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A B S T R A C T

Larval dispersal modelling, a powerful tool in studying population connectivity and species distribution, requires
accurate estimates of the ocean state, on a high-resolution grid in both space (e.g. 0.5–1 km horizontal grid) and
time (e.g. hourly outputs), particularly of current velocities and water temperature. These estimates are usually
provided by hydrodynamic models based on which larval trajectories and survival are computed. In this study
we assessed the accuracy of two hydrodynamic models around Australia – Bluelink ReANalysis (BRAN) and
Hybrid Coordinate Ocean Model (HYCOM) – through comparison with empirical data from the Australian
National Moorings Network (ANMN). We evaluated the models’ predictions of seawater parameters most re-
levant to larval dispersal – temperature, u and v velocities and current speed and direction - on the continental
shelf where spawning and nursery areas for major fishery species are located. The performance of each model in
estimating ocean parameters was found to depend on the parameter investigated and to vary from one geo-
graphical region to another. Both BRAN and HYCOM models systematically overestimated the mean water
temperature, particularly in the top 140 m of water column, with over 2 °C bias at some of the mooring stations.
HYCOM model was more accurate than BRAN for water temperature predictions in the Great Australian Bight
and along the east coast of Australia. Skill scores between each model and the in situ observations showed lower
accuracy in the models’ predictions of u and v ocean current velocities compared to water temperature pre-
dictions. For both models, the lowest accuracy in predicting ocean current velocities, speed and direction was
observed at 200 m depth. Low accuracy of both model predictions was also observed in the top 10 m of the water
column. BRAN had more accurate predictions of both u and v velocities in the upper 50 m of water column at all
mooring station locations. While HYCOM predictions of ocean current speed were generally more accurate than
BRAN, BRAN predictions of both ocean current speed and direction were more accurate than HYCOM along the
southeast coast of Australia and Tasmania. This study identified important inaccuracies in the hydrodynamic
models’ estimations of the real ocean parameters and on time scales relevant to larval dispersal studies. These
findings highlight the importance of the choice and validation of hydrodynamic models, and calls for estimates
of such bias to be incorporated in dispersal studies.

1. Introduction

Hydrodynamic ocean models have improved significantly over the
last two decades, leading to their use in an ever-increasing range of
studies and disciplines. Applications of hydrodynamic ocean models to
marine biology studies include modelling of primary production, food
webs and population dynamics (Nisbet et al., 1997; Wright, 2001),
investigation of fish behaviour (Lukeman et al., 2010), design and
evaluation of networks of Marine Protected Areas (Botsford et al.,
2003), bioclimatic modelling with applications to the ecology of

invasive species (Jeschke and Strayer, 2008), ecophysiology (Neill
et al., 2004) and environmental impacts of changes in sea-level on
ecosystems, hydrodynamics and sediment transport (Storlazzi et al.,
2011). Larval dispersal studies, population genetics and demographic
connectivity have also greatly benefited from the development and
optimization of hydrodynamic models (Cowen et al., 2006; Miller,
2007; Tracey et al., 2012; Werner et al., 2007). Hydrodynamic models
have been used in combination with Lagrangian dispersal kernels
(Siegel et al., 2003), drift probability density functions (Brickman et al.,
2007), biological behaviour (Fiksen et al., 2007), growth parameters
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(Punt et al., 2006), variations in reproductive timing (Carson et al.,
2010) and temperature-based survival (Tracey et al., 2012).

The importance of high-performance ocean models to larval dis-
persal studies has become more obvious in the recent literature as
knowledge and understanding of the ocean's complex and interacting
hydrodynamics has evolved (Adams and Flierl, 2010). Modelling si-
mulations of dispersal of larvae or any other planktonic forms use hy-
drodynamic models as the underlying engine driving the transport of
the virtual particles. Successful modelling of larval dispersal relies on
accurate three-dimensional estimates of ocean currents and water
physical parameters throughout the domain of interest. A high-resolu-
tion representation of current velocities is crucial for the computation
of realistic advection trajectories (Putman and He, 2013). This is par-
ticularly important in coastal regions where, on one hand, hydro-
dynamic processes have a higher spatial and temporal variability
(Greenberg et al., 2007) and on the other, propagule release and larval
recruitment of many important species take place. The coastal hydro-
dynamics can determine the degree of dispersal or retention of propa-
gules, the survival rates (e.g. onshore wash of the propagules) or suc-
cessful recruitment to suitable habitats. Accurate representation of
ocean current velocities is also critical to broader applications of hy-
drodynamic models such as tracking missing boats and plane wrecks
(Chen et al., 2012), locating flotsam sinks, modelling oil spills (Galt,
1997), dispersal of debris (Prasetya et al., 2012) and pollutants (Heldal
et al., 2013; Wilcox et al., 2015).

