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ABSTRACT

Ocean climate extremes have received little treatment in the literature, aside from coastal sea level and

temperatures affecting coral bleaching. Further, it is notable that extremes (e.g., temperature and pre-

cipitation) are typically not well represented in global climatemodels. Here, the authors improve dynamically

downscaled ocean climate model estimates of sea surface temperature (SST) extremes in the Tasman Sea off

southeastern Australia using satellite remotely sensed observed extreme SSTs and the simulated marine

climate of the 1990s. This is achieved using a Bayesian hierarchical model in which the parameters of an

extreme value distribution aremodeled by linear regression onto the keymarine climate variables (e.g., mean

SST, SST variance, etc.). The authors then apply this fitted model, essentially a form of bias correction, to the

marine climate projections for the 2060s under an A1B emissions scenario. They show that the extreme SSTs

are projected to increase in the Tasman Sea in a nonuniform way. The 50-yr return period extreme SSTs are

projected to increase by up to 28C over the entire domain and by up to 48C in a hotspot located in the central

western portion of the Tasman Sea, centered at a latitude;500 km farther south than the projected change in

mean SST. The authors show that there is a greater than 50% chance that annual maximum SSTs will increase

by at least 28C in this hotspot and that this change is significantly different than that which might be expected

because of random chance in an unchanged climate.

1. Introduction

Understanding the behavior of extreme events in the

ocean, particularly in a changing climate, is important for

many aspects of the marine climate system. The behavior

of extremes helps us understand the relationship between

extreme events and the underlying marine climate (e.g.,

mean, variances, etc.) and can lead to a better under-

standing of the physical mechanisms that underpin the

dynamics of extreme events. Extreme events also play

an important role in the distribution of ecological

habitats and species. Marine species can typically sur-

vive over a finite range of environmental conditions (e.g.,

ocean temperatures). Abrupt changes to these condi-

tions, which may be associated with a rapidly changing

climate and/or a tipping point, can perturb the system in

a way that is potentially hazardous or even catastrophic

for the habitat or species. In 2011, for example, a ‘‘marine

heat wave’’ was recorded off Western Australia (Pearce
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and Feng 2012) causing shifts in habitat distributions of

various species, including seaweeds, invertebrates, and

fish, which not only occurred during the event but per-

sisted after the event had dissipated (Wernberg et al.

2012).

The study of extreme events in the environment ex-

tends back at least to the origins of the extremes field

with Emil Gumbel and his examination of hydrological

extremes: for example, floods (Gumbel 1941, 1958).

Additionally, several important advances in extreme

value theory owe their origins to researchers studying

hydrological extremes: for example, the ‘‘peak over

threshold’’ approach (Shane and Lynn 1964; Todorovic

and Zelenhasic 1970). The study of extremes in the at-

mosphere is also well developed, with particular areas of

focus including rainfall (e.g., Coles and Tawn 1996;

Cooley et al. 2007), air temperatures (e.g., Mearns et al.

1984; Alexander et al. 2006), and wind speeds (e.g.,

Hennessey 1977; Cook 1985; Zwiers 1987; Coles and

Walshaw 1994). Extreme value analysis has also been

applied directly to global climate model output to as-

sess the projected changes in extreme events under

climate change scenarios (McGuffie et al. 1999; Kharin

et al. 2007; Perkins et al. 2013).

Clearly, extreme events have been well studied in

hydrology and in the atmospheric sciences, but oceanic

extremes have received relatively little attention. The

close relationship between sea level variability and hy-

drology, as well as the availability of long (multidecadal)

high-resolution (hourly) sea level records, has meant

that much of the examination of oceanic extremes has

focused on sea level (e.g., Pugh and Vassie 1980; Tawn

and Vassie 1989; Tawn 1992; Dixon et al. 1998; Church

et al. 2006; Bernier and Thompson 2006; Hunter 2010).

The study of extreme ocean currents and technical issues

related to the bivariate nature of this variable also date

back several decades (Pugh 1982; Carter et al. 1987;

Griffiths 1996; Oliver et al. 2012), and there has been

some attention paid to extreme oceanwave heights (Muir

and El-Shaarawi 1986; Dawson 2000; Caires and Sterl

2005). However, the study of ocean temperature and

salinity is relatively new and few oceanographers are

familiar with the techniques of extreme value theory. In

this study, we will examine extreme sea surface temper-

atures (SSTs). To our knowledge, no previous large-scale

ocean climate studies have focused on understanding the

nature ofmarine climate extremes from an extreme value

perspective.

Oceanic and atmospheric circulationmodels—and, by

extension, climate models—generally have a poor rep-

resentation of extreme events. This is often related to

the relationship between extreme events and physical

processes, which operate on scales smaller than themodel

can resolve. For example, the representation of preci-

pitation extremes in climate models is poor—models

often drizzle over large areas and fail to simulate the

frequency and magnitude of heavy rainfall events (e.g.,

Perkins et al. 2007)—while their representation of air

temperature extremes is regarded as acceptable (Randall

et al. 2007). The representation of tropical cyclones is

often poor, in terms of frequency and intensity, and is

sensitive to the choice of convective parameterization

(Randall et al. 2007). For the ocean, the resolution of

ocean general circulation models is often too coarse to

resolve mesoscale eddies, which is a large source of

internal oceanic variability. Furthermore, ocean surface

fluxes are usually specified either from atmosphericmodel

output or by two-way coupling with an atmospheric

model, and therefore these forcing fields suffer from the

same underrepresentation of extremes as the atmospheric

models themselves. Hence, even if the ocean models can

resolve the extremes due to internal variability, their

forcing fields often do not contain the relevant or appro-

priate representation of atmospheric extremes.

Nevertheless, circulation models do simulate the over-

all climate well. Here, we define climate as the ‘‘central

statistics’’ (e.g.,mean, variance, etc.) of the environmental

variables (e.g., temperature, circulation, etc.) and will use

those terms interchangeably. In the context of climate

extremes we are often concerned with relatively common

extremes (e.g., heat waves, the upper 95th percentile) and

thus not necessarily the far tails of the probability distri-

bution. The tails of common probability distributions can

be related to the centralmoments (e.g., Berman 1964) and

we can see this intuitively for events that are not too ex-

treme. For example, if themean or the variance increases,

so too should the extremes, and higher-order central

moments such as the skewness and kurtosis can be an-

ticipated to have predictable consequences on the shape

of the distribution’s tails. Previous studies have shown

that air temperature extremes can be estimated using the

central moments such as the mean temperature (Griffiths

et al. 2005) or a combination of the mean, variance, and

skewness (Ballester et al. 2010). In addition, Simolo et al.

(2011) modeled extreme temperatures using the first four

L moments and de Vries et al. (2012) estimated changes

in extremes between the present and a possible future

climate using the mean and variance alone. Our aim is to

develop an extremes model that is able to recover the

observed extremes and estimate future extremes given

projections of ocean climate over the observed and future

time periods.

