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Estimating oceanic and atmospheric extremes from global climate models is not trivial as these models
often poorly represent extreme events. However, these models do tend to capture the central climate sta-
tistics well (e.g., the mean temperature, variances, etc.). Here, we develop a Bayesian hierarchical model
(BHM) to improve estimates of extremes from ocean and climate models. This is performed by first mod-
eling observed extremes using an extreme value distribution (EVD). Then, the parameters of the EVD are
modeled as a function of climate variables simulated by the ocean or atmosphere model over the same
time period as the observations. By assuming stationarity of the model parameters, we can estimate
extreme values in a projected future climate given the climate statistics of the projected climate (e.g.,
a climate model projection under a specified carbon emissions scenario). The model is demonstrated
for extreme sea surface temperatures off southeastern Australia using satellite-derived observations
and downscaled global climate model output for the 1990s and the 2060s under an A1B emissions sce-
nario. Using this case study we present a suite of statistics that can be used to summarize the probabi-
listic results of the BHM including posterior means, 95% credible intervals, and probabilities of
exceedance. We also present a method for determining the statistical significance of the modeled changes
in extreme value statistics. Finally, we demonstrate the utility of the BHM to test the response of extreme
values to prescribed changes in climate.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The recent ‘‘marine heat wave’’ recorded off Western Australia
(Pearce and Feng, 2012; Wernberg et al., 2012) has focussed atten-
tion on marine extremes, a field that has received relatively less
attention than atmospheric extremes. Extreme events can have
significant impacts on the physical, chemical, and biological envi-
ronment and it is not clear how they might change in a changing
climate. Understanding the behavior of marine extremes in a
changing climate is important for our understanding of the greater
marine climate system as well as for predicting potential impacts
on ecological habitats (Johnson et al., 2011; Wernberg et al., 2012).

Global climate models (GCMs) are indispensable tools for our
understanding of the ocean and atmosphere climate system and
how it may be changing under anthropogenic influences. GCMs
perform well at capturing the general characteristics of the climate
(e.g., the spatial distribution of mean temperatures) but underper-
form at capturing extreme events. For example, GCMs tend to
underpredict the frequency and severity of heavy rainfall events
and overpredict the extent of light drizzle (e.g., Perkins et al.
(2007)). Despite the fact that GCMs poorly represent the extreme
values it is still possible to glean information about the extremes
from what the models represent well: the general climate.

Intuitively, the tails of probability distributions are related to
the central moments of the distribution – at least for events which
are ‘‘not too extreme’’. The shape of a distribution’s tails can
change significantly due to changes in the central statistics of the
distribution, such as the mean or variance (e.g., Mearns et al.
(1984) and Wigley (1985)), and one is reminded of the classic
Intergovernmental Panel on climate change figure depicting the
change in extreme hot and cold events due to changes in the tem-
perature mean, variance, and skewness (Field et al., 2012). While it
has been noted that trends in the statistics of extremes may not
closely follow the trends of the mean (Katz, 2010) several studies
have demonstrated that extreme value statistics can be well repre-
sented using the central statistics. For example, the frequency of air
temperature extremes in the Asia–Pacific region were shown to be
well-predicted by the mean temperature alone (Griffiths et al.,
2005). Ballester et al. (2010) have shown that the changes in fre-
quency, length, and intensity of air temperature extremes over
Europe, in a climate change scenario, can be closely approximated
using changes in the mean, variance and skewness simulated by an
ensemble of GCM simulations. Simolo et al. (2011) modeled daily
maximum and minimum temperature extremes in Europe using
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the first four L-moments (Hosking, 1990, 1992), showing that the
change in the mean provided the best prediction for the changes
in the extremes. Further, de Vries et al. (2012) showed that changes
in the statistics of cold spells over Europe can be closely linked
with changes in the mean and variance of air temperature.

Hierarchical models provide a framework for extreme events to
be modeled using the climate statistics (e.g., Casson and Coles
(1999), Cooley et al. (2007), and Sillmann et al. (2011)). A hierar-
chical model has multiple layers (or stages) where the parameters
of one model layer are modeled by another layer. For example, a
traditional linear regression model can be made hierarchical by
allowing the regression coefficients to vary as a function of another
set of variables, thereby adding another layer to the model. Here,
we model marine extremes using an extreme value distribution
(EVD) and in turn the EVD parameters are modeled as a function
of some covariates (i.e., the marine climate statistics). This has
the advantage that, if we assume the relationship between the
covariates and extreme SSTs does not change in time, we can use
projections of marine climate statistics under a climate change sce-
nario and the fitted hierarchical model to model the extremes for
the projected climate.

Bayesian estimation is particularly well-suited to hierarchical
models and such models are called Bayesian hierarchical models
(BHMs; Cressie and Wikle (2011)). In the Bayesian framework un-
knowns are modeled as random variables and so model inputs and
outputs are both represented by probability distributions. There-
fore, for all variables we can include or obtain estimates of their
means and their uncertainty as well as inter-dependence (covari-
ance). This implies that the construction of a model in a Bayesian
framework relies on recognizing the inherent uncertainties and
the model results reflect these uncertainties. BHMs allow for
uncertainties at each level to be specified or modeled explicitly
as a parameter (observational uncertainty, process model error,
etc.). Several excellent introductions and reviews of Bayesian hier-
archical methods in the atmospheric and ocean sciences are pro-
vided by Berliner et al. (1998), Cressie and Wikle (2011), and
Wikle et al. (2013).

BHMs have been used in the geophysical literature for a num-
ber of years. Royle et al. (1999) estimated spatially regular wind
fields from sparse scatterometer data using a BHM in which the
covariance structure of the wind was conditional upon the atmo-
spheric pressure field (using a hybrid physics–statistics model).
This model allowed one to extrapolate the wind estimates where
no observations existed, based on the wind–pressure relationship
elucidated by the BHM. Berliner et al. (2003) jointly modeled
atmospheric and oceanic variables as a function of independent
measured data (i.e., scatterometer measurements, altimetry data)
with a BHM, allowing for coupling of the atmosphere–ocean vari-
ables (air–sea interactions). Milliff et al. (2011) provided a BHM
implementation for the generation of surface wind initial condi-
tions for ensemble ocean forecasting, including a detailed expla-
nation of the BHM algorithm. Bayesian methods, and in
particular BHMs, have been used to model sea surface tempera-
ture variability over a range of time scales including high-fre-
quency variability, the seasonal cycle, multi-decadal trends, and
the mean (Higdon, 1998; Lemos and Sansó, 2009; Lemos et al.,
2010). Bayesian techniques are also well-established in the ocean
ecosystems modeling literature (e.g., Harmon and Challenor
(1997)). For example, Fiechter et al. (2013) used a BHM in which
the process layer is a Nutrient-Phytoplankton-Zooplankton-Detri-
tus (NPZD) model and others have developed similar models
using statistical emulators of NPZD mechanisms (Hooten et al.,
2011; Leeds et al., 2013).

Using BHMs for extreme value analysis is a relatively recent
development. Casson and Coles (1999) discussed the idea of pool-
ing information on extreme values spatially thereby borrowing
information across space to inform the model. The extremes were
modeled site-wise in tandem with a latent spatial process model
for the variation of parameter values in space. This model used
Markov chain Monte Carlo techniques for estimating model
parameter values, and it was demonstrated to be skillful by pre-
dicting the hurricane climate of the Atlantic and Gulf of Mexico
regions. Cooley et al. (2007) developed a hierarchical model
where extreme precipitation values observed at weather stations
(i.e., point locations) were modeled using a peak-over-threshold
extremes model (i.e., the Generalized Pareto Distribution). The
parameters of the Generalized Pareto Distribution were then
modeled using a latent spatial process. The latent spatial process
was expressed using a set of covariates including latitude, longi-
tude, mean precipitation, elevation, and terrain type. The fitted
model was then used to interpolate extremes over locations cov-
ered by the covariates but for which observed extremes were not
available. Similarly, Friederichs and Thorarinsdottir (2012) mod-
eled peak wind using the Generalized Extreme Value distribution,
the parameters of which were modeled as a function of covariates
such as mean wind speed, wind speed variance, rain rate, atmo-
spheric pressure, and the pressure tendency.

Generally, the parameters of a Bayesian hierarchical model are
estimated using Markov chain Monte Carlo algorithms (Casson
and Coles, 1999; Cooley et al., 2007; Sang and Gelfand, 2009;
Schliep et al., 2010). However, we would like to note that there
have also been many hierarchical models with parameter estima-
tion performed by frequentist maximum-likelihood techniques.
For example, Sillmann et al. (2011) related extreme air tempera-
ture minima over Europe are to atmospheric blocking patterns
over the North Atlantic. Other examples include those by Abeysir-
igunawardena et al. (2009) and Zhang et al. (2010) who used indi-
ces of climate variability (e.g., the Southern Oscillation Index, the
Pacific-North American teleconnection pattern) as predictors in
models of extreme winds in Western Canada and extreme precip-
itation over North America, respectively.

