Extreme marine heatwave off southeastern Australia in austral summer 2015-2016

Eric C. J. Oliver^{1,2} Jessica Benthuysen³, Nathan Bindoff¹, Alistair J. Hobday⁴, Neil J. Holbrook^{1,2}, Craig Mundy¹ and Sarah E. Perkins-Kirkpatrick^{2,5}

¹ Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
² Australian Research Council Centre of Excellence for Climate System Science
³ Australian Institute of Marine Science, Townsville, Queensland, Australia
⁴ Oceans and Atmosphere Flagship, CSIRO, Hobart, Tasmania, Australia
⁵ Climate Change Research Centre, University of New South Wales, Sydney, Australia

IMAS A Marine Heatwave Definition

- A marine heatwave (MHW) definition has been proposed (Hobday et al., 2016)
- A MHW is defined to be a discrete prolonged anomalously warm water event at a particular location
 - **'anomalously warm'**: MHW temperatures are above a baseline 90th percentile climatology
 - 'prolonged': a MHW must persist for at least 5 days
 - 'discrete': a MHW event has well-defined start and end times

Definition includes a set of metrics, including:

- Intensity [°C]
 - both maximum and event-mean
- **Duration** [days]
 - Time from start to end dates

Software implementation in Python freely available here: github.com/ecjoliver/marineHeatWaves

Can identify historical events from the observational record (satellite SST measurements: NOAA OI SST)

- There was a marine heatwave that occurred this past summer off southeastern Australia (9 Sep 2015 – 17 May 2016)
- It is unprecedented in
 - Duration (252 days)
 - Intensity (2.7°C max)
- Impacts: POMS (Oysters), dead abalone, poor salmon farm performace, strange fish intrusions, kelp thinning...
- Currently developing framework to **report and understand** these events in **near-real time**.

• Largest SST (absolute and anomaly) recorded since 1982 (satellite) and 1900 (HadISST)

- Peak anomalies over 2.5°C, marine heatwave state lasted for 252 days (NOAA OI SST)
- 6 of the 9 months were the largest HadISST anomalies on record
- Largest run of 9-month HadISST anomalies on record

Nearshore Records

- A number of **nearshore** sites in 6-20 m depth
- This event was record strength (approx. 10 year records) in the coastal zone
- Record southward flows, possible indication of forcing mechanism

Evolution of the event

Monthly SST anomalies: contour encloses areas that were detected as MHWs for >90% of that month

Evolution of the event

Monthly surface currents (u, v) (IMOS OceanCurrent)

Evolution of the event

Monthly SAT and 10 m wind anomalies (NCEP CFSv2)

- **Upper ocean temperature budget**, following:
 - Benthuysen et al. (*CSR*, 2014) for 2011 WA MHW
 - Chen et al. (*JGR*, 2015, 2016) for the 2012 NW Atlantic MHW
- Volume averaged temperature tendency equation:

- Depth: *H* = 100 m
- Area: A = "SEAus box"
- Temperature (T) and velocities (u_{μ}) from OceanMAPS
- Surface heat flux (Q) from NCEP CFSv2 reanalysis

- How well does OceanMAPS get the temperature?
- Good agreement at surface \rightarrow we can trust OceanMAPS
- Warming evident down to 100-200 m \rightarrow H = 100 m

Physical drivers

<u>Temperature budget</u>

- Volume averaged temperature (T_v) since Sep 1st of:
 - 2012, 2013, 2014, 2015
- Consider:
 - Temperature avection (T_{H})
 - Air-sea heat flux (T_{Q})
- <u>Climatology</u>: by mid-February T_H contributes ~3/5 of the warming while T_Q contributes ~2/5
- <u>2015-2016</u>: by mid-February T_H contributes ~4/5 of the warming while T_Q contributes ~1/5
- Marine heatwave primarily driven by anomalous temperature advection

- Event Attribution study following
 - Lewis & Karoly (*GRL*, 2013) on Australia's "angry summer" of 2013
 - King et al. (*ERL*, 2015) on Central England temps. of 2014
- Calculate *Fraction of Attributable Risk (FAR)*:

$$FAR = 1 - \frac{P_{histNat}}{P_{hist}}$$

where P_{χ} is the probability of an the event larger/longer than the event in question based on model climate X.

- Basically can tell us the change in likelihood of occurrence of an event like the event in question due to anthropogenic influence (hist) as opposed to a natural-forced world (histNat)
- Look at SEAus MHWs in CMIP5 historical, historicalNat and RCP8.5 runs

• Need *daily* SSTs, limits the number of available models:

	Historical	HistoricalNat	RCP8.5	Bias correction
Model				
ACCESS1.3	3	3	1	1.32
CSIRO Mk3.6.0	10	10	10	1.42
CNRM-CM5	1	5	5	0.80
HadGEM2-ES	4	4	4	0.96
IPSL-CM5A-LR	6	3	4	0.98
IPSL-CM5A-MR	3	3	1	0.91
Total	27	28	25	-

- Rather than do model selection (so few to begin with) we did a bias correction
- Decompose SST time series as follows: $T_t = a + bt + T_t^{\mathrm{S}} + T_t'$
- Isolate linear trend (a + bt) and seasonal cycle (T^s_t) by regression, compare variance of non-seasonal variability (T'_t) between obs and model hist runs as a ratio
- Scale variance of each model run based on the calculated bias, then add it back to the linear and seasonal component

Role of climate change

- <u>Attribution statement</u> made separately around 2nd-largest (intensity) and 2nd-longest (duration) event:
 - 2.2 °C
 - 84 days
- **Duration**: An event of this duration was
 - 2.7x as likely in 1982-2005 (hist simulations) compared to the "natural world" (historicalNat 1850-2005 simulations)
 - 4x as likely by 2006-2020 (RCP8.5 simulations)

Role of climate change

- <u>Attribution statement</u> made separately around 2nd-largest (intensity) and 2nd-longest (duration) event:
 - 2.2 °C
 - 84 days
- **Duration**: An event of this duration was
 - 2.7x as likely in 1982-2005 (hist simulations) compared to the "natural world" (historicalNat 1850-2005 simulations)
 - 4x as likely by 2006-2020 (RCP8.5 simulations)
- Intensity: An event of this intensity was
 - 1.9x as likely in 1982-2005 (hist simulations) compared to the "natural world" (historicalNat 1850-2005 simulations)
 - **2.5x as likely** by 2006-2020
- → Virtually certain (>99%) that anthropogenic climate change increased the likelihood of an event of this duration or intensity by 2005-2020