This paper is organized as follows: The marine cli-

mate, simulated by an eddy-resolving ocean model, is

presented and evaluated against the observed marine

climate in section 2. A review of extreme value theory is
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presented in section 3 followed by its application to the

observed and simulated 1990s SST extremes off south-

eastern Australia. An improved estimation of the sim-

ulated extreme events, for both the 1990s and the 2060s,

is presented in section 4 using a Bayesian hierarchical

model and the marine climate as predictors of the ex-

tremes. A summary and discussion are presented in

section 5.

2. Observed and model simulated marine climate

The ocean model output and observations are de-

scribed in sections 2a and 2b, respectively, followed by an

evaluation of the modeled marine climate in section 2c.

a. Ocean model simulations of the 1990s
and the 2060s

The Ocean Forecasting Australia Model (OFAM;

Oke et al. 2008) was used to model the marine climate

off of southeasternAustralia. Themodel has near-global

coverage (708S–708N)with 47 z levels in the vertical (10-m

resolution in the upper 200m). The horizontal resolution

is 1/108 in latitude and longitude (eddy resolving) in the

Australasia region (908E–1808, 708S–208N) but coarsen-

ing outside of this domain up to 28 in latitude and longi-

tude in the North Atlantic Ocean. OFAM underpins the

Bluelink ocean forecasting and the Bluelink Reanalysis

(BRAN) systems developed by the Centre for Australian

Weather and Climate Research.

In the present study, we examine dynamically down-

scaled climate projections using OFAM, forced by a

reanalysis representation of the historical (1990s) climate

and by global climate model projections of climate

change, for the decades of the 1990s and 2060s. The

downscaled projection of the 2060s was forced with a cli-

matology of 2060s fluxes, based on output from theGCM

climate run, in order to reduce the influence of low-

frequency climate variations on the results. A control ex-

periment (CTRL) with a climatology built from observed

1990s fluxes was run for comparison with the projection.

Estimations of marine climate from the CTRL run were

evaluated against the observations in section 2c.

The dynamical downscaling simulations of climate

changeprojections are described elsewhere (Chamberlain

et al. 2012; Sun et al. 2012) and the details are summarized

here. Fields of ‘‘normal year’’ ocean surface fluxes of heat,

freshwater and momentum were generated from 40-yr

European Centre for Medium-Range Weather Forecasts

(ECMWF) Re-Analysis (ERA-40) output (Uppala et al.

2005) for the decade of the 1990s. This normal-year

forcing represents typical atmospheric variability on all

time scales shorter than 1 yr, but major climate indices

such as El Ni~no, Indian Ocean dipole, etc., are in neutral

states. In CTRL, OFAM was forced repeatedly by this

normal-year forcing. Repeat annual forcings were used

because of the difficulty in running the high-resolution

model long enough to faithfully reproduce the low-

frequency variability, which is important to the distri-

bution of extreme events. Hence, this variability was

deliberately removed from the experiments. Global

climate model [Commonwealth Scientific and Industrial

Research Organisation Mark, version 3.5 (CSIRO

Mk3.5)] simulations, forced under the A1B emissions

scenario, provide climate change projections through the

twenty-first century. In what we refer to as the A1B ex-

periment, the CSIROMk3.5 projected change was added

to the normal-year forcing and was used to force OFAM.

We obtain daily mean sea surface temperature T, sea

surface height h, and surface horizontal currents u from

the last 9 yr for both simulations. Sample time series ofT

at four locations in the Tasman Sea are shown in Fig. 1.

Because of our regional ecological interests in a broader

funded project, we restrict our domain to be bounded by

1448E, 1698E, 488S, and 208S and ignore all grid cells with
water depth less than 200m. This latter constraint

eliminates from the analysis all model estimates on the

continental shelf, where OFAM has much less skill

(Oliver and Holbrook 2014). A set of marine climate

statistics was calculated for each simulation and these

statistics are listed in Table 1. Each statistic is a vector of

length J, where J is the total number of grid cells in

latitude and longitude. Additionally, the annual maxima

of T were calculated at all locations and denoted Ŷ

where Ŷ5 fŷj j j5 1, 2, . . . , Jg is a list of vectors, with ŷj
being a vector of length 9, representing the nine annual

maxima at the jth location. For computational effi-

ciency, only every fifth grid cell in latitude and longitude

was retained.

b. Ocean observations

Daily fields of observed SSTs from the Advanced

Very High Resolution Radiometer (AVHRR) were

obtained from the Jet Propulsion Laboratory (http://

podaac.jpl.nasa.gov/) for the period 1 January 1982–31

December 2009 (28 yr) and are defined on a 4-km grid. It

was desirable to regrid these AVHRR data onto the

same grid as the OFAM output. Thus, for each OFAM

grid location, the nearest AVHRR grid point was first

identified and then a spatial average of SST was calcu-

lated from the mean of nine locations in a 3 3 3 box

centered on this location. This spatial average was per-

formed to partially compensate for the many missing

values (up to 90% at some locations) present in the daily

4-km-resolution AVHRR data. The linear trend was

then removed by linear regression from the time series

at each location independently, and the mean, variance,
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and third central moment were calculated along with the

28 annualmaxima at all locationsY5 fyj j j5 1, 2, . . . , Jg.
Weekly fields of isostatically adjusted sea level on

a 1/48 grid were obtained from Archiving, Validation,

and Interpretation of Satellite Oceanographic data

(AVISO; http://www.aviso.oceanobs.com/) for the pe-

riod 14 October 1992–22 July 2009. The variance of sea

level was calculated at each location in space. Global

mean dynamic topography (MDT), which is mainly

caused by the average large-scale circulation patterns

such as the East Australian Current (EAC) in the Tas-

man Sea region, was obtained from the National Space

Institute, Technical University of Denmark (Andersen

and Knudsen 2009). We used the DTU10 product, which

is defined on a horizontal grid with 1-min resolution in

latitude and longitude.

c. Evaluation of model simulated marine climate

The 1990s marine climate estimated by the CTRL

simulation has been evaluated here against observed

marine climate statistics. The simulated marine climate

fields have been smoothed with an isotropic Gaussian

filter to remove all variability with wavelengths of 2.58 or
less in latitude and longitude.

A comparison of observed and simulated mean SST

m, SST variance s2, and SST third central moment m3

can be seen in Fig. 2. The mean SST is very well rep-

resented by the model, showing a strong meridional

FIG. 1. Time series of simulated SST. The SST time series at four locations are shown for the

1990s (the CTRL simulation; black lines) and the 2060s (the A1B simulation; red lines). Lo-

cations are shown in Fig. 2 (top right).

TABLE 1. List of marine climate statistics calculated from ocean

model simulations. A dash in the last column indicates a unitless

statistic.

