhibit the same 
phase space dependence as τµ with high values in phases 

8 and 1–2 for all amplitudes and in phases 6–7 for large 
amplitudes (τσ 2 = 9.5–11 days; τρ = 3.2–3.7 days) and low 
values elsewhere (τσ 2 = 8–9.5 days; τρ = 2.8–3.2 days). 
For all three predictability time scales there is a minimum 
in phases 4–5.

The phase-space patterns of the three predictability time 
scales are very similar up to a scale factor (Fig. 11). In fact, 
a scatter plot of all estimated values of τσ 2 and τρ against all 
values of τµ indicates a linear relationship with slopes of 0.54 
and 0.18 respectively (not shown). This is consistent with 
the relationships between the time scales estimated from the 
observed MJO index, which have slopes of 0.50 and 0.19 
for τσ 2 and τρ, respectively, against τµ. This indicates that, 
although we have introduced three predictability time scales, 
they all measure the same thing, in a relative sense. It should 
also be noted that the phase space patterns of the three pre-
dictability time scales are strongly related to the pattern of τ1.  
(A linear regression of the predictability time scales onto 
τ1 over all values in phase space show a strong relationship 
(R2 > 0.97 for all three time scales) indicating that the pre-
dictability time scales are dominated by τ1.)

Fig. 10  Oscillator statistics for 
the MJO index and Model 2. 
The oscillator mean (left), total 
oscillator variance (centre), and 
within-ensemble correlation 
(right) are shown for both the 
MJO index (solid lines) and 
Model 2 (dashed lines). Ensem-
bles are calculated given an ini-
tial observation of amplitude 2 
and MJO phases 2 (first row), 4 
(second row), 6 (third row), and 
8 (fourth row) and with error 
σ 2
obs

= 0.1. The horizontal lines 
show the critical levels used to 
define the three predictability 
time scales that are read of the  
x-axis: τµ, τσ 2, and τρ
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The dependence of the predictability time scales on 
MJO phase alone was examined by pooling the estimates 
of τµ, τσ 2, and τρ within each phase (Fig. 12, grey and red 
dots). This was performed for the time scales estimated 
from Model 2 (i.e., Fig. 11) and also directly from the 
observed MJO index (e.g., the intersection of the solid 
lines in Fig. 10 with the critical levels). The pattern of the 
predictability time scales τµ and τρ as a function of phase 
shows a good correspondence between the model and the 
MJO index, with maximum predictability in phases 8 and 
1–2 and minimum predictability in phases 4–5 (Fig. 12a, 
c). This pattern is also exhibited for the Model 2 estimates 
of τσ 2 but the estimates from the observed MJO index dif-
fer slightly, with minimum values now in phases 2 and 3 
(Fig. 12b). The estimated predictability times scales, aver-
aged over all amplitudes and phases, from the Model 2 and 

observed MJO index are consistent: τµ = 18.2 days (MJO 
index) and 17.6 days (Model 2), τσ 2 = 9.34 days (MJO 
index) and 9.55 days (Model 2), and τρ = 3.46 days (MJO 
index) and 3.25 days (Model 2).

4.4  Seasonality

It is well-known that the variability of the MJO varies 
strongly by season. The MJO is dominant in Austral Sum-
mer and Fall during which variability is focused just south 
of the Equator (e.g., Zhang 2005). During Boreal Summer 
MJO variability is related to the Asian summer monsoon 
and is linked to the Boreal Summer Intraseasonal Oscillation 
(BSISO; e.g., Kikuchi et al. 2012; Lee et al. 2013) which 
consists of northward propagating intraseasonal anomalies. 
Previous studies demonstrated seasonal differences in the 
predictive skill of models at forecasting the MJO (Maha-
raj and Wheeler 2005; Kondrashov et al. 2013). Given this 
background we fit our damped harmonic oscillator model to 
determine if MJO predictability varies by season as well.

We first fit Model 1 and Model 2 to the observed MJO 
index for all phases and amplitudes, as in Sect. 4.1, but 
stratified by season. We define the seasons following 
Maharaj and Wheeler (2005): Austral Summer as Novem-
ber–April and Boreal Summer as May–October. Estimated 
model parameters are shown in Table 4. The parameters 
of Model 1 are consistent with those derived from the fit 
obtained by Maharaj and Wheeler (2005); P is shorter in 
Austral Summer and τ1 is longer in Austral Summer. For 
Model 2, we see the same seasonal variation for P and τ1 
while the value of τ2 does not vary greatly between seasons.