In this paper we outline the BHM technique and how it can be
used to improve estimates of extremes from global ocean and cli-
mate models. The basic idea is to fit the BHM to observed ex-
tremes using model output climate variables as covariates
(mean, variance, etc.). Then by assuming stationarity of the model
parameters and given simulated climate variables for a projected
future climate we can model future extremes. In doing so we ex-
tend the technique of spatial interpolation of extremes (e.g., Coo-
ley et al. (2007)) to include temporal extrapolation. This
technique is demonstrated using dynamically downscaled ocean
model simulations of global climate projections representing the
1990s and 2060s decades, under the A1B carbon emissions sce-
nario (Nakicenovic et al., 2000). Essentially, this approach is a
form of bias correction of the model simulated extremes. The
present article focuses on developing a BHM methodology for ex-
tremes analysis of ocean temperatures using ocean climate model
output data. While we provide a specific case study for the BHM
development and its application, our BHM approach presented
here is intended to be quite generic so that it can be readily ap-
plied in other ocean climate extremes’ contexts. For more com-
plete details of the climate change application of our technique
developed here please see Oliver et al. (in press) which focusses
on understanding changes in sea surface temperature extremes
off southeastern Australia in response to future climate change
scenarios.

This paper is structured as follows. Extreme value theory and
methods of fitting extreme value distributions are presented in
Section 2. The Bayesian hierarchical model approach is outlined
in Section 3 and demonstrated for extreme sea surface tempera-
tures off southeastern Australia in Section 4. A discussion and con-
clusions are presented in Section 5.
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2. Extreme value theory

Extreme events are those producing climate anomalies which
are rare and whose magnitudes deviate significantly from the med-
ian of the probability distribution. The statistics of extremes, i.e.,
those that describe the tails of a probability distribution, are often
examined in their own right independently from the central statis-
tic of the distribution, i.e., the mean, variance, etc. The modeling of
extreme values has a long history (e.g., Gumbel (1958)). Leadbetter
et al. (1983) outlined the theoretical framework for extremal anal-
ysis and, more recently, a practical methodological primer has
been provided by Coles (2001). There are two main approaches
to modeling extreme values: ‘‘block maxima’’ and ‘‘peak-over-
threshold’’. In the block maxima approach, the maximum of a time
series over a specified block length is modeled using the General-
ized Extreme Value distribution. In the peak-over-threshold ap-
proach, all values above a specified threshold are modeled using
the Generalized Pareto Distribution. Both the ‘‘block maxima’’
and ‘‘peak-over-threshold’’ approaches use only a subset of the
data considered to be extreme-valued in order for the description
of the tail not to be influenced by non-extreme-valued data. The
two approaches are in fact related and the model parameters of
one distribution can be derived from the model parameters of
the other (Coles, 2001). In both cases, the fitted distribution can
be used to estimate the return periods or return levels of extreme
events.

2.1. Extreme value models for block maxima

Here we outline the extreme value theory required for the pres-
ent study. First, consider a stationary sequence of random variables
fxtjt ¼ 1;2; . . .g. Let y denote the maximum of fxtg over a block of
length n:

y ¼ maxðx1; x2; . . . ; xnÞ: ð1Þ

In the limit n!1, and if y can be linearly renormalized so that its
cumulative distribution function converges, then it must converge
to one of three types: Gumbel (Type I), Fréchet (Type II), or Weibull
(Type III; e.g., Coles (2001)). These distributions are conveniently
summarized by the Generalized Extreme Value (GEV) distribution:

FGEVðyja; b; nÞ ¼ exp � 1þ n
x� a

b

� �h i�1
n

� �
: ð2Þ

Here a is the location parameter, b is the scale parameter (con-
strained to be positive), and n is the shape parameter.

For relatively short records (i.e., the time series xt contains a
small number of blocks of length n) it can be difficult to obtain a
stable estimate of the shape parameter. As this is often the case
for environmental time series, unless studying sea levels for which
centennial records are occasionally available from tide gauges, we
will focus on the limit n! 0. In this limit the GEV distribution con-
verges to the Type I, or Gumbel, distribution:

F Iðyja; bÞ ¼ exp � exp � x� a
b

� �h i
: ð3Þ

Given a vector of block maxima y, and estimates of the parameters a
and b, a plot of y against the quantiles of the Gumbel distribution
(referred to as a Q–Q plot) can be used to demonstrate the fit of
the Gumbel distribution. If the Gumbel distribution fits the data
well then this relationship is linear; if the relationship deviates sig-
nificantly from being linear, concave up or concave down, then the
data are more appropriately described by the Fréchet (Type II), or
Weibull (Type III) distributions, respectively, with significant conse-
quences when extrapolating into the tail of the distribution to make
return level estimates. This method will be illustrated using annual
SST maxima at six locations off eastern Australia. The annual
maxima were derived from daily fields of Advanced Very High Res-
olution Radiometer (AVHRR) SST observations1 over a 28-year per-
iod (1/1/1982–31/12/2009). Plots of the annual SST maxima against
the quantiles of the Gumbel distribution show a linear, or nearly-lin-
ear, relationship indicating that the Gumbel distribution provides a
good fit to the data (Fig. 1).

Note that we have specified fxtg to be a stationary sequence and
sequences of environmental variables are commonly non-station-
ary, exhibiting low-frequency variability in the mean and variance
due to the seasonal cycle and interannual variations. However, if
we constrain the block length to be n P ns, where ns is the charac-
teristic time scales of these non-stationary variations (e.g., one year
for seasonal variations), then the theory outlined above still holds
(Coles, 2001).

The return periods and return levels of extreme values can be
estimated from the parameters of the Gumbel distribution. The re-
turn period for a specified extreme value represents the expected
frequency with which, in a probabilistic sense, that extreme value
will repeat. For example, if the return period for a 30 �C extreme
value, denoted T30, is 50 years then there is a 1 in 50 chance of a
30 �C event occurring in any given year. Conversely, the return le-
vel is the extreme value associated with a particular return period.
In the previous example, the 50-year return level, denoted z50, is
30 �C. Given a return period Tz, the associated return level zT can
be estimated from the quantiles of the Gumbel distribution using
the equation:

zTðyÞ ¼ a� b log � log F Iðyja; bÞ½ �; ð4Þ

where the quantiles F Iðyja; bÞ are related to the return period Tz by

TzðyÞ ¼ 1� F Iðyja; bÞ½ ��1
: ð5Þ

Similarly, given a return level zT these equations can be used to cal-
culate the corresponding return period Tz. The return level zT has
the same units as does y and the return period has units of the block
length n, i.e., if n is one year (i.e., y are annual maxima) then Tz has
units of years.

2.2. Parameter estimation

There are two common paradigms within which estimation of
the parameters of an extreme value distribution (EVD) can be per-
formed: the frequentist paradigm, in which maximum likelihood is
a common approach, and the Bayesian paradigm, in which tech-
niques based on Markov chain Monte Carlo methods are com-
monly applied (Coles, 2001). Let y be a vector of N annual
maxima each of which are assumed to be distributed according
to the EVD, i.e., yi � f ðyijhÞ where h are the EVD parameters (e.g.,
h ¼ ða; bÞ if the EVD is the Gumbel distribution described above).
The likelihood function of h is given by

LðhjyÞ ¼ pðyjhÞ ¼
YN
i¼1

f ðyijhÞ; ð6Þ

where p denotes probability density. Maximum likelihood is an ap-
proach that provides an estimator for h by finding the value that
maximizes the likelihood function. While the maximum likelihood
method is simple and efficient for many problems it can become
computationally inefficient or even prohibitive for more complex
likelihood functions. The Gumbel parameters were estimated by
maximum likelihood for the annual SST maxima at the six locations
off eastern Australia discussed above (Fig. 1). The linear fit to the
data, provided by the Gumbel parameters, indicates that the Gum-
bel distribution represents the data well (Fig. 1, compare solid lines
and black circles).

http://podaac.jpl.nasa.gov/
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Fig. 1. Annual SST maxima at six locations off eastern Australia against the return period and quantiles assuming a Gumbel distribution. The annual maxima are indicated by
the black dots and linear fits based on maximum-likelihood estimation of the Gumbel distribution parameters are shown by solid lines. The y-axis represents the return level,
in �C, and the upper x-axis represents the return period, in years. The location of each SST record is shown in the lower right corner of each panel.
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In the Bayesian paradigm, the posterior distribution pðhjyÞ is re-
lated to the prior distribution pðhÞ and the likelihood function
pðyjhÞ (given by Eq. 6) by Bayes’ rule

pðhjyÞ ¼ pðyjhÞpðhÞ
pðyÞ ; ð7Þ

where the denominator is simply a normalizing constant to ensure
that

R1
�1 pðhjyÞdh ¼ 1. A common method for estimating h (i.e., fit-

ting the EVD to the data) in the Bayesian paradigm is to draw
approximate samples from the posterior distribution of theta using
Markov chain Monte Carlo (MCMC) techniques (e.g., Coles (2001)).
MCMC techniques do not require knowledge of the normalizing
constant and so we use a form of Bayes’ rule written as a propor-
tionality where this constant is dropped:

pðhjyÞ / pðyjhÞpðhÞ: ð8Þ

From these MCMC samples one can calculate the posterior mean
(an estimator for h) as well as estimates of other statistics such as
the posterior variance or the posterior distribution itself.