Name Variable Units

T mean (first central moment) m 8C
T variance (second central moment) s2 8C2

T third central moment m3 8C3

T fourth central moment m4 8C4

T skewness (m3/s
3/2) g —

T excess kurtosis (m4/s
4 2 3) k —

h variance s2
h m2

Eddy kinetic energy (per unit mass

and volume)

K m2 s22
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FIG. 2. Comparison of observed and simulated SST climate statistics: (top) mean SST, (middle) SST

variance, and (bottom) the SST third central moment for (left) the observations and (right) the CTRL

simulation.
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gradient of SST ranging from 108–118C in the south to

268–278C in the north and a zonal gradient in SST near

the Australian continent associated with the southward-

flowing EAC (Figs. 2a,b). The mean is slightly over-

estimated (;18C) in the extreme south. The SST variance

is also well represented showing a region of high variance

bounded by the Australian landmass and lying between

328 and 438S (Figs. 2c,d). This region roughly corresponds
to the separation point of the East Australian Current

(;338S) and its eddy-rich southward extension (Godfrey

et al. 1980; Stammer 1997; Suthers et al. 2011; Brassington

et al. 2011). The SST variance in the CTRL simulation is

lower in magnitude and less smooth in space, most likely

at least partly due to the shorter time over which the

statistics are calculated (9 yr for the simulations and 28 yr

for the observations). The SST third central moment is

also reasonably well represented with positive values in

the Tasman Sea south of the EAC separation point, due

to a large proportion of eddies being anticyclonic and

thus warm-core eddies (e.g., Thompson and Demirov

2006), and negative values immediately to the north

(Figs. 2e,f). The positive values in the tropical region

are not well represented.

The simulatedmean sea level compares well against the

observedmean dynamic topography (Figs. 3a,b;MDThas

been shifted by22.7m to facilitate comparisonwithmean

FIG. 3. Comparison of observed and modeled sea level. (a) The observed mean dynamic topography and (b) the

CTRL simulation mean sea levels (b). (c) The observed and (d) CTRL simulation sea level variances.
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sea level). Regions of strong gradients clearly show the

EAC along the east coast of Australia and its separation,

as well as subsequent eastward flow, around 338S. A

continuation of this pattern southward to Tasmania in-

dicates the presence of the EAC extension (Stammer

1997; Brassington et al. 2011). Note that, because of the

technique used to calculate the mean dynamic topogra-

phy, specifically the use of gravity-based measurements

of the geoid, it will appear artificially smooth in com-

parison to the simulated mean sea level (Andersen and

Knudsen 2009). Finally, sea level variance is well repre-

sented by the CTRL simulation (Figs. 3c,d). The eddy-

rich EAC separation and extension regions appear in

both the observed and simulated fields. The simulations

slightly overestimate the sea level variance (by 0.01–

0.02m2) and place the region of largest variance farther

north (18–28 of latitude) than in the observations. The

velocities, transport, and seasonal cycle of the ocean

model representation of the EAC have been evaluated

against observations in more detail by Sun et al. (2012);

the simulated eddy-rich EAC extension, which extends

south from the separation point, has been discussed by

Matear et al. (2013).

3. Observed and model simulated extreme SSTs

Extreme value theory is outlined in section 3a fol-

lowed by its direct application to observed and simu-

lated SST annual maxima in section 3b.

a. Extreme value theory

There are two commonways tomodel extreme values.

The ‘‘block maxima’’ approach fits the generalized ex-

treme value (GEV) distribution to a collection of data

maxima taken over subsets of the data (e.g., monthly

maxima, annual maxima, etc.). The peak-over-threshold

approach fits the generalized Pareto distribution to data

values greater than a predefined threshold (e.g., the 95th

percentile). In both cases, the fitted distribution can be

used to estimate extreme values with return periods lon-

ger than the original record length. For our purposes, the

block-maxima approach is preferred since (i) we have a

natural block size, due to seasonal variability, over which

to calculate maxima (i.e., 1 yr) and (ii) the peak-over-

threshold approach would require a separate model for

the threshold parameterwhenwe later apply theBayesian

hierarchical approach discussed in section 4.

A general overview of extreme value theory and prac-

tical aspects of its application can be found inColes (2001).

Here, we summarize those aspects relevant for the present

study. Consider a stationary sequence of random variables

fxt j t 5 1, 2, . . .g. Let y denote the maximum of xt over

a block of length n,

y5max(x1, x2, . . . , xn) . (1)

In the limit n / ‘, the distribution function of y con-

verges to one of three types, which can be summarized

by the GEV distribution,

FGEV(y j a, b, j)5 exp
n
2
h
11 j

�y2 a

b

�i21/jo
, (2)

where a is the location parameter, b . 0 is the scale pa-

rameter, and j is the shape parameter. For j / 0 the

GEV converges to theGumbel (type I) distribution, for

j . 0 it converges to the Fr�echet (type II) distribution,

and for j , 0 it converges to the Weibull (type III)

distribution.

The relatively short record length (28 yr for observed

SSTs and 9 yr for the model simulations) could lead to

unstable estimates of the shape parameter. This instability

could be especially problematic when developing a model

for the extreme value distribution parameters where sta-

tionarity is assumed across the decades of the 1990s and

2060s. Therefore, we elect to use the Gumbel (type I)

distribution, which is given by

FI(y j a,b)5 exp
h
2exp

�
2
y2 a

b

�i
(3)

and has dependence only on the location parameter a and

the scale parameter b.

The return level zL for a return period L is related to

the quantiles of the Gumbel distribution by

zL(y)5 a2 b log[2logFI(y j a, b)] (4)

and the quantiles of the Gumbel distribution are in turn

related to the return period by

L(y)5 [12FI(y j a, b)]21 , (5)

where the units of zL are the same as the units of y and

the units of L are given by the block length used in

Eq. (1): for example, if the block length is 1 yr, then L

has units of years. For a fitted Gumbel distribution, one

can estimate zL given a return period L and vice versa

using Eqs. (4) and (5).

b. Estimates of extreme SSTs

The Gumbel distribution was fitted to the observed

and CTRL simulation annual maxima using maximum

likelihood, providing estimates of the Gumbel distri-

bution parameters. From the estimated values and the

theory outlined above, it is possible to estimate the return

level for return periods longer than the original record

length. We choose the return level z50, corresponding to
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a return period of 50 yr, to represent a suitably extreme

event. We also tried a return period of 20 yr and found

that the results were not sensitive to this choice.

The z50, derived from observed SSTs and denoted zobs50 ,

is dominated by the mean SST (Fig. 4a). There is a

strong meridional gradient in zobs50 ranging from appro-

ximately 148C in the south (at ;508S) to 328C in the

northern Coral Sea (at ;208S). It is interesting to note

that over a large proportion of the domain the contours

of zobs50 run roughly east–west, as do contours of mean

SST (see Fig. 2a): that is, there is a strong zonality in

both the extremes and the background mean SST.

However, north of 388S and west of 1628E (the eddy-rich

EAC separation zone) these contours deviate strongly

from this zonality and reflect more the mean position of

the EAC separation and the large SST variance found

there (see Fig. 2c). Therefore, it appears that both the

mean SST and the SST variance play a strong role in the

spatial distribution of extreme SSTs.