We then fit Model 2 to the observed MJO index con-
ditioned on initial amplitude and phase, as in Sects. 4.2–
4.3, but stratified by season. The fitted model was then 

Fig. 12  Predictability time scales as a function of MJO phase. The 
time scales for (left) decay of the oscillator amplitude τµ, (centre) 
increase of total oscillator variance τσ 2, and (right) decay of the cor-
relation τρ are shown as a function of initial MJO phase for the MJO 
index (grey dots) and Model 2 (red dots), pooled over all MJO ampli-

tudes. The average values across amplitudes at each phase are shown 
as black and red lines (MJO index and Model 2 respectively). The 
black and red lines have been smoothed with running average with a 
bandwidth of 1 MJO phase

Table 4  Estimated model parameters, in units of days, for Model 1 
and Model 2 fit seasonally

Parameters estimated by maximum likelihood using the MJO index 
time series stratified by Austral Summer (NDJFMA) and Boreal 
Summer (MJJASO). The equivalent parameters from Maharaj and 
Wheeler (2005) are included for comparison with Model 1. Param-
eters are shown in units of days

τ1 τ2 P

Austral summer

 Model 1 44.9 – 50.8

 Model 2 18.6 1.16 49.5

 Maharaj and Wheeler (2005) 44.3 – 49.8

Boreal summer

 Model 1 38.3 – 59.2

 Model 2 15.3 1.20 58.3

 Maharaj and Wheeler (2005) 34.7 – 61.4
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used to estimate the predictability time scales τµ, τσ 2, 
and τρ as a function of initial condition (Fig. 13). Here 
we present only τµ in order to illustrate seasonality. The 
seasonally stratified predictability time scales exhibit 
the same general pattern discussed previously: greater 
predictability in phases 8 and 1–2 and reduced predict-
ability in phases 4–5. However, this pattern is rotated 
clockwise in Austral Summer and counter-clockwise in 
Boreal Summer by about 0.5 of an MJO phase. In other 
words, the timing of greatest predictability occurs earlier 
in the MJO cycle during Austral Summer but later during 
Boreal Summer. In addition, the time scales are generally 
larger in Austral Summer than in Boreal Summer indi-
cating a seasonal cycle in the predictability of the MJO 
index. The value of τµ is generally 3–4 days longer in 
Austral Summer than in Boreal Summer (Fig. 13), τσ 2 is 
1–2 days longer (not shown), and τρ is up to 1 day longer 
(not shown).

5  Summary and discussion

A forced damped harmonic oscillator (FDHO) model with 
autocorrelated forcing has been shown to reproduce the 
basic predictability features of the observed MJO index. 
First, it was shown that the evolution of the mean position 
of an ensemble of observed MJO events in phase space 
(given an initial observation of the MJO) evolves in a simi-
lar manner to a damped harmonic oscillator. Specifically, 
the ensemble mean undergoes a rotation in phase space 
and decay of amplitude. Additionally, the ensemble spread 
increases and the correlation between ensemble members 
decays over time (i.e., the mixing within an ensemble 
increases).

Motivated by this apparent damped oscillator behav-
iour of the observed MJO index we developed a pair of 
discrete time, autoregressive FDHO models for the MJO 
index: one with Gaussian white noise forcing (Model 1) 
and one with autoregressive forcing (Model 2). Model time 

series and phase space behaviour of the oscillator models 
were broadly consistent with the MJO index. Furthermore, 
the evolution of the model statistics (i.e., ensemble mean, 
variance and correlation) as well as the spectral proper-
ties (power spectral density, coherence and phase spectra) 
exhibit the same patterns as the MJO index.

The models were fit to the MJO index by maximum 
likelihood estimation. Model selection was performed by 
fitting both Model 1 and Model 2 to the complete MJO 
index time series and comparing the models by cross-val-
idation and also using three selection criteria (a likelihood-
ratio test, AIC, and BIC). It was determined that Model 2 
provided a better fit to the data than Model 1. We then fit 
Model 2 to the MJO index for observations covering phase 
space in order to map out the predictability statistics of the 
MJO.

The predictability time scale of the oscillator depends on 
the choice of predictability statistics: oscillator mean, total 
oscillator variance, or correlation. Overall, our estimates 
of the predictability time scale based on the decay of the 
observed MJO amplitude (τµ ≃ 14–21 days) is broadly 
consistent with previous estimates (see Sect. 1). The time 
scale for the increase in total MJO variance (τσ 2) is typi-
cally about half of τµ (τσ 2 ≃ 8–11 days). The time scale for 
loss of correlation between individual members of an MJO 
ensemble (τρ) is much shorter again with typical values 
in the range of 2.8–3.7 days. The predictability time scale 
found by Ding et al. (2010) using Nonlinear Local Lyapu-
nov Exponents (NLLEs) would be similar to the time scale 
for our ensemble spread (σ 2) to reach 95 % of its saturation 
value. We do not calculate Lyapunov exponents but our 
approach of generating ensembles of MJO events which 
share the same initial condition is conceptually similar to 
the “local dynamic analog” used in the NLLE approach. In 
fact, a calculation of the time scale to 95 % saturation of σ 2 
indicates values of 20–30 days (not shown) which was gen-
erally consistent with the value of 21 days found by found 
by Ding et al. (2010) for the Wheeler and Hendon (2004) 
MJO index.