3. Estimating extreme value statistics from climate

Consider the annual maxima of an environmental variable of
interest (e.g., temperature or rainfall) at J locations. Let this set of
annual maxima be denoted Y where Y ¼ fyjjj ¼ 1;2; . . . ; Jg is a list
of vectors, with yj a vector of length N representing the annual
maxima at the jth location and N is the number of years in the re-
cord. These annual maxima are calculated over a particular time
period P1, most likely the full available extent of the observational
record. An extreme value distribution can be fit to the annual max-
ima to obtain estimates of extreme value statistics at each of the J
locations. However, if estimates of extreme value statistics are de-
sired for a time period other than P1 or for a spatial region that is
not covered by the J locations (i.e., for which there are no observed
annual maxima) then the direct application of extreme value the-
ory alone is inadequate.

Hierarchical models provide a framework for addressing such
problems. Consider the problem outlined above but with the addi-
tional information v which are covariate variables defined over
multiple time periods fPig at K locations. The original time period
P1 and the set of J locations are each a subset of fPig and the set of K
locations respectively. In other words, the covariates v are defined
over time periods and locations that include but are not limited to
P1 and J. A hierarchical model can be used to model Y given the
covariates v. If this model provides a satisfactory fit to the annual
maxima Y over P1 and J then it can be used to simulate the annual
maxima over the remaining time periods fPig � P1 and locations
K � J.

If only a single time period is considered (i.e., fPig ¼ P1) then
this problem involves the interpolation of extreme value statistics
in space. For example, given precipitation measurements located
sparsely in space (at J locations) and gridded fields of precipitation
statistics covering the entire domain (at K > J locations), Cooley
et al. (2007) used a hierarchical model, fitted to the observed ex-
tremes at the station locations, to interpolate the extreme value
statistics over the entire domain. On the other hand, if two time
periods are given and Y and v are both defined at the same set
of locations (i.e., fPig ¼ fP1; P2g and K ¼ J) then the problem con-
sists of extrapolation of the extreme value statistics in time. For
example, given sea surface temperature measurements at all loca-
tions within a specified domain and gridded fields of marine cli-
mate statistics defined for the 1990s (P1) and the 2060s under a
climate change scenario (P2), Oliver et al. (in press) used a hierar-
chical model, fitted to the observed extremes over the 1990s, to
estimate extremes for the 2060s. These examples illustrate two
possible uses for such a model, e.g., spatial interpolation and tem-
poral extrapolation, but the model can be applied to the general
situation which combines these two problems.
3.1. The Bayesian hierarchical model

Hierarchical models lend themselves well to a Bayesian ap-
proach (Gelman et al., 2003; Cooley et al., 2007; Oliver et al., in
press) and such models are referred to as Bayesian hierarchical
models (BHMs). The BHM considered here consists of three layers.
The data layer models the observed annual maxima Y using the
EVD. The climate process layer models the parameters of the
EVD (h2) as a function of some covariates (X, taken to be the
large-scale climate statistics, i.e., the subset of v defined for period
P1 and the J locations). The final layer consists of the prior
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distributions for the parameters of the climate process layer model
(h1). This conditional dependence of model layer parameters mod-
ifies Relation 8 (Bayes’ rule) to yield

pðhjY ;XÞ / pðY jh2Þ pðh2jh1;XÞ pðh1Þ; ð9Þ

where h ¼ ðh1; h2Þ.

3.1.1. Data layer
In the first (data) layer we model the annual maxima using the

EVD. The technique is general for any choice of block maxima EVD
(see Section 2) but we will use the Gumbel distribution in order to
illustrate the model. We assume that at each location j, the annual
maxima yj are distributed according to the Gumbel distribution,
where yj is a vector of length N, and N is the number of years in
the record. This is expressed as the likelihood function (Eq. 6):

pðyjjaj;/jÞ ¼
YN
i¼1

fIðyjijaj;/jÞ: ð10Þ

Here fI is the density function for the Gumbel distribution, where
the scale parameter bj has been scaled logarithmically, /j ¼ logðbjÞ
to allow for both positive and negative values in the model. When
considering the annual maxima at all locations J (i.e.,
Y ¼ fyjjj ¼ 1;2; . . . ; Jg) the likelihood function becomes

pðY jh2Þ ¼
YJ

j¼1

pðyjjaj;/jÞ ¼
YJ

j¼1

YN
i¼1

fIðyjijaj;/jÞ; ð11Þ

where h2 ¼ ða;/Þ and a ¼ fajjj ¼ 1;2; . . . ; Jg and
/ ¼ f/jjj ¼ 1;2; . . . ; Jg. This equation gives us the first term on the
right-hand side of Relation 9.

If modeling the annual maxima with an EVD other than the
Gumbel distribution then the parameters of the EVD of choice
are contained in h2. For example, if using the GEV distribution then
h2 ¼ ða;/; nÞ where n is the shape parameter at all J locations. It is
also possible to formulate the model using a peak-over-threshold
EVD (see Cooley et al. (2007) for an example).

3.1.2. Climate process layer
In the second (climate process) layer, we model EVD parameters

as a function of a latent spatial process (e.g., Chapter 9, Coles
(2001), Cooley et al. (2007)). This latent spatial process is charac-
terized by the covariates in v which are typically climate statistics
or dynamical variables (the choice of covariates is discussed fur-
ther in Section 3.3). Let v be a K �M � P third-order tensor where
K is the number of locations, M � 1 is the number of covariates in-
cluded in the model (v also includes the intercept term used in the
linear regression below, which we do not consider a ‘‘covariate’’)
and P is the number of time periods over which v is defined. So,
vkmt is the value of the mth covariate at location k and time period
t. Let X be a J �M matrix subset of v defining the covariates at the J
locations and over the single time period P1 for which Y were
observed.

We have assumed that the climate process model for the Gum-
bel parameters h2 can be factored into independent models for a
and /:

pðh2jh1;XÞ ¼ pðajh1;a;XÞ pð/jh1;/;XÞ; ð12Þ

where h1 ¼ ðh1;a; h1;/Þ. Each of these independent models character-
izes the relationship between the EVD parameters and the latent
spatial process. The latent spatial process is modeled as a linear
regression of the EVD parameters onto the covariates, i.e.,

a ¼ Xba þ �a; ð13Þ
/ ¼ Xb/ þ �/; ð14Þ
where ba and b/ are regression coefficients (vectors of length M)
and �a and �/ are error terms (vectors of length J).

The error terms are random effects which characterize effects
not included in the model. These error terms are distributed nor-
mally with zero mean and covariance matrices given by s�1

a I and
s�1

/ I respectively, where I is the identity matrix and sa and s/ are
the precisions.2 Therefore, the random effects are independent be-
tween locations which allows for spatial variation of the model er-
rors. Note that we have not imposed a spatial structure on the
random effects (such as through the error covariance structure,
e.g., Cooley et al. (2007)) and so our random effects are not spatially
auto-correlated (see Cressie and Wikle (2011) for more details on
spatial random effects).