The z50, derived from the CTRL simulation and de-

noted zC50, exhibit a similar pattern as zobs50 (Fig. 4b). The

strong meridional gradient is present although the ex-

tremes are overpredicted by up to 48C in a broad region

southeast of Tasmania (see Fig. 4d for amap of zC50 2 zobs50 ).

The tilting of contours in the EAC separation zone is

present but less clearly defined than in the observations.

Additionally, zC50 exhibits a lot of high wavenumber vari-

ability that is not present in the observations, and this is

clearly reflected in the difference map.

The differences between zC50 and zobs50 are generally less

than 638C over most of the domain. However, isolated

residual differences exceed 638C and even 648C in

subregions southeast of Tasmania, off the southeast cost

of mainlandAustralia, northwest of New Zealand’s South

FIG. 4. The 50-yr return levels for observed and CTRL simulation sea surface temperatures. The 50-yr return levels were estimated for

(a) the observations and (b) the CTRL simulation, using maximum likelihood fits of the Gumbel distribution to the annual maxima and

(c) for the CTRL simulation using the Bayesian hierarchical model (see section 4b for description of selected model). (d),(e) The dif-

ference between the two estimates of the CTRL simulation extremes and the observations are shown.
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Island, and in the central eastern portion of the domain.

While these differences may be smaller than expected

given the model resolution and the nature of the GCM-

derived forcing fields, we demonstrate in the next sec-

tion that it is possible to improve upon these estimates

using more sophisticated extreme value techniques ap-

plied to the model output.

4. Improving model simulated extreme SSTs

In this section, we develop an extreme value model

(sections 4a and 4b) and show that it provides improved

estimates of the SST extremes using output from the

CTRL simulation, when evaluated against observations

(section 4c). Following this evaluation, we apply the model

to the A1B simulation output (section 4d) and discuss

the role played by individual marine climate variables in

the estimated change of extreme SSTs (section 4e).

a. Modeling extremes using climate statistics

The CTRL simulation provides good estimates of the

large-scale circulation and themarine climate (section 2c).

However, we believe the estimates of SST extremes can

be improved (section 3b). Inspired by previous studies of

extremes (e.g., Griffiths et al. 2005; Ballester et al. 2010;

Simolo et al. 2011; de Vries et al. 2012), we develop

a simple approach of modeling extreme SSTs using the

basic marine climate statistics from the model simula-

tion output.

Themodeling of SST extremes as a function of marine

climate variables is performed here using a Bayesian hi-

erarchical model (BHM; e.g., Cooley et al. 2007; Cressie

and Wikle 2011). The observed SST annual maxima Y

are modeled using a Gumbel distribution, as in section 2.

However, we now model the parameters of the Gumbel

distribution as a function of a latent spatial process. This

latent spatial process is characterized by the marine cli-

mate: for example, the mean SST, SST variance, and so

on. This model is based on the fundamental assumption

that there exists an important physical connection (re-

lationship) between the underlying climate of the marine

system and the behavior of its extremes. The assumption

that themodel characterizes a physical relationship that is

invariant in time and space, rather than a purely proba-

bilistic relationship, allows us to assume stationarity in

the model parameters and use the fitted model to esti-

mate extremes in a projected climate.

The latent spatial process is modeled here as a linear

regression of the Gumbel distribution parameters onto

the marine climate,

a5Xba 1 �a and (6)

f5Xbf 1 �f , (7)

where X is a J 3 M design matrix constructed from the

marine climate variables (the covariates), ba and bf

are vectors (of length M) of regression coefficients, and

�a and �f are vectors (of length J) of error terms char-

acterizing effects not included in the model. Here, M is

the number of covariates included in the model plus one

(the plus one indicates the required column of ones inX)

and J is the number of spatial locations considered. The

error terms �a and �f are normally distributed with zero

mean and covariancematrices t21
a I and t21

f I, respectively,

where I is the identity matrix and ta and tf are error

precisions.1 The Gumbel distribution parameters at

all locations J have been combined into the vectors

a and b; since the scale parameter b is constrained to

be positive, it has been rescaled as f5 logb to allow f

to take on both positive and negative values. The

model is described in more detail, including technical

aspects of the Bayesian approach, in appendix A and

in the more detailed companion paper by Oliver et al.

(2014, hereafter OWH).

The marine climate statistics are first collected to-

gether into the covariate matrix X. This matrix may in-

clude of any subset of the possible covariates listed in

Table 1. For example, if we include themean SSTm, SST

variance s2, and the eddy kinetic energy K, the design

matrix is written as

X5 [1 jm js2jK] , (8)

where 1 is a vector of ones, and the linear regression

equations for a and f become

a5ba,0 1ba,1m1ba,2s
21ba,3K1 �a and (9)

f5bf,01bf,1m1bf,2s
21bf,3K1 �f . (10)

It is possible to include different sets of covariates sep-

arately into the two regression models, but for simplicity

we choose the same set of covariates for both models.

Note that the regression coefficients and the error terms

do not vary in space. They express an underlying con-

nection between the climate statistics and the Gumbel

distribution parameters that is taken to hold at every

location in space.

We sample for the regression coefficients and error

variances using a Markov chain Monte Carlo (MCMC)

technique (e.g., Spiegelhalter et al. 2002). Within each

step of theMCMC loop, we draw samples of a andf and

1We are using the convention, common in the Bayesian ap-

proach, of expressing variance s2 as the reciprocal of the precision

t21 (e.g., Gelman et al. 2003).
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accept or reject based on the metropolis rule. Then we

Gibbs sample for ba and bf and for ta and tf. After

discarding a burn-in period and thinning the remainder,

we are left with samples from the joint posterior distri-

bution of the bs and the ts. The MCMC sampling algo-

rithm implemented in this study is explained in more

detail in appendix B and the companion paper OWH; see

Coles (2001) and Gelman et al. (2003) for a general dis-

cussion on MCMC techniques including the metropolis

rule and the Gibbs sampler.

b. Model selection

We have tested different combinations of covariates

(i.e., different models) and performed a systematic model

selection procedure. The different models are listed in

Table 2. The models were compared using the deviance

information criteria (DIC; Spiegelhalter et al. 2002),

which provides a measure of model fit D, a measure of

model complexity pD, and theDIC, which is the sum ofD

and pD. In comparing two models, the one with the lower

DIC value is preferred. The model complexity pD is the

effective number of model parameters and provides

a penalty for models that may provide a better fit (e.g.,

a lower D) but do so without any (or enough) new in-

dependent information (e.g., it helps control for model

overfitting). However, it should be noted that DIC has

a bias toward overfitmodels (Ando 2007) and sowe select

our model based on the direct DIC results combined with

our background knowledge and expertise in the dynamics

of the overall marine climate system.

Model selection was performed using a stepwise re-

gression.We chose the first predictor a priori as themean

SST m. It is clear from maps of extreme SSTs that the

mean SST plays a strong role in determining the pattern

of extremes and so we do not feel that this is an improper

choice (e.g., cf. Fig. 4, left, and Fig. 2, top left). Each step

of the stepwise procedure can be seen as a separate

subtable within Table 2, and the DIC score of the best

model at each step is shown in bold.We also tested for the

power law scaling of certain parameters (e.g., s2 versus

s, K versus K1/2, s2
h versus sh) but found no significant

difference in the DIC scores (not shown).