a b c

Fig. 13  Seasonally stratified predictability time scale τµ in phase 
space as a function of initial condition in phase space for Model 
2. a Shows results for all seasons (same as Fig. 11a) while b and c 

show results for Austral Summer (NDJFMA) and Boreal Summer 
(MJJASO) respectively. The time scales are shown in units of days

Author's personal copy



173Predictability of the Madden–Julian Oscillation index: seasonality and dependence on MJO…

1 3

The predictability time scales for the decay of the mean 
(τµ) and increase of the variance (τσ 2) vary considerably 
with initial MJO phase. In general, predictability is higher 
in phases 8 and 1–2. These phases correspond to periods 
when the region of active convection associated with the 
MJO is located over Africa and the western Indian Ocean, 
e.g., immediately preceding the development of an MJO 
event over the Indian Ocean. This may be indicative of an 
organized atmospheric state, preceding the development 
of an MJO event, which lends itself to a longer time scale 
for predictability as opposed to a possibly less organized 
atmospheric state during MJO propagation away from the 
generation region. It has been noted that prediction skill of 
the MJO in numerical models is often reduced when the 
initial condition consists of active MJO convection which 
must pass over the Maritime Continent (i.e., MJO phases 
4–5, consistent with Kondrashov et al. (2013)), leading to 
the identification of the Maritime Continent as a potential 
“barrier to predictability” of the MJO (Vintzileos and Pan 
2007; Seo et al. 2009; Weaver et al. 2011; Fu et al. 2011). 
Our results indicate that this barrier may be a property of 
the MJO itself rather than a failing of numerical prediction 
models, although our model indicates predictability is low-
est for MJO events initialized in phases where anomalous 
convection is located over the Maritime Continent (phases 
4–5) rather than immediately before (e.g., phase 2, Kim 
et al. 2014). Also, the fact that the time scale for the loss of 
correlation τρ is much shorter than τµ indicates that, if per-
forming an ensemble prediction of the MJO, beyond 3–4 
days the ensemble mean and variance provide a better pre-
diction than the individual ensemble members.

The predictability time scales were also found to vary 
with season. Greater predictability is found in Austral Sum-
mer when the MJO is strongest and most coherent. The val-
ues of τµ, τσ 2, and τρ are 3–4 days, 1–2 days and up to 1 
day longer, respectively, in Austral Summer than in Boreal 
Summer. We also found the Ding et al. (2010) equivalent 
time scale (i.e., time scale to 95 % saturation of the ensem-
ble spread) was 4–5 days longer in Austral Summer than 
in Boreal Summer (not shown). In addition we found that 
the timing of greatest predictability occured about one 
MJO phase earlier in the MJO cycle during Austral Sum-
mer than Boreal Summer. Note that these are predictability 
time scales for the Wheeler and Hendon (2004) MJO index 
and not for the MJO itself. Therefore, these time scales 
should not be interpreted as the predictability time scales 
for tropical intraseasonal variability generally. In particular, 
during Boreal Summer predictability may be derived from 
the dynamics of the BSISO which are not captured by the 
Wheeler and Hendon (2004) MJO index.

The model captures several aspects of MJO predictabil-
ity. First, estimates of the predictability time scales from 
the model fits are consistent with estimates directly from 

the observed MJO index. Second, the model captures the 
same relationship, in terms of relative magnitude, between 
τµ, τσ 2, and τρ. Also, the best-fit model is able to capture 
the same dependence of τµ and τρ on initial MJO position 
in phase space as is evident in the observations. The fact 
that model is able to reproduce the overall predictability 
dynamics, including oscillation, decay, time scales, and 
phase space variation, indicates that this model has value. 
This is remarkable considering the simplicity of the model 
and suggests it may serve as a simple but useful tool for 
understanding MJO predictability and as a benchmark 
against which to test more complex dynamical forecast 
systems.
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Appendix 1: Calculating the initial condition 
distribution given an observation