The linear regression models can be expressed as J-dimensional
multivariate Normal distributions for a and /:

pðajh1;a;XÞ ¼ N JðXba; s�1
a IÞ; ð15Þ

pð/jh1;/;XÞ ¼ N JðXb/; s�1
/ IÞ; ð16Þ

where N JðXb; s�1IÞ denotes a J-dimensional multivariate Normal
distribution with mean Xb and covariance s�1I. The parameters of
the climate process layer are combined as h1 ¼ ba;b/; sa; s/

� �
, and

Eqs. (15) and (16) give us the second term on the right-hand side
of Relation 9. We acknowledge that it is not necessary to assume
independent distributions for the parameters h2, a multivariate dis-
tribution could be specified (e.g., Sang and Gelfand (2010)) whereby
the relationship between the EVD location and scale parameters is
modeled jointly. Furthermore, spatial dependence could be mod-
eled explicitly, such as with a variogram model for the spatial cor-
relation of the EVD parameters (e.g., Cooley et al. (2007)).

Note that in Eq. (11) we have assumed independence between
the extremes at different locations, conditional on the latent spatial
process. In reality, there will be some spatial dependence of extre-
ma, i.e., we can expect the annual maxima at neighboring grid
points to be similar. This assumption will lead to unrealistic spatial
structure in the realisations of the annual maxima Y (Davison et al.,
2012). However, this is not critical for the estimation of extreme
value statistics (i.e. the marginal parameters of the EVD) since spa-
tial dependence is enforced due to spatial correlation of the
covariates.

If using an EVD which includes a shape parameter n (e.g., the
GEV distribution), it is not necessary to model n as a function of
the covariates, but it can be assumed that it is governed by a phys-
ical process fixed in time and space (e.g., Sillmann et al. (2011)).
Spatial uniformity of n can also be assumed and a single value esti-
mated for the entire domain, thereby borrowing strength across
locations in space.

3.1.3. Priors
In the third and final layer we assign priors to the parameters h1

of the climate process layer. Each of the parameters in the climate
process layer is assumed to be distributed independently, i.e.,

pðh1Þ ¼ pðbaÞpðb/ÞpðsaÞpðs/Þ: ð17Þ

Note that it is not necessary to assume independent prior distri-
butions on the parameters h1 but we make this choice for compu-
tational simplicity.

When there is no prior knowledge regarding how the EVD
parameters are related to the covariates, diffuse non-informative
priors should be adopted. In general any distribution that is suit-
ably broad will be sufficient. However we have chosen conjugate
priors in order to simplify the expressions for the conditional dis-
tributions of ba; b/; sa; s/ (see Appendix A). Hence, we have taken
the following forms for the priors of each of these parameters
2 Precision is defined as the inverse of the variance, s ¼ r�2.
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pðbaÞ ¼ NMðla; s
�1
a;0IÞ; ð18Þ

pðb/Þ ¼ NMðl/; s
�1
/;0IÞ; ð19Þ

pðsaÞ ¼ Gammaðaa; haÞ; ð20Þ
pðs/Þ ¼ Gammaða/; h/Þ; ð21Þ

where the values of la;l/; sa;0; s/;0;aa;a/; ha and h/ are chosen to
provide suitably broad (diffuse) priors.

3.2. Markov chain Monte Carlo sampling technique

The regression coefficients (e.g., ba and b/) and error variances
(e.g., sa and s/) can be sampled using the Markov chain Monte Car-
lo (MCMC) technique (e.g., Coles (2001) and Gelman et al. (2003)).
Within each step of the MCMC loop, samples of the EVD parame-
ters (e.g., a and /) are drawn and accepted or rejected based on
the Metropolis rule. Then a Gibbs sampling step (Gelman et al.,
2003) is performed to sample for the bs and the ss, given the
EVD parameters. The MCMC simulation should be performed for
enough steps to achieve equilibration of the samples and to obtain
a large enough sample for subsequent analysis. The initial equili-
bration period, or ‘‘burn-in’’, is discarded and the remainder is
thinned by taking only every dth output step leaving samples from
the joint posterior distribution of the bs and the ss. The thinning
interval d is chosen to reduce the serial correlation present in the
MCMC output; this correlation is high for consecutive samples
but in our experience drops to acceptable levels for d ’ Oð10Þ.
The MCMC sampling algorithm is explained in more detail below.

The values of h1 and h2 must be initialized before running the
MCMC loop. The results will not be sensitive to this choice other
than to the extent that it influences the length of the burn-in per-
iod. It is sensible to initialize the regression coefficients and the
EVD parameters to zero and the error precisions to a non-zero
and positive value. At each step of the MCMC loop the following
procedures are executed:

1. Loop over all locations j ¼ 1;2; . . . ; J and for each j:
(a) Draw a candidate sample of h2;j (e.g., aj and /j for the Gum-

bel distribution) denoted h�2;j using the multivariate linear
regression models (Eqs. (15) and (16)) which make use of
the covariate information X; and

(b) Accept h�2;j or reject in favor of h2;j from the previous MCMC
step based on the Metropolis rule (e.g., Gelman et al.
(2003)).

2. Given h2 (e.g., a and /) at all locations, Gibbs sample (e.g., Gel-
man et al. (2003)) for the regression coefficients ba and b/ and
precisions sa and s/ by sampling from the conditional distribu-
tions pðbajsa;aÞ; pðb/js/;/Þ; pðsajba;aÞ, and pðs/jb/;/Þ. (These
expressions are given in Appendix A).

The output of the MCMC loop, after discarding the burn-in per-
iod and thinning, consists of approximate samples from the poster-
ior distribution pðhjY ;XÞ.

The samples of h1 can now be used to generate a suite of statis-
tics to summarize the extreme value properties of the system. We
will assume that the fitted model represents a fundamental phys-
ical process linking the covariates to the extreme value statistics
and is therefore stationary in time and space. This allows us to
use the values of h1, which have been fitted to the covariates de-
fined using a subset of v (i.e., X) to estimate the extreme value sta-
tistics over the entire temporal and spatial domain covered by v. In
this way, we are able to spatially interpolate and temporally
extrapolate the estimations of the extreme value statistics. This
method, and a description of the various statistics that can be ob-
tained, is illustrated in Section 4 for the case of estimating sea sur-
face temperature extremes off southeastern Australia for two time
periods over the same spatial domain given observations over only
a single time period.
3.3. Predictor selection and model comparison

The first step to formulating the BHM described above is to se-
lect all the potential predictors that are to be considered for the
definition of the covariate tensor v. Some general guidelines for
selecting potential predictors and a method for comparing models
based on subsets of these predictors is described in this
subsection.

There are three types of potential predictor variables that
should be considered: (i) central moments, (ii) dynamical vari-
ables, and (iii) extreme value statistics. Obvious predictors to in-
clude would be the first and second central moments (the mean
and variance respectively) of the quantity of interest, i.e., mean
temperature and temperature variance if considering temperature
extremes; standardized moments such as skewness and kurtosis
or, more likely, the non-standardized third and fourth central mo-
ments are also possible candidates to be included (see Oliver et al.
(in press) for a discussion on the relative merit of standardized and
central moments as predictors). Dynamical variables of relevance
to the problem at hand should also be considered. Examples could
be eddy kinetic energy, if considering oceanic extremes, or wind
variability, if considering terrestrial extremes. These variables
may be able to characterize dynamical mechanisms that are phys-
ically linked to the distribution of extreme values. Finally, the ex-
treme value statistics of the ocean/atmosphere/climate model
itself can be included as covariates for the parameters of the ex-
treme value model for the observations. For example, if using the
Gumbel distribution as the extreme value model then the Gumbel
parameters estimated by fitting directly to the annual maxima
simulated by the circulation model can be used as predictors. This
would be a more explicit form of bias correction; whereas using
predictors based on central moments and dynamical variables is
an indirect form of bias correction using the relationship between
the extreme value statistics and a latent spatio-temporal process. It
may also be of value to include different (i.e., nonlinear) scalings of
the chosen predictors (e.g., it may be possible that the standard
deviation provides a better predictor than the variance).