Note that both skewness g and the third central mo-

mentm3 were considered as possible predictors. Skewness

is defined as the third central moment divided by the

variance to the power of 3/2 and as such is a unitless

quantity (see Table 1). This allows for the relative

asymmetry of distributions with different variances to be

compared. Here, however, we do not wish to lose in-

formation on the magnitude of the distribution asym-

metry (in units of 8C3), as this will directly impact the

magnitude of the extreme values (in units of 8C). It can be
seen in Table 2 that the model that includes the third

central moment is preferable to that which includes the

skewness. In fact, the difference in DIC scores is at least

as large as the change in DIC between the best models at

each step of the stepwise regression. Similar arguments

hold for considering both the fourth central moment m4

and kurtosis k (which is a variance-normalized form of

the fourth central moment; see Table 1) and the model

comparison similarly shows that the model that includes

the fourth central moment is preferable to that which

includes the kurtosis (Table 2).

We determined the best model to include m, s2, m3,

and K (see DIC score in bolded italics in Table 2). This

model was chosen based on the following criteria: (i) the

DIC scores have largely converged and the model

complexity pD has reached a minimum at this point in

the stepwise regression; (ii) the inclusion of m4 and s2
h

(the next two steps in the stepwise regression) further

reduced the DIC scores but we rejected those models

based on the fact that they are highly correlated with s2

and K, respectively (correlation coefficients of 0.96 and

0.93 respectively; the correlation coefficients between

the remaining covariates range from 0.05 to 0.64); and

(iii) we prefer tomake a conservative choice based on the

fact that DIC scores have a bias toward overfit models

(Ando 2007). It is probably best to choose a simpler, if

slightly underfit, model than a complex and possibly

TABLE 2. Comparison of candidate models. The covariates in-

cluded in the model are listed in the first column. The other col-

umns indicate measures of model fit (D) and model complexity

(pD) as well as the deviance information criteria and Bayesian

predictive information criteria scores. The DIC and BPIC scores in

bold indicate the preferredmodels at each stepwise regression step;

the DIC and BPIC scores in bolded italics indicate the preferred

model overall.

Covariates included

in model D pD DIC BPIC

m 165 257 4608 169 865 174 473
m, s2 154 443 4655 159 098 163 753

m, m3 163 949 4608 168 557 173 165

m, g 165 005 4610 169 615 174 225

m, m4 155 546 4656 160 202 164 858

m, k 164 717 4610 169 327 173 937

m, s2
h 163 157 4610 167 767 172 377

m, K 161 244 4612 165 856 170 468

m, s2, m3 152 789 4649 157 438 162 087

m, s2, m4 154 361 4658 159 019 163 677

m, s2, s2
h 154 385 4662 159 047 163 709

m, s2, K 154 318 4656 158 974 163 630

m, s2, m3, m4 152 787 4651 157 438 162 089

m, s2, m3, s
2
h 152 436 4643 157 079 161 722

m, s2, m3, K 151 965 4641 156606 161247

m, s2, m3, K, m4 151 583 4644 156 227 160 871

m, s2, m3, K, s2
h 151 453 4648 156 101 160 749

m, s2, m3, K, s2
h, m4 150 970 4646 155 616 160 262
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overfit model, especially when we apply this model to the

A1B experiment (see section 4d). Note that we have also

compared the models using the Bayesian predictive in-

formation criteria (BPIC; BPIC5D1 2pD; Ando 2007),

which attempts to compensate for the DIC bias toward

overfitting, but it in fact leads to the same conclusions as

the DIC (Table 2, last column).

c. Estimates of extreme SSTs for the 1990s

The z50 derived from the CTRL simulation using the

BHM (denoted zC,H50 ) were calculated as the posterior

mean of the z50 values sampled using the MCMC tech-

nique described above. The zC,H50 exhibit a very similar

pattern to zobs50 (Figs. 4a,b). As above, there is a strong

meridional gradient over the entire domain and also

a strong zonal gradient between about 258 and 388S. Also,

the spatial pattern of zC,H50 is much smoother than zC50: for

example, much of the high wavenumber variability has

been removed. We note that this is true even if the cli-

mate fields are not smoothed prior to the analysis.

The differences between zC,H50 and zobs50 are typically less

than 628C (Fig. 4e). Notably, the model does very well

(differences less than 618C) over much of the Tasman

Sea and the regions adjacent to the Australian land

boundary. Differences exceed 628C in a small region

southeast of Tasmania and in the central eastern por-

tion of the domain that is within the subtropical gyre

interior of the southwest Pacific region (see Holbrook

and Bindoff 1997). It appears that the BHMmay not be

capturing the underlying relationship between the central

moments and the extremes in these specific regions.

However, the BHM does capture this relationship well

in much of the Tasman and Coral Seas and near the

Australian landmass.

Ideally, beforemoving on to projecting future extremes

in the next section, we would evaluate the model per-

formance against independent data through time (e.g., by

splitting the historical record into two or more parts, us-

ing bootstrap methods, using hindcast known results,

etc.).However, because of the inadequacies of themarine

observational record (in record length, data gaps, and

spatial and temporal inhomogeneities) and the nature of

the analysis of extremes, it is not possible to appropriately

split the historical record and evaluate the model in this

way, even using a bootstrap-type approach. The historical

record comprises 28 yr of data, which translates into

annual maxima time series of length 28. We consider

this to be aminimum record length against which suitable

conclusions can be made about extremal behavior. If we

were to split the record into, say, two periods of 14yr, the

periods (i) are unlikely to reflect the overall extremal

behavior (because of the short record length) and (ii) are

highly likely to have significantly different extremal

statistics (because of their small sample sizes) despite

nearly identical background climates. Alternatively,

bootstrapping is inappropriate as the fitting and vali-

dation datasets should contain the same number of data

points in order to be able to compare the statistics of their

extremes. Therefore, in the absence of a longer obser-

vational record, we are unfortunately unable to perform

an appropriate or robust evaluation of the model results

through time.

Instead, we have applied a relatively simple spatial

cross-validation approach to evaluate the model per-

formance against independent data. We have split the

spatial domain into two regions: a training region and

a validation region. The definition of the training and

validation regions was free and we chose a structured

twofold cross-validation procedure. A checkerboard

pattern, with squares of side lengthL5 158 latitude and
longitude (see appendix C for details on the choice of

this length scale), was defined over the entire domain.