Here we outline a Bayesian method for choosing an ensem-
ble of MJO events, given an initial condition or observa-
tion. In the absence of more information, the scatter plot of 
all MJO index values (Fig. 3a, grey points) approximates 
the distribution of the MJO at some arbitrary time t0 (e.g., 
Ristic et al. 2004). We will refer to this distribution as the 
initial condition prior (ICP) distribution (with zero mean 
and covariance σ 2

ICI, where I is the 2× 2 identity matrix; 
note that σ 2

IC = 1 since we have normalized the MJO index 
to have unity variance). Let xobs be an observation of the 
normalized MJO at time t0, subject to observation error 
with zero mean and covariance σ 2

obsI (the observation dis-
tribution is taken to be bivariate normal: proportional to 
exp(−|xobs − x|2/2σ 2

obs) where x denotes the true state of 
the MJO at time t0). We take a Bayesian approach whereby 
we use this observation to update the ICP distribution, 
yielding as the posterior distribution what we term the 
initial condition (IC) distribution. We approximate draws 
from the IC distribution by drawing samples, with replace-
ment, from the set of observed points in the scatter plot dis-
cussed above and with weighting values proportional to the 
observation distribution. As σ 2

obs → 0 the IC distribution 
will reduce in spread and become centered more closely on 
xobs; as σ 2

obs → ∞ the IC distribution will revert back to 
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the ICP distribution. The mathematics details can be found 
in the following two subsections.

Observed MJO index and FDHO Model 1

Consider the observed MJO index (Sect. 2) or the FDHO 
Model 1 (Sect. 3.2) where the MJO index (or bivariate 
oscillator state) xt at time t0 is stored in the two dimensional 
state vector xt. We assume that the initial condition prior 
(ICP) distribution for the state at time t0, xt0, is normal with 
zero mean and covariance matrix Σ IC,prior. (Σ IC,prior = Σ∞ 
for the MJO index and the models discussed in Sect. 3.)

Let an imperfect observation of the oscillator and forc-
ing at time t0 be denoted xobs = xt0 + ν where ν is the 
observation error which is taken to be normally distributed 
with zero mean and covariance matrix Σobs = σobsI. In a 
Bayesian framework, the posterior distribution, or initial 
condition (IC) distribution, of the oscillator state given this 
observation and the ICP distribution is normal with mean 
and covariance

which follows directly from the product of two nor-
mal probability distributions (the observation and ICP 
distributions).

The exact forms of µIC and Σ IC follow from Eqs. 17 and 
18 in a straightforward manner to give

Note that as σ 2
obs → ∞ the mean and covariance of the IC 

distribution revert to the ICP (prior) mean and covariance 
as expected; as σ 2

obs → 0 the mean of the IC distribution 
is simply the observation itself and the covariance is zero, 
indicating a perfectly known observation.

FDHO Model 2

Now consider Model 2 as discussed in Sect. 3.3 where the 
bivariate oscillator state xt and bivariate autoregressive 
forcing f t, at time t0, are stored in the first and last pair of 
elements, respectively, of the four dimensional state vector 
yt. Again we assume that the initial condition prior (ICP) 
distribution for the state at time t0, yt0, is normal with zero 
mean and covariance matrix Σ IC,prior.

(17)µIC =Σ IC,prior

(

Σ IC,prior +Σobs

)−1
µobs

(18)Σ IC =
(

Σ
−1
IC,prior +Σ

−1
obs

)−1
,

(19)µIC =
1

1+ σ 2
obs

xobs

(20)Σ IC =
σ 2
obs

1+ σ 2
obs

Σ IC,prior.

Let an imperfect observation of the oscillator and forc-
ing at time t0 be denoted yobs = yt0 + ν where ν is the 
observation error which is taken to be normally distrib-
uted with zero mean and covariance matrix Σobs = σobsI. 
In general, we are able to observe the oscillator (e.g., the 
MJO index) but not the forcing and so we must make some 
assumptions about the forcing observation. We assume the 
mean and covariance matrix of the observation distribution 
are of the form

where α represents the variance of the uncertainty on our 
observation of the forcing. We consider the case in which 
the observation error of the forcing is very large (α → ∞),  
implying that we only have observational information on 
the oscillator components and not on the associated forc-
ing components. Can we write an expression for the IC 
distribution, including the forcing components, despite not 
observing the forcing?

As the uncertainty on the forcing observation becomes 
very large (i.e., in the limit α → ∞) the mean and covari-
ance of the IC distribution is given by (using Eqs. 17 and 
18)

where Σ ij refers to the ijth block of Σ IC,prior when arranged 
in four 2×2 blocks. Now, as σ 2

obs → 0 the mean of the IC 
distribution is simply the observation itself and an estimate 
of the mean forcing comes from a linear regression of the 
forcing components onto the oscillator components (e.g., 
Johnson and Wichern 2002); similarly, the posterior covari-
ance of the forcing is simply given by the variance of the 
residuals from a linear regression of the forcing compo-
nents onto the oscillator components of yt0. Therefore, an 
observation of the oscillator components, in the absence of 
an associated observation of the forcing, can be used along 
with the ICP distribution to infer the mean of the forcing.