Given a set of potential predictors it is then necessary to choose
which subset provides the best model – this is referred to as model
selection. In general, a model based on too few predictors is unable
to fully represent the distribution of the extreme value statistics; a
model with too many predictors often leads to overfitting. An ap-
proach for BHMs to choosing between models is to compare them
using the Deviance Information Criteria (DIC, Spiegelhalter et al.
(2002) and Gelman et al. (2003)):

DIC ¼ DðhjYÞ þ pD; ð22Þ

where an overbar represents the posterior mean and

DðhjYÞ ¼ �2 logfpðY jh2Þpðh2jh1;XÞg; ð23Þ
pD ¼ DðhjYÞ � DðhjYÞ: ð24Þ

The DIC is the sum of the deviance measure DðhjYÞ, which decreases
as the model fit to the data improves, and the model complexity pD,
which increases with model complexity and provides a penalty for
models that fit the data better but do so at the cost of model sim-
plicity, and is meant to control for model overfitting. When compar-
ing two models, the model with the lowest DIC is to be preferred. It
has been pointed out that DIC tends to favor overfit models (Ando,
2007) and so it is recommended that model selection be done by
using DIC in conjunction with visual assessment of the model re-
sults and domain expertise.
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If there is an abundance of data, then it is possible to perform a
cross-validation procedure. This can be undertaken by fitting the
model over a subset of the domain and calculating
Drep ¼ DðhjY repÞ, which provides a measure of model fit over the
remaining independent data (or ‘‘replicates’’ Y rep) (Gelman et al.,
2003).
4. Example: sea surface temperatures off southeastern Australia

The technique outlined above was used by Oliver et al. (in
press) to estimate extreme sea surface temperatures (SSTs) off
southeastern Australia from dynamically downscaled climate
model output. The annual maxima Y ¼ fyjjj ¼ 1;2; . . . ; Jg were de-
rived from daily fields of AVHRR SST observations over N ¼ 28
years (as in Section 2.1). The J ¼ 2071 locations are regularly
spaced over the domain bounded by 144�E, 169�E, 48�S and 20�S
and only where water depth is greater than 200 m. Marine climate
statistics were derived from dynamically downscaled ocean cli-
mate model simulations representing the 1990s, using realistic
forcing fields (ECMWF Reanalysis output; Uppala et al. (2005)),
and for the 2060s, under the A1B atmospheric carbon emissions
scenario (Sun et al., 2012; Chamberlain et al., 2012; Oliver et al.,
in press). In Oliver et al. (in press), the best model was chosen,
according to the DIC-based selection criteria outlined in Section 3.3,
to be that which included the mean SST, the SST variance, the SST
third central moment and the eddy kinetic energy as covariates
(see also Appendix B). We use that study, which focuses on esti-
mated changes in SST extremes without delving into the details
of the model, as a case study to demonstrate the model and illus-
trate some of the statistics that can be calculated using it.
4.1. Estimating extremes for a projected future climate

Let the four marine climate variables from the chosen model be
collected together as the J �M � P tensor v. The number of covar-
iates is four and so M ¼ 5 since we must include the intercept term
required for the linear regression model; the number of time peri-
ods is P ¼ 2 (P1 is the 1990s and P2 is the 2060s). The observed an-
nual maxima Y were calculated over 1982–2009 and taken to be
representative of the 1990s (P1). We wish to estimate the extreme
value statistics for the 2060s (P2). Following Section 3.1.2, let X be
a J �M subset of v, being the covariates at the J locations and the
single time period P1. Note that the data source used to define
the covariates X (the ocean model) is different from that used to
derive the extremes Y (the observed SST record). Following Oliver
et al. (in press), the model was fit using the design matrix X, and
samples from the posterior distribution pðhjY ;XÞwere drawn using
the MCMC algorithm described in Section 3.2. Given posterior sam-
ples of h1, samples from the posterior predictive distributions of a
and / (and b ¼ exp /, see Section 3.1.1) can be simulated using Eqs.
(15) and (16). Further, given a return period T samples of the return
levels zT can be calculated. Conversely, given a return level z, sam-
ples of the return periods Tz can be calculated (see Eqs. (4) and (5)).

We can also extrapolate the extreme value statistics to the time
period P2. Let X 0 be a J �M subset of v, being the covariates at the J
locations and the time period P2. These covariate values are the cli-
mate statistics (the SST mean, variance, third moment and eddy ki-
netic energy) from the 2060s model simulation. By substituting X0

for X in Eqs. (15) and (16) we can draw samples from the posterior
distribution pðhjY ;X0Þ to yield samples of a and / (and b), as well as
return periods and return levels, for the future time period. Note
that we assign a prime to all estimations for the future time period:
a0;/0;b0;T 0z and z0T .
4.2. Posterior means and probability distributions

Draws from the joint posterior distribution of a and / can be
obtained for both P1 and P2 time periods, and by applying Eqs.
(4) and (5) we can subsequently obtain draws from the posterior
distributions of Tz and zT . We can then calculate a suite of statistics
to analyze and summarize the results. The probability distributions
of a; b; z50 (the 50-year return level) and T20 (the return period for
an extreme temperature event equaling or exceeding a 20 �C) at
the location (152�E, 43�S) are shown in Fig. 2. The distributions
of a for P1 and P2 are well separated, most likely due to the depen-
dence of this variable on the mean SST which changes significantly
between the two periods, and the distributions of b overlap signif-
icantly indicating a less dramatic change. The z50 are also well sep-
arated and there is about a 3 �C shift between the two time periods.
Comparing the distributions of T20 is more difficult since the mean
SST has shifted closer to 20 �C in P2 and has thus caused the distri-
bution to change from relatively broad and diffuse for P1 with long
return periods (20–50 years) to very focused for P2 with very short
return periods (< 5 years). The simplest summary statistic for
these distributions is the posterior mean which is indicated by
the filled circles in Fig. 2. However, we can see that other statistics
may be of interest, such as the width of the distribution and the de-
gree of overlap between the distributions for the two time periods,
and these will be discussed shortly.

The posterior means �a and �b (the posterior mean is denoted by
an overbar) are shown in Fig. 3 and T50 and z30 are shown in Fig. 4
for the entire spatial domain. Also shown in both Figures are the
corresponding estimates from observations obtained by fitting
the Gumbel distribution directly to the observed annual maxima
using maximum likelihood estimation. We can see that the general
spatial pattern and magnitude of the Gumbel parameter estimates
from the BHM for P1 (Fig. 3b and e) are similar to those derived di-
rectly from the observations (Fig. 3a and d). Given estimations of �a0

and �b0 (Fig. 3c and f) and T 050 and z030 (Fig. 4c and f) it may also be of
interest to compare the change in these quantities between the
two time periods. The change in 50-year return levels can be esti-
mated by the difference in posterior means Dz50 ¼ z050 � z50 (see
Oliver et al. (in press) and Fig. 5a). Similarly, one can estimate
the change in 30 �C return period by DT30 ¼ T30 � T 030 (not shown).

The posterior samples provide more information than simply
the posterior mean: higher order statistics can be calculated such
as the posterior variance or skewness. These can be used to provide
error margins on the estimated quantities. For example, we can
calculate the lower and upper bounds of the 95% credible intervals
(the 2.5th and 97.5th percentiles respectively) from the posterior
samples for z50 and z050 (Fig. 6a, b, d, and e). The distributions of
z50 and z050 are generally unimodal and symmetric about the mean
(see Fig. 2c) and so the width of the 95% credible interval is a useful
summary of the width of the distribution about the posterior mean
(i.e., model uncertainty; Fig. 6c and f). We can see that model
uncertainty tends to be large over much of the Tasman Sea (south
of 30�S) and larger near the Australian coast than offshore. This
pattern is very similar to where the Gumbel distribution scale
parameter b is also large (Fig. 3e and f). This is expected since
the uncertainty on estimates of long return-period extremes, inde-
pendent of whether or not Bayesian inference has been used to
estimate the parameters, increases strongly with increasing b
(and weakly with increasing a; e.g., Coles (2001)).

4.3. Probabilities of exceedance

We can also calculate quantities that characterize the uncer-
tainty of change between the two time periods, such as ‘‘probabil-
ities of exceedance’’ (e.g., Shaby and Reich (2012)), by examining
the posterior samples directly. For example, it is of interest to
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Fig. 2. The posterior distributions of Gumbel parameters a and b, 50-year return levels z50 and 20 �C return periods T20 at the location (152�E, 43�S) for the 1990s (black lines)
and the 2060s (red lines). The filled circles indicate the position of the posterior mean. The shaded area in panel (c) indicates the 95% credible interval for z50 and z050. The blue
lines in panels (c) and (d) indicate the independent samples of z50 and T20 drawn for the 1990s climate (note that these lines are nearly indistinguishable from the black lines
since they are approximations of the same probability distribution). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

(a)

(d) (e) (f)

(b) (c)

Fig. 3. The Gumbel distribution parameters a and b for the observations (a and d) and posterior means �a and �b from the Bayesian hierarchical model for the 1990s (b and e)
and the 2060s (c and f) climates.
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know what the probability is that the change of the 50-year return
level between P1 and P2 will exceed a threshold z�. This can be cal-
culated by taking the difference of the two posterior samples,
z050 � z50 and examining the probability that this difference exceeds
z� : probðz050 � z50 > z�Þ, which is simply the proportion of the
probability distribution of z050 � z50 which falls above z�. The prob-
ability distribution of z050 � z50 at the location (152�E, 43�S) is
shown in Fig. 7a (black curve) and it can be seen that there is
�100% chance that it will exceed 2 �C, � 50% chance that it will ex-
ceed 3 �C, and essentially no chance that it will exceed 4 �C. A sim-
ilar calculation can be done at the same location for the change in
return periods T 020 � T20 (the probability distribution is shown in
Fig. 7b, black curve). The probability that T 020 � T20 will decrease
by at least T� is the proportion of the probability distribution that
lies below T�. Thus, there is �99% chance that T20 will reduce by at
least 20 years, 61% chance that it will reduce by at least 30 years,
and 10% chance that it will reduce by at least 40 years. This infor-
mation can also be presented in the opposite way: given a proba-
bility level, what is the estimated change in a particular variable.
This is given simply by the percentiles of z050 � z50 or T 020 � T20.
For example, at a probability level of 95%, z050 � z50 will be at least
2.57 �C and T 020 � T20 will change by at least 23.6 years.