For the first validation test, the training region consists

of the black squares and the validation region consists

of the white squares (Fig. 5b); for the second test, the

training and validation regions are switched (Fig. 5c). A

checkerboard pattern, as opposed to simply dividing

the domain into two along a central east–west or north–

south line, was chosen so that all physical regions (tropics,

Southern Ocean, western boundary current, subtropical

gyre, etc.) are included in the model. By comparing the

50-yr return levels over the validation regions of Figs. 5b

and 5c (the nonstippled regions) against the same region

in the observations (Fig. 5a), we can see that the BHM

performs well at capturing the spatial pattern of the ex-

treme SSTs. We have confirmed that the BHM has suc-

cessfully used the extremes–covariate relationship to

realistically estimate extreme SSTs outside the training

region.

d. Estimating extreme SSTs for the 2060s

We have demonstrated that the BHM approach has

provided improved estimates of SST extremes over

those estimates obtained by directly fitting the Gumbel

distribution to the CTRL simulation annual maxima.

We now take the fitted model from section 4b and use it

to estimate extreme SSTs for the 2060s based on the

A1B emissions scenario simulation. We do so by using

the same regression coefficients and error variances (the

bs and ts) and swapping the CTRL simulation covariates

X for those derived from theA1B simulation. In this way,

we can generate samples from the posterior distributions

of a, b, and z50 that are representative of the A1B scenario

marine climate.

The z50 posteriormean from theA1B simulation using

the BHM (denoted as zA,H
50 ) is shown in Fig. 6b along
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with zC,H50 in Fig. 6a. The pattern of extreme SSTs is

similar: a strong meridional gradient over the whole

domain and a strong zonal gradient between about 258
and 388S. However, the absolute values of zA,H

50 are larger

than zC,H50 . The difference (Fig. 6c) shows that the z50
values are at least 18C greater over almost the entire

domain. In addition, there is a ‘‘hotspot’’ in the central

and western Tasman Sea where the z50 values are 28–48C
greater in zA,H

50 than in zC,H50 .

The Bayesian approach underlying the BHMprovides

information about the entire posterior distribution and

not only the posteriormean. This information can be used

to provide probabilistic information about the change in

SST extremes between the 1990s and 2060s. From the

posterior samples of a and b, we can sample from the

posterior distribution of the annualmaximaY: essentially

simulations of extreme SSTs. This is undertaken for

both the CTRL and A1B simulations. Therefore, at

FIG. 5. Cross validation of BHM extremes model. (a) The 50-yr return level extreme SSTs from observations (zobs50 ). (b),(c) The 50-yr

return levels from the cross validation of the BHM extremes model for the 1990s (zC,H50 ). In (b), the model has been trained over the black

checkerboard squares, indicated by stippling, and then used to predict over the white checkerboard squares. In (c), the model has been

trained on the white checkerboard squares, again indicated by the stippling, and used to predict over the black checkerboard squares.

FIG. 6. The 50-yr return levels for the (left) CTRL (zC,H50 ) and (middle) A1B (zA,H
50 ) simulation sea surface temperatures using the

Bayesian hierarchical model. The return levels are calculated from the mean of the posterior distributions for the 50-yr return levels.

(right) The difference between the 50-yr return levels of the two simulations is shown.
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each location in space we have a sample of 6000 (see

appendix B) annual maxima under the CTRL and the

A1B climates, and from these we can calculate proba-

bilities of changes in annual maxima.

Spatial maps of the probability distributions are pro-

vided in Fig. 7. These are probabilities that SST annual

maxima will increase by a specified amount, based on

the posterior samples, between the 1990s and the 2060s.

The probabilities that annual maxima will increase by

any amount between the 1990s and the 2060s is at least

50% over almost the entire domain (Fig. 7a). The

probabilities that annualmaximawill increase by at least

18, 28, 38, or 48C (Figs. 7b–e) highlights the Tasman Sea

hotspot noted above. For example, the probability that

extremes will increase across this southwest Pacific do-

main is close to 100% everywhere across both the cen-

tral Tasman Sea and the Coral Sea (Fig. 7a). However,

as we increase the threshold from at least 18C to at least

38C (Fig. 7d), the probabilities in the Coral Sea have

dropped to less than 20%, while in the central Tasman

Sea they remain as high as 40%–60%.

The same information can be inverted to provide

a different perspective, as shown in Figs. 7f–j. Here, each

panel maps the minimum change in annual maxima, be-

tween the 1990s and the 2060s, at the indicated threshold

probability. With a 10% probability (i.e., very unlikely),

we see minimum changes in annual maxima of over 38C
over much of the domain and exceeding 48–58C in some

regions (Fig. 7f). As we increase the probabilities to 25%,

50%, 75%, and 90% (i.e., go from less to more likely;

Figs. 7g–j), the estimates become increasingly more

conservative and the change in annual maxima pro-

gressively decreases as expected.

We can compare these estimates against what can be

expected randomly given an unchanged climate (i.e., the

1990s climate from the CTRL simulation). The black

dots in the top panels of Fig. 7 indicate where the prob-

abilities are no greater than the probabilities of the same

increase in annual maxima from two samples drawn from

the posterior distribution given the 1990s climate: that is,

a null hypothesis of no climate change. The vast majority

of locations (with the exception of a few in the extreme

south and northeast of the domain in Figs. 7d,e) have

probabilities exceeding those expected randomly in an

unchanged climate for a$48C increase in annual maxima

(Fig. 7e).

In the bottom panels of Fig. 7, the black dots indicate

where the minimum changes in annual maxima are no

greater than those expected randomly from the CTRL

climate. Therefore, with 90% probability we can say very

little about our estimated changes relative to what can be

expected by random chance in an unchanged climate

FIG. 7. Probabilities of change in annual maxima. (top) Contours indicate (a) the probabilities that the maximum annual SSTs will

increase by any amount between the 1990s and 2060s and the probabilities that they will increase by at least (b)–(e) 18, 28, 38, and 48C.
Black dots indicatewhere these probabilities do not exceed those due to randomness in an unchanged climate. (bottom)Contours indicate

the minimum changes in annual maxima estimated with probabilities of (f)–(j) 10%, 25%, 50%, 75%, and 90%. The black dots indicate

that the minimum changes do not exceed those due to randomness in an unchanged climate.
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(Fig. 7j). However, we can claim that ourmodel estimates

a 75%probability ofminimum changes in annualmaxima

in the Tasman Sea hotspot of $28C (Fig. 7i) and a 50%

probability of minimum changes in annual maxima over

most of 18–28C overmost of the domain and 28–48C in the

Tasman Sea hotspot.

e. Relating the change in extremes to marine climate
change

The presence of this hotspot of change in extreme SSTs

indicates that the extremes are not changing uniformly in

space. We have examined this by mapping the change in

individual marine climate statistics between the A1B

and CTRL simulations. The mean SST is projected to

increase over the entire domain, with a hotspot in the

upper central Tasman Sea (Fig. 8a). The overall positive

change inmean SST clearly contributes to the fact that the

change in z50 is positive over nearly the entire domain.