Appendix 2: Likelihood functions for Model 1 
and Model 2

In this appendix we present the likelihood functions used 
to estimate the parameters of Model 1 and Model 2, includ-
ing a generalization for ensembles of MJO events, that are 

(21)yobs =
[

xobs
f obs

]

Σobs =
[

σ 2
obsI 0

0 αI

]

,

(22)µIC =
1

1+ σ 2
obs

[

I

Σ21Σ
−1
11

]

xobs,

(23)

Σ IC =
1

1+ σ 2
obs

[

σ 2
obsΣ IC,prior +

[

0 0

0 Σ22 −Σ21Σ
−1
11 Σ12

]]

,
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selected based on their proximity to a given initial condi-
tion (Sect. 4). The method is a bivariate generalization of 
the method presented for a univariate process by Priestley 
(1981). First, consider a bivariate Gaussian white noise 
error process {ǫt}. The errors are independent and identi-
cally distributed with an assumed mean of zero and covari-
ance matrix σ 2

ǫ I. It follows that the probability density of ǫt 
is given by

where ′ denotes a transpose, and ǫ′tǫt is simply the sum of 
squares of the two elements of ǫt (i.e., ǫ21,t + ǫ22,t). The joint 
probability for ǫt for t = 1, 2 . . .N is given by

A single time series

Model 1 is a bivariate AR(1) process (see Sect. 3.2) which 
can be rewritten xt − A1xt−1 = ǫt where ǫt is a bivari-
ate Gaussian white noise error process, A1 = A1(�) and 
� = (τ1,P, σǫ) is the vector of unknown model parameters. 
Note that given observations x1 to xN we can define

The joint probability distribution of x2 to xN, conditional 
on the value of x1, is then given by

To estimate the unknown parameter vector lambda we max-
imize Eq. 27 in the usual way. Note that the effect of con-
ditioning on x1 will be small if N is large enough (Priestley 
1981). More discussion of this point is provided in the next 
subsection.

Model 2 is a quadrivariate AR(1) process (see Sect. 3.3). 
This process can be rewritten as a bivariate AR(2) pro-
cess and expressed as xt − (A1 + A2)xt−1 + A2A1 = ǫt 
where ǫt is a bivariate Gaussian white noise error process 
and A2 = A2(τ2). It is then straightforward to follow the 
same procedure as above and (i) define a probability den-
sity function for x3 to xN, conditioned now on x1 and x2,  
and (ii) minimize the associated likelihood function with 
respect to the parameter vector � = (τ1, τ2,P, σǫ).

(24)p(ǫt) =
1

2πσ 2
ǫ

exp

(

−
1

2σ 2
ǫ

ǫ′tǫt

)

,

(25)

p(ǫ1, ǫ2 . . . ǫN ) =
N
∏

t=1

p(ǫt)

=
(

1

2πσ 2
ǫ

)N

exp

(

−
1

2σ 2
ǫ

N
∑

t=1

ǫ′tǫt

)

.

(26)

Q(x1, x2 . . . xN , �) =
N
∑

t=2

ǫ′
t
ǫt =

N
∑

t=2

(xt − A1xt−1)
′(xt − A1xt−1).

(27)

p(x2, x3 . . . xN |�, x1)

=
(

1

2πσ 2
ǫ

)N−1

exp

(

−
1

2σ 2
ǫ

Q(x1, x2 . . . xN , �)

)

.

An ensemble of trajectories

Consider now an ensemble of MJO trajectories that share 
an initial condition in phase space. The ensemble consists 
of M trajectories, each one defined over K time steps fol-
lowing the initial condition at time t0. Each trajectory is 
thus of length K + 1. The log-likelihood function for an 
individual trajectory is equivalent to the single time series 
case (previous subsection), after replacing N with K + 1.  
The log-likelihood function for the ensemble of trajectories 
is given by summing the log-likelihood functions of the M 
individual trajectories which comprise the ensemble. As 
above, maximum likelihood estimation is used to estimate 
the model parameters. Concering the approximation used 
above for large N, or large K in the present case, we found 
that the log-likelihood function for the ensemble converges 
to a stable value for K ≥ 35. This has informed our choice 
of K = 35 for the ensemble length used in Sect. 4.2.
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