We can also move away from the more abstract extreme value
statistics and examine the extreme values themselves (i.e., the an-
nual maxima). Given the posterior samples of the Gumbel param-
eters a and b for both time periods we can simulate annual
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Fig. 4. The 50-year return levels z50 and 30 �C return periods T30 for the observations (a and d) and posterior means z50 and T20 from the Bayesian hierarchical model for the
1990s (b and e) and the 2060s (c and f) climates. The return periods, in years, have been log-transformed.

(a) (b) (c)

Fig. 5. The change in 50-year return level z50 between the 1990s and the 2060s using the model selected by Oliver et al. (in press) (a), for a specified 2 �C change in mean SST
from the 1990s climate (b), and for a specified 25% change in SST variance from the 1990s climate (c). The black dots in panel (b) show the locations used for the analysis
presented in Section 4.5.
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maxima Y by drawing from the Gumbel distribution. Let the sim-
ulated annual maxima for P1 and P2 be denoted Ŷ and Ŷ 0, respec-
tively. Their probability distributions are shown in Fig. 7c for the
location (152�E, 43�S). The annual maxima may be a useful mea-
sure as they give an indication as to the extreme value that can oc-
cur in any particular year, rather than the more abstract (although
also useful) measure of the return level at long return periods. We
can now examine ‘‘probabilities of exceedance’’ for the annual
maxima themselves as we did for the return levels and return peri-
ods. Fig. 7d (black curve) shows the probability distribution of
Y 0 � Y and, as above, we can read off the probabilities that the an-
nual maxima will exceed a particular threshold Y�, i.e.,
probðŶ 0 � Ŷ > Y�Þ. At this location, there is �95% chance that the
change in annual maxima will be positive, �70% chance that the
change will exceed 2 �C, and �25% chance that it will exceed 4 �C.

4.4. Testing the significance of the estimated changes

In a climate change scenario such as this, it is important to be
able to say how significant, in a statistical sense, the estimated
changes in extreme value statistics are. One way of testing this is
to draw a secondary sample from the posterior distribution
pðhjY ;XÞ given the climate in P1 (i.e., the present day) and compare
the changes between it and the original sample drawn from the
same distribution. This measures the change that can occur simply
due to randomness in the same climate and we define a significant
change between P1 and P2 as one which exceeds that due to ran-
domness at a specified confidence probability. This information al-
lows us to quantify the uncertainty in the model simulations of
climate change. This approach is philosophically similar to the
method described by Theiler and Prichard (1996) of hypothesis
testing by generating ‘‘surrogate’’ data, with the statistical proper-
ties of some null hypothesis, and has been used to test for the sta-
tistical significance of climate reconstructions (Christiansen et al.,
2009) and of observed changes in air temperature extremes (Chris-
tiansen, 2013).

Let z50;ind;T20;ind and Ŷ ind denote the second (independent) sam-
ples drawn from the same distribution that z50; T20 and Ŷ were
drawn from (i.e., the 1990s climate). Their probability distribu-
tions, at the location (152�E, 43�S), are shown in Fig. 2(c and d)
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Fig. 6. The 95% credible interval for z50 (the 1990s; a–c) and z050 (the 2060s; d–f). The 2.5th (a and d) and 97.5th (b and e) percentiles of the 50-return levels show the lower
and upper bounds of the 95% credible interval. The width of the 95% credible interval is shown in (c) and (f) for the 1990s and 2060s respectively. The 95% credible intervals
for z50 and z050 at the location (152�E, 43�S) are shown in Fig. 2c.

(a) (b)

(c) (d)

Fig. 7. Posterior distributions of the change in 50-year return level Dz50, the change in 20 �C return period DT20, the annual maxima Y, and the change in annual maxima DY at
the location (152�E, 43�S). In panels (a, b, d), the black lines indicate the distributions of change between the 1990s and the 2060s and the blue lines indicate the distributions
of change between two samples given the same 1990s climate. In panel (c), the black and blue lines indicate the distributions of annual maxima from the two samples drawn
given the 1990s climate; the red line indicates the distribution of annual maxima drawn given the 2060s climate. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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and Fig. 7c (blue3 lines). As described above, the probability that the
change in 50-year return levels between P1 and P2 will exceed z� is
given by probðz050 � z50 > z�Þ; the probabilities that this change can
occur by chance in the same climate is given by
probðz50;ind � z50 > z�Þ and probðz50 � z50;ind > z�Þ.4 If
probðz050 � z50 > z�Þ is greater than probðz50;ind � z50 > z�Þ or greater
3 For interpretation of color in Fig. 7, the reader is referred to the web version of
this article.

4 Which is equivalent to probðz50;ind � z50 < �z�Þ.
than probðz50 � z50;ind > z�Þ then one can say that the probability of
the specified change in z50 between P1 and P2 is significant. Similarly,
we can invert this and test if the estimated change in z50 is signifi-
cant with confidence p� (or, equivalently, at the 1� p� significance
level). This is equivalent to asking the question: does the value of
z� given probðz050 � z50 > z�Þ ¼ p� exceed the value of z� given
probðz50;ind � z50 > z�Þ ¼ p� or probðz50 � z50;ind > z�Þ ¼ p�?

The probability distributions of the changes due to randomness
in an unchanged climate (z50;ind � z50; T20;ind � T20, and bY � bY ind) at
the location (152�E, 43�S) are shown in Fig. 7(a, b, and d, blue



Fig. 8. Return periods for a 22 �C extreme SST event along a North–South section of
the shelf break northeast of Tasmania for several specified climates. The return
periods are shown for the 1990s climate (black), for the 1990s climate with a
specified 1 �C increase in mean SST (blue), and for the 1990s climate with a
specified 2 �C increase in mean SST (red). Shaded areas show the 95% credible
intervals. The location of this section is shown Fig. 5 (black dots). (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

E.C.J. Oliver et al. / Progress in Oceanography 122 (2014) 77–91 87
lines). If there is no overlap between the changes between periods
P1 and P2 and the changes from the two samples representing per-
iod P1 (compare black and blue lines in Fig. 7a, b, and d) then we
can say that, with 100% probability, the estimated changes be-
tween periods P1 and P2 exceed those due to randomness in an un-
changed climate, and are thus significant. This is the case for z50

(Fig. 7a) but not for the other statistics as there is overlap in the
distributions of DT20 and in the distributions of DY . At a probability
level of 95%, the estimated changes in T20 between P1 and P2 is
�23.5 years which is larger than a change of �14 years for the
two samples drawn from the P1 climate. Therefore, the change is
significant at this confidence level (95%). However, at a confidence
level of 99.5%, the change in return period between P1 and P2 is not
significant (�20 years, compared against a change due to random-
ness of �23.8 years). For annual maxima, the situation is more dra-
matic. At a confidence level of 50% the estimated change in annual
maxima between P1 and P2 is 2.8 �C, which is significant against a
change due to randomness of 0.05 �C. At a confidence level of 75%
the change is still significant (1.78 �C versus 1.13 �C due to ran-
domness). However, at a confidence level of 90% the change is no
longer significant (0.67 �C versus 2.16 �C due to randomness). We
have illustrated these statistics at a point location but a convenient
way to summarize the information would be to specify several
confidence levels (say 50%, 75%, 90% and 95%) and map the signif-
icance of the estimated change in space (see Oliver et al. (in press)).

4.5. Simulating extremes from specified climates

So far we have examined the changes in extreme value statistics
between two marine climates simulated by an ocean general circu-
lation model with forcing derived from a global climate model.
What if we asked the question: how will the extreme value statis-
tics change from the present (i.e., P1) if the mean SST increased by a
specified amount? Or if the SST variance changed by a certain pro-
portion? These questions can be addressed directly by constructing
a new covariate matrix Xspec, containing the user specified marine
climate, and then drawing samples from the posterior distribution
of the model parameters given this climate and then calculating
the extreme value statistics. The above examples can be con-
structed by taking the covariate matrix X for the time period P1

and modifying the columns containing the mean or the variance
accordingly to give Xspec and then sampling from pðhjY ;XspecÞ given
the model parameters fitted to X.