However, the hotspot of mean SST change (upper central

Tasman Sea) is not collocated with the hotspot of change

in extremes (central and western Tasman Sea; cf. Figs. 6c,

8a). Further, the SST variance is projected to increase

over a region of similar extent to the extremes hotspot

and decrease farther north (Fig. 8b). The SST third

central moment is projected to increase east of Tasmania

and largely decrease farther north (Fig. 8c). A compari-

son of these last two patternswith the pattern of change in

z50 showsmuch in common. Therefore, it appears that the

FIG. 8. Changes in various marine climate statistics. Shown are the differences between A1B and CTRL simulation

(a) mean SST, (b) SST variance, (c) SST third central moment, and (d) eddy kinetic energy.
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change in extreme SSTs in a changing climate is due

largely to a combination of changes to themean SST, SST

variance, and the SST third central moment.

The change in eddy kinetic energy shows a broad re-

gion of positive change in the Tasman Sea, which is in-

tensified near theAustralian coast and south of the EAC

separation zone (Fig. 8d). This pattern does not match

the pattern of change in z50 but may be indicative of an

underlying mechanism: that is, an increased level of

eddy activity in the Tasman Sea leading to an increased

variability of SST (more eddies moving in space and

time) and an increased SST skewness (more warm-core

eddies).

5. Summary and discussion

The aim of this study was to estimate extreme sea

surface temperature (SST) events off southeastern

Australia for the decades of the 1990s and 2060s, under

a climate change emissions scenario. Such estimations

were felt to be important for two main reasons. First,

existing atmosphere and ocean general circulation

models—and global climate models especially—tend to

have a poor representation of extremes and thus an

improvement upon this would be a valuable and useful

contribution. Second, extreme events in the marine en-

vironment have not been studied extensively and are

particularly important for ecology. Extreme marine

conditions can have harmful or even devastating effects

on habitat distribution. We feel that this study begins to

fill in the present need for more accurate estimates

of extremes in the marine environment in a changing

global climate.

We estimated extreme SSTs from observations and

from the dynamically downscaled OFAM CTRL simu-

lation, representing the 1990s, by fitting an extreme value

distribution (the Gumbel distribution) to observed and

simulated SST annual maxima. While the CTRL simu-

lation provided reasonable estimates of extreme SSTs

(differences between observed and simulated 50-yr

return levels were typically less than 638–48C), we felt

that this result could be improved upon. Therefore, we

developed a Bayesian hierarchical model (BHM), in-

formed by the CTRL simulation marine climate, to

improve the estimation of observed extreme SSTs. This

model provided improved estimates of SSTs for the

1990s (differences between observed and simulated 50-yr

return levels were typically less than 628C).
This fitted model was then applied to output from

a corresponding dynamically downscaled simulation of

an A1B climate, representing the 2060s under a climate

change scenario, to provide estimates of future extreme

SSTs. The estimated change in extreme SSTs between

the 1990s and the 2060s from the BHM extreme value

model highlights the presence of a projected hotspot in

the southwestern Tasman Sea, where the change in ex-

treme SSTs is greater than in the surrounding region.

We have shown that the pattern of SST extremes can

be reasonably well represented using only the key cen-

tral statistics, or the marine climate. The basic pattern of

SST extremes is dominated by the mean SST; the SST

variance also plays a strong role especially near the EAC

separation zone. The climate variables have different

patterns of change between the 1990s and the 2060s, e.g.,

the mean SST increases everywhere with a hotspot in the

central Tasman Sea while the variance increases in the

southwestern Tasman Sea and decreases immediately to

the north. Therefore, changes in the extremes are a result

of a combination of changes in themarine climate statistics.

We estimate the extreme SSTs off southeastern

Australia to change significantly between the 1990s and

the 2060s. The 50-yr return period extremes are pro-

jected to increase by up to 28C over almost the entire

domain, excluding the extreme south. In addition, 50-yr

return levels in a hotspot region identified in the central

and western Tasman Sea are projected to increase by

28–48C because of changes in the SST variability in that

region. The Bayesian approach has given us probabi-

listic information about the changes as well. The prob-

ability that annual maxima in the 2060s will be warmer

than in the 1990s is .50% across the entire domain; the

probability that the hotspot will be .28C is over 50%.

These results exceed random effects in an unchanged

climate and therefore there is some evidence that an-

thropogenic climate change is significantly influencing

the projected SSTs.

Possible mechanisms for the observed changes in ex-

tremes are twofold. First, the mean SST is increasing

nearly everywhere because of an overall warming cli-

mate. There is also a hotspot of increasing mean SST

(Holbrook and Bindoff 1997; Ridgway 2007) and it has

been suggested that its presence is related to a stronger

EAC transportingmore warmwater into the Tasman Sea

(Ridgway 2007). Second, the changes in the variance (and

possibly the third central moment as well) are most likely

due to changes in eddy activity. The eddy kinetic energy,

especially near the coast of southeastern Australia, is

simulated to increase dramatically between the 1990s and

2060s (by up to 100% or more in some regions). Matear

et al. (2013) have noted a projected increase of eddy ac-

tivity in the Tasman Sea in these dynamically downscaled

simulations and linked it to increased nutrient levels be-

cause of enhanced vertical mixing. This may be due to

increased numbers of eddies and/or more stable (long

lived) eddies due to a more stable stratification in a

warmer climate.
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In this study, we have examined extremes using marine

climate projections from a single model configuration.

We recognize that there would be utility in examining

results and BHM behavior across several model config-

urations. However, there are larger philosophical and

practical questions around doing this in our opinion,

which places it beyond the scope of the present study.

Consider the BHM applied to output from a suite of

climate models. If the bias correction from our extremes

model worked perfectly, then the results for the historical

period from all models would be the same and equal to

the observed extremes. In reality, however, the bias cor-

rection will not work perfectly (as is in fact the case for

the model considered in the present study; see Fig. 4e)

and results will differ between models and observations,

as well as across models. These differences could be

interpreted, correctly, in two ways: (i) as failings in the

BHM extremes model or (ii) as failings in the climate

models themselves (or both). Differences may arise

because of significant failings in the climate models

because of their inability to capture a particular aspect

of the marine climate (e.g., the distribution of SST

variance could be completely wrong). While bias cor-

recting should improve any model, it cannot work

miracles if marine climate estimates are too far differ-

ent from observations. Differences may also arise be-

cause of failings of the BHM extremes model itself:

that is, an inability to effectively perform the bias

correction. A comprehensive analysis of differences

across bias-corrected model results is a considerable

undertaking and requires a separate study.

The Bayesian hierarchical extreme value technique

used in this study provides a framework for estimating

realistic and robust extremes from climate or ocean

model outputs that do not adequately reproduce the

extremes. Essentially, the model is a form of bias cor-

rection. The observed extremes are used to calibrate

the model of extremes frommarine climate simulations

over the same period and this bias correction is then

applied to the simulation of future climate. This ap-

proach is general and can be applied to other marine

(e.g., salinity, chlorophyll) or atmospheric (e.g., air tem-

perature, precipitation) variables. To use this technique

for a chosen marine or atmospheric variable, the fol-

lowing two conditions must be satisfied: First, obser-

vations of extreme values and model simulations of

climate statistics must be available over the same time

period (typically the present but possibly a historical

time period). Second, model simulations of climate sta-

tistics must be available for another time period for which

projections of extremes are desired (typically a future

projection). The technical details of this approach are

described in more detail by OWH.
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APPENDIX A

The Bayesian Hierarchical Model

We model the extreme SSTs using a Bayesian hier-

archical model (BHM). The BHM is described in detail

in OWH, and here we present an overview sufficient for

the present study. Any reader wishing to develop a

similar model or gain further insight into the technique

should consult OWH.