Hydrodynamic models are often designed for a particular purpose or
tuned to perform well on a particular spatial or temporal scale, either
on the continental shelf or in the adjacent deep water and they may
perform poorly outside this context. For example, Oliver and Holbrook
(2014) demonstrated that the Bluelink ReANalysis has lower accuracy
in estimating sea surface temperatures over the Australian continental
shelf than in the offshore domain. These biases can have significant
impacts on the outcomes of the hydrodynamic-model based dispersal
studies. A second important limitation of many hydrodynamic ocean
models for larval dispersal studies is the poor reproduction of features
on the mesoscale (10–100 km) and sub-mesoscale (< 10 km) (North
et al., 2009). This is particularly relevant to coastal areas, which are
highly dynamic regions where ocean processes vary on scales of meters
to a few kilometres (e.g., bores, tides, upwelling, filaments, fronts)
(Pineda, 1991). Ideally, a hydrodynamic model for use in a study on the
continental shelf should capture all the small-scale coastal features on a
high-resolution grid (e.g., 0.5–1 km horizontally), with accurate near-
shore tidal and meteorological forcing and the implementation of data
assimilation (Werner et al., 2007). Global and basin-scale oceano-
graphic models are usually not designed to resolve the processes on the
continental shelf, hence they often compromise on at least one of the
requirements listed above, failing to accurately reproduce the coastal
ocean dynamics in this domain. While regional high-resolution models
can meet all these requirements (McKiver et al., 2015; Moum et al.,
2008), their restricted domain (e.g.< 100 km2) is a major limitation for
studies over broader areas. Ocean modelling studies that work with
downscaled coarse-grid models suggest that an accurate representation
of coastlines and bathymetry is more important than data assimilation
in resolving processes in the coastal domain (e.g. Oliver et al., 2016).

While advection is critical for all dispersal studies, additional sea-
water properties including temperature, salinity, and nutrients play an
important role in the survival, growth and development of biological
propagules. Water temperature, for example, has major biological im-
plications such as the survival of eggs and larvae, which makes it an
indispensable parameter for larval dispersal modelling (Tracey et al.,
2012).

When modelling the fitness and survival of a marine organism, time
scales of hours or days are most relevant because they capture short
events such as extreme temperatures that the marine organism would
experience in the real ocean, events that may be outside the organism's
physiological tolerance. However, some hydrodynamic models capture

only the seasonal and inter-annual cycles reasonably well, not being
able to reproduce the high frequency of biologically-relevant processes
in the real ocean.

When considering the specifics of larval dispersal modelling, it is
necessary to mention additional factors, independent from the ocean
state, that may influence the dispersal trajectories of larvae in the real
ocean and their successful recruitment. Larval behaviour, such as
swimming ability or dial vertical migration, is governed by a complex
interaction of factors (e.g. physiological, ontogenetic, phylogenetic,
biogeographic), making it hard to decipher and even more difficult to
model (e.g. Bradbury and Snelgrove, 2001; Cowen and Paris, 2003;
Leis, 2007). No matter how much the implementation of larval beha-
viour in a dispersal model may alter the results of an otherwise passive-
advection model, understanding the accuracy of the hydrodynamic
ocean model is of primary importance and the validation of the hy-
drodynamic model of choice should be the first step in any dispersal
modelling study.

This study tests the performance of hydrodynamic ocean models
through comparison with empirical ocean data in order to assess their
applicability in larval dispersal modelling. We use in situ mooring ob-
servations to evaluate the accuracy of model predictions of water
temperature and ocean current velocity on the Australian continental
shelf. This is a crucial and generally overlooked step in larval dispersal
studies, which inherently rely on the accuracy of hydrodynamic models
to capture the variability of coastal processes on timescales of days to
months. The hydrodynamic models considered in this study are
Bluelink ReANalysis (BRAN) and Hybrid Coordinate Ocean Model
(