The change in posterior mean z50 for two specified climates can
be seen in Fig. 5 along with the corresponding change from the
model selected by Oliver et al. (in press). It can be seen that a
change in the mean SST of 2 �C will change z50 by 2.0–2.2 �C every-
where in a nearly uniform way (Fig. 5b); although the response to a
change in mean SST is slightly stronger (by 5–10%) in the tropical
Coral Sea than in the midlatitude Tasman Sea. On the other hand, a
25% increase in SST variance leads to increases of z50 (1–2 �C,
Fig. 5c) over the eddy-rich region of elevated SST variance that is
found south of the East Australian Current separation point
(�33�S; e.g., Godfrey et al. (1980), Stammer (1997), and Suthers
et al. (2011)). These two cases illustrate the utility of the model
for examining the response of extreme events to specific changes
in the marine climate.

4.6. Application of the extremes model to ecology

The coastal waters of southeastern Australia are experiencing
significant ecological habitat changes due to changes in oceanogra-
phy (warming waters, increasing salinity, etc.; e.g., Holbrook and
Bindoff (1997), Ridgway (2007), and Johnson et al. (2011)). Certain
species have temperature thresholds, below which they cannot
survive, such as the spiny sea urchin (Centrostephanus rodgersii)
which requires water temperatures P12 �C for successful larval
development (Ling et al., 2009). Even tropical fish species have
been moving into the traditionally cold waters around Tasmania
to the extent that the local community has been asked to be in-
volved in helping to identify previously unknown fish species that
are being found along the coast (www.redmap.org.au). With these
changes in mind we have used the extremes model to estimate
how warm temperature extremes would change along the Tasma-
nian shelf break for a specified change in climate. We chose an ex-
treme temperature of 22 �C to represent a suitably warm event
that would be rare in Tasmanian waters at present. The return peri-
ods T22 along a strip of the shelf break northeast of Tasmania (see
black dots in Fig. 5) are shown as a function of latitude in Fig. 8 for
the 1990s climate (black line), for the 1990s climate with a 1 �C in-
crease in mean SST (blue line), and for the 1990s climate with a
2 �C increase in mean SST (red line). The change in return period
is clearly a nonlinear function of the changes in mean SST, i.e., dou-
bling the change in mean SST from 1 �C to 2� more than halves the
change in T22. A 22 �C extreme SST event, which is rare in the 1990s
climate (T22 ranging from 5 to 60 years, depending on latitude), is
estimated become merely uncommon (T22 < 20 years) under a 1 �C
change in mean SST and common (T22 < 10 years) under a 2 �C
change in mean SST.
5. Summary and discussion

We have described and demonstrated a technique, based on a
Bayesian hierarchical model (BHM), for improving predictions of
extreme values from global climate and ocean models. The BHM
allows for multi-layer modeling of observed extremes. In the first
layer, the observed extreme values are modeled using an extreme
value distribution (EVD; e.g., annual maxima are modeled using a
Gumbel distribution). In the second layer, the parameters of the
EVD are modeled as a function of a set of covariates (e.g., the cli-
mate statistics of the environmental variable of interest). There is
a third layer which, due to the Bayesian approach taken, ex-
presses prior information about the model parameters. The
parameters of the BHM can be estimated by Markov chain Monte
Carlo algorithms (MCMC; including the Metropolis rule and the
Gibbs sampler) and different model configurations can be
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compared using the Deviance Information Criteria (DIC). The
model, once fit to observed data, can then be used to interpolate
over locations or extrapolate to time periods for which there are
no observations but there exists covariate information. This tech-
nique, as a form of bias correction, provides a framework for
improving predictions of extremes from global climate model
output.

The model utility was demonstrated by improving estimates of
sea surface temperature extremes off southeast Australia from a
downscaled global climate model simulation for the 1990s. The
model was then used to estimate extremes for a projected 2060s
climate. A more detailed analysis of the model estimates of ex-
treme SSTs, from a climate and oceanography perspective, is pro-
vided by Oliver et al. (in press), and here we have described a
suite of statistics that can be used to analyze and summarize the
model results. Since we have taken a Bayesian approach, and sam-
pled from the posterior distribution by MCMC, we can summarize
model estimations by estimating posterior statistics. For example,
the posterior mean return periods and return levels, and their dif-
ferences between the 1990s and 2060s, are perhaps the most use-
ful summaries. However, the width of the posterior distribution
also provides information about model uncertainty, e.g., it can pro-
vide 95% credible intervals for estimated return periods and return
levels.

The posterior samples from the two climates (e.g., the 1990s
and the 2060s) can be used to estimate the probability distribu-
tions of the change in extreme value statistics. These distributions
can be used to provide ‘‘probabilities of exceedance’’, i.e., the prob-
ability that the extreme value statistics will exceed a specified
threshold. We also outlined a method for testing the statistical sig-
nificance of these estimations. This was achieved by drawing an
independent sample of extreme values statistics for the 1990s cli-
mate and testing if, at a specified significance level, the estimated
change between the 1990s and 2060s exceeds that which might
occur by randomness between two samples for the 1990s climate.
This is useful information as it important to provide confidence
levels when making climate change predictions since these predic-
tions inherently involve much uncertainty.

Finally, the fitted BHM provides a model for testing the re-
sponse of the extreme values to prescribed changes in the climate.
By specifying changes to the climate for which the model was fit
(e.g., changes in the mean or changes in the variability) we can
estimate the associated change in extreme value statistics. Such a
model can be useful for exploring the relationship between the
central climate statistics and the extreme values of the climate
system.

In many cases, it has been found that marine ecological stability
is defined in terms of temperature thresholds. For example, and as
noted above, it has been found that Centrostephanus rodgersii, a sea
urchin that is invasive to the Tasmanian coastal environment, re-
quires water temperatures in excess of 12 �C for successful larval
development (Ling et al., 2009). Thus, it can be useful to map the
12 �C return level isopleth at return periods of interest to the appli-
cation at hand. That being said, it is also of interest to know how
the frequency (return period) of such a critical temperature event
might change over time. This is the focus of the subsection on eco-
logical impacts (Section 4.6), and hence why we have focused on
both return levels (Figs. 1, 2, and4–7) and return periods (Figs. 1,
2, 4, 7 and 8).

With regards to model stationarity we have assumed that the
BHM captures, to first order, a fundamental physical process that
links the statistics of the extreme values to the central statistics
of the climate system. Essentially, we posited that there exists a
relationship between the extremes and climate variables X, that
can be expressed rather crudely as ‘‘extremes’’ ¼ f ðXÞ. This rela-
tionship expresses fundamental aspects of the climate system that
do not change with time. The climate process model, which links
the extreme value statistics to the climate variables, essentially
takes a linear approximation to this, i.e., f ðXÞ ¼ Xbþ OðX2Þ, where
the regression coefficients characterize the fundamental (station-
ary) physical process and the higher order terms are neglected.
Since we have assumed f ðXÞ is stationary so too are the parameters
of the climate process layer model (e.g., the regression coefficients
b).

We have taken a Bayesian approach in formulating the hierar-
chical model. The value of the Bayesian approach is threefold. First,
Bayesian statistics provides a more comprehensive, ground-up
framework for formulating statistical models than a frequentist ap-
proach (if one is willing to accept the idea of a prior). This axiom-
atic approach to statistics is appealing for climate scientists who
have been educated in similarly axiomatic fields (e.g., physics).
Second, fitting models such as the one outlined in this paper is
more easily performed in a Bayesian context, as estimating param-
eters by maximum likelihood would be unnecessarily difficult due
to integrals over bottom-level parameters. We would also need to
make assumptions about normality by appealing to asymptotic re-
sults for maximum likelihood estimation. A Bayesian approach al-
lows for the use of well-defined existing techniques (MCMC,
Metropolis rule, Gibbs sampler) which provide a straightforward
and unified approach to fitting this type of model and fits well into
the existing literature (e.g., Cooley et al. (2007) and Friederichs and
Thorarinsdottir (2012)). Finally, a Bayesian approach allows for
uncertainty to carried through the entire calculation in a consistent
fashion. The maximum likelihood approach invokes a large sample
approximation and assumes the parameter estimates are multivar-
iate and Normally distributed about the true parameters with a
covariance determined by the Fisher Information (Chapter 2, Paw-
itan (2001)). The distribution of model results is in turn dependent
upon this Normal approximation. In contrast, the Bayesian ap-
proach seeks to simultaneously calculate the true posterior distri-
bution of both the parameters and the model estimations, and the
distribution of the model parameters will be correctly reflected in
the distribution of the model estimates. This lends itself well to the
study of a changing climate as we can make probabilistic estimates
and assess the significance of those estimates. The BHM is also eas-
ily extended to include uncertainty about observations and covar-
iates (e.g., see Appendix C on observational uncertainty).
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Appendix A. Conditional distributions for ba; b/; sa and s/