There are three layers in our BHM. The data layer

models the observed annual maximaY using the Gumbel

distribution. The climate process layer models the pa-

rameters of the Gumbel distribution u2 as functions of

a latent spatial process described in terms of marine cli-

mate variables. The final layer consists of the prior dis-

tributions for the parameters of the climate process layer

u1. In this way, the inference for the parameters of the

climate process model is given by Bayes rule,

p(u jY)} p(Y j u2)p(u2 j u1)p(u1) , (A1)

where p(u jY) is the posterior distribution of u5 (u1, u2)

given the dataY, p(Y j u2) is the likelihood function (i.e.,

the Gumbel distribution extreme value model), p(u2 j u1)
is the climate process model, and p(u1) are the priors.

Samples from the posterior distribution of u are esti-

mated using a Markov chain Monte Carlo algorithm

described in appendix B.

a. Data layer

We assume that, at each location j, the annual maxima

yj are distributed according to the Gumbel distribution

[see Eq. (3)],
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p(yj j aj,fj)5P
n

i51

fI(yji j aj,fj) , (A2)

where n is the number of annual maxima (i.e., yj is a

vector of length n); fI is the Gumbel density function;

and the scale parameter bj has been scaled logarithmi-

cally, fj 5 log(bj), to allow for both positive and negative

values in the model. When considering annual maxima

at all locations Y5 fyj j j5 1, 2, . . . , Jg, the probability
becomes

p(Y j u2)5P
J

j51

p(yj j aj,fj)5P
J

j51
P
n

i51

fI(yji j aj,fj) ,

(A3)

where u2 5 (a, f); a 5 faj j j 5 1, 2,. . . , Jg; and f 5
ffj j j 5 1, 2, . . . , Jg.

b. Climate process layer

We assume the model for the Gumbel parameters u2
can be factored into independent models for a and f:

that is,

p(u2 j u1)5 p(a j u1,a)p(f j u1,f) , (A4)

where u1 5 (u1,a, u1,f).

We model the parameters a and f as multivariate

normal distributions with means that are linear combi-

nations of some covariates [see Eqs. (6) and (7)],

p(a j u1,a)5N J(Xba, t
21
a I) and (A5)

p(f j u1,f)5N J(Xbf, t
21
f I) . (A6)

Here,X is a J3M designmatrix of covariates (Xjm is the

value of the mth covariate at location j), ba and bf are

M 3 1 vectors of regression coefficients, and ta and tf
are error precisions. Here,M is the number of covariate

variables plus one: each variable corresponds to a col-

umn of X and is defined at all locations j and the plus one

indicates the required column of ones in X [see Eq. (8)].

The parameters of the climate process layer are u1 5
(ba, bf, ta, tf).

c. Priors

We assume that each parameter in the climate process

layer is distributed independently: that is,

p(u1)5 p(ba)p(bf)p(ta)p(tf) . (A7)

The following forms have been assumed for the priors of

each of these parameters:

p(ba)5NM(ma, ta,0I) , (A8)

p(bf)5NM(mf, tf,0I) , (A9)

p(ta)5Gamma(aa, ua), and (A10)

p(tf)5Gamma(af, uf) , (A11)

wherema5mf5 0, ta,05 tf,05 1022, aa5 af5 10, and

ua 5 uf 5 1 are chosen to provide suitably broad (dif-

fuse) priors.

APPENDIX B

Markov Chain Monte Carlo Sampling

Samples from the posterior distribution p(u jY) are

generated using a Markov chain Monte Carlo (MCMC)

algorithm. Initially, the parameter values are set to u1 5
(ba, bf, ta, tf) 5 (0, 0, 1, 1) and u2 5 (a, f) 5 (0, 0).

Then, at each step of the MCMC loop:

1) Loop over all locations j 5 1, 2, . . . J and for each j:

(i) Draw candidate samples of aj and fj using Eqs.

(A5) and (A6).

(ii) Accept or reject candidates based on the Me-

tropolis rule (e.g., Gelman et al. 2003).

2) Given a and f (at all locations), Gibbs sample for

the bs and ts. This step requires that expressions

for the conditional distributions for the bs and ts be

known explicitly. These are supplied by OWH.

The MCMC loop is performed for 100 000 iterations.

We thin the chain, retaining every 10th sample, and dis-

card a burn-in period of 4000 samples to yield N 5 6000

samples from the posterior.

We can use samples of u1 to generate samples from

the posterior predictive distributions of a and f [see

Eqs. (A5) and (A6)] and, given a return period L, the

return levels zL [see Eqs. (4) and (5)]. Then, given sam-

ples of a and f (and b5 expf), we can generate samples

from the posterior distribution of the annual maxima Y

[see Eqs. (3) and (A3)]. Given samples from such distri-

butions, it is straightforward to calculate posterior means,

variances, and other statistical measures.

APPENDIX C

Correlation Length Scale of SST Extremes

In this appendix, we describe the method used to de-

termine the checkerboard side length L used in the spa-

tial cross-validation procedure in section 4c. Since there
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is serial correlation (spatially) of the SST annual

maxima time series, the choice of L is important: L

must be larger than the spatial correlation length scale

to ensure that the data in the training and validation

regions are independent.

We determine the correlation length scale as follows:

The elements of the cross-correlation matrix R for the

SST annual maxima Y are given by Rij 5 r(yi, yj), where

r(x, y) represents the zero-lag correlation between time

series x and y. We modeled the spatial structure of the

cross correlation as a two-dimensional Gaussian G [fol-

lowing Meyers et al. (1991) and Holbrook and Bindoff

(2000)],

Gij 5 exp

2
642

(x1i 2 x1j)
2

L2
1

2
(x2i 2 x2j)

2

L2
2

3
75 , (C1)

where L1 and L2 are the zonal and meridional correla-

tion length scales, respectively. If we take the logarithm

of Gij, we have

logGij 52
(x1i 2 x1j)

2

L2
1

2
(x2i 2 x2j)

2

L2
2

5K1X1ij 1K2X2ij ,

(C2)

whereK1 52L2
1,K2 52L2

2,X1ij5 (x1i2 x1j)
2, andX2ij5

(x2i 2 x2j)
2, which is linear in X1 and X2. We fit this

Gaussian to R by linear regression,

vec(logR)5K1vec(X1)1K2vec(X2)1 e , (C3)

where vec denotes the vectorization of a matrix by se-

quentially stacking the columns on one another (e.g.,

Harvey 1990) and � is an error term. Least squares es-

timates of K1 and K2 lead to correlation length scale

estimates of L1 5 13.28 and L2 5 14.88. Therefore, we
took L 5 158 . L2 . L1 as our estimate of the check-

erboard side length.
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