In order to Gibbs sample for ba; b/; sa and s/ we need expres-
sions for the conditional distributions of those parameters. The
posterior distribution for ðba; saÞ is given by

pðba; sajaÞ ¼ pðajba; saÞpðba; saÞ; ðA:1Þ
¼ pðajba; saÞpðbaÞpðsaÞ ðA:2Þ

noting that ba and sa are distributed independently (Eq. (17)).
The three terms in Eq. (A.2) are given by Eqs. (15), (18) and (20)

respectively as:



Table 1
Model selection. The model number and the covariates included in the model are
listed in the first and second column respectively. The third, fourth, and fifth columns
indicate measures of model fit (D), model complexity (pD), and the Deviance
Information Criteria (DIC ¼ Dþ pD) scores respectively.

Model Covariates included in model D pD DIC

1 l 165257 4608 169865
2 l;r2 154443 4655 159098
3 l;r2;m3 152789 4649 157438
4 l;r2;m3;K 151965 4641 156606
5 l;r2;m3;K;r2

g 151453 4648 156101

6 l;r2;m3;K;r2
g;m4 150970 4646 155616
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pðajba; saÞ ¼
sa

2p

� �J=2
exp � sa

2
ða� XbaÞ

Tða� XbaÞ
h i

; ðA:3Þ

pðbaÞ ¼
sa;0

2p

� �1
2 exp

sa;0

2
ðba � laÞ

Tðba � laÞ
h i

; ðA:4Þ

pðsaÞ ¼
sa

ha

� 	aa�1

expð�sa=haÞ: ðA:5Þ

Combining these terms as in Eq. (A.2) and isolating the portions
dependent on ba and sa respectively, and simplifying, leads to the
following conditionals

pðbajsa;aÞ / NM TðsaXTaþ sa;0b0Þ;T�1
� �

; ðA:6Þ

pðsajba;aÞ / Gamma aa þ
J
2
; ðh�1

a þ SS=2Þ�1
� 	

; ðA:7Þ

where T ¼ ðsaXTX þ sa;0IÞ�1
and SS ¼ a� Xbað ÞT a� Xbað Þ. Equiva-

lent expressions exist for the conditionals pðb/js/;/Þ and
pðs/jb/;/Þ.
(a)

(b)

(d)

Fig. 9. 50-year return levels (z50) for observed extreme sea surface temperatures (SSTs)
(BHM). The z50 were estimated using maximum likelihood fits of the Gumbel distribution
the 1990s; (d) the z50 were also estimated using the BHM on the 1990s ocean model. The
the direct ocean model estimates and (e) the observed extremes and the results after u
Appendix B. Model selection and validation

In this appendix we outline and summarize the model selection
and comparison of observed and modeled extreme SSTs performed
by Oliver et al. (in press).
B.1. Model selection

We systematically tested a set of linear regression models, as
the climate process layer in the BHM, in order to determine which
model provided the best fit. Each model expressed the parameters
of the Gumbel distribution (a and /) as a linear combination of
covariates and the candidate covariates included mean SST (l),
SST variance (r2), SST third moment (m3), SST fourth moment
(m4), eddy kinetic energy (K), and sea level variance (r2

g). Model
selection was performed using a stepwise procedure. The DIC
scores (see Section 3.3) were used to determine the best model
at each step with the lowest value of DIC preferred (analogous to
the correlation coefficient in a stepwise regression). Each step of
the stepwise procedure is presented as a row in Table 1. The best
model was determined to be Model 4 which includes l;r2;m3,
and K. Note that this model did not have the lowest DIC score over-
all – the models which included m4 and r2

g had lower DIC scores.
However, m4 and r2

g were highly correlated with r2 and K respec-
tively (correlation coefficients of 0.96 and 0.93 respectively; the
remaining covariates had correlation coefficients between 0.05
and 0.64) and so they do not provide additional independent pre-
dictive information. Furthermore, the model complexity pD has
reached a minimum value for Model 4 (with the exception of Mod-
el 1 which includes only l) and only increases with the inclusion of
m4 and r2

g while the concurrent reduction in DIC scores are negli-
gible. Given that DIC scores have a bias towards overfit models
(Ando, 2007), and that later we assume stationarity of the model
parameters in order to perform the temporal extrapolation and
(e)

(c)

and from the ocean model both directly and using the Bayesian hierarchical model
to annual SST maxima from (a) observations and (b) the ocean model simulation for
difference in the estimates of z50 are shown between (c) the observed extremes and

sing BHM on the the 1990s simulation.
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spatial interpolation of extremes, we consider it best to choose a
simpler model rather than a possibly overfit model.

B.2. Comparison of observed and modeled extremes

The Gumbel parameters a and / for the observed and ocean
model extreme SSTs were determined by fitting the Gumbel distri-
bution directly to the observed annual maxima Y by maximum
likelihood estimation and for the BHM by taking the posterior
mean of samples drawn from the model selected above (Gumbel
parameters from observations and the BHM can be found in
Fig. 2). The z50 were then estimated using Eq. (4). The z50 derived
from observations show a strong meridional gradient along with
a zonal gradient in the region influenced by the East Australian
Current (EAC) separation (25�S and 38�S; Fig. 9a).

The 50-year return levels (z50) derived by fitting the Gumbel
distribution to the ocean model SST annual maxima (Fig. 9b) are
generally similar to the observations (Fig. 9a). Both the strong
meridional gradient over the entire domain and the zonal gradient
in the vicinity of the EAC separation are present. However, the zo-
nal gradient in the EAC separation region is less well-defined than
in the observations (Fig. 9c). The differences are generally less than
�3 �C over most of the domain but can be as high as �4 �C in some
places (e.g., southeast of Tasmania, off the southeast cost of main-
land Australia, northwest of New Zealand’s South Island, and in the
central eastern portion of the domain).

The z50 derived from the BHM compare well against those de-
rived from the observations. The modeled z50 (Fig. 9d) exhibit a
very similar pattern to the observed z50 (Fig. 9a) including a strong
meridional gradient over the Tasman Sea and Coral Sea as well as a
strong zonal gradient in the region influenced by the EAC separa-
tion. The differences between the observed and model estimates
of z50 are generally less than �2 �C (Fig. 9e) and are less than
�1 �C over most of the Tasman Sea and adjacent to the continental
shelfs. However, the differences exceed �2 �C in some regions
including southeast of Tasmania as well in a tongue between about
30�S and 37�S. Overall, the BHM appears to capture the underlying
climate process linking the covariates (climate variables) and the
extremes over much of the Tasman Sea, Coral Sea, and near the
continental shelf, and provides an improvement over the extremes
derived directly from the ocean model.

Appendix C. Including uncertainty about observations in the
Bayesian hierarchical model

The model described in Section 3 assumes that our data Y are
perfectly accurate, i.e., they are ‘‘true observations’’ without mea-
surement error. Let us posit that there exist true observations,
denoted Y tr, and that Y are in fact imperfect observations of Y tr.
Imperfect observation may be due to measurement (i.e., instru-
ment) error or due to missing values in the record. Let us quantify
the observation error as pðY jY trÞ, i.e., the probability of imperfect
observations Y given the true observations Y tr. This is often known
explicitly, or can be calculated empirically, given the known limi-
tations of the observation equipment, etc. For example, given an
error margin of a measurement device one might assume
pðY jY trÞ is a Normal distribution with mean Y tr and variance in-
formed by the error margin.

The uncertainly about the observations can be easily incorpo-
rated into the framework of the Bayesian hierarchical model. This
is done by adding another layer to the hierarchy, what we may call
the ‘‘observational error’’ layer, as another term in Relation 9

pðh;Y trjY ;XÞ / pðY jY trÞ pðY trjh2Þ pðh2jh1;XÞ pðh1Þ: ðC:1Þ

Relation C.1 now includes the observation error probability term
pðY jY trÞ, and the true observations Y tr are simply another
parameter to be estimated alongside h. Note that the ‘‘data layer’’
pðY trjh2Þ is now expressed as an extreme value model for the (unob-
served) true observations rather than the (measured) imperfect
observations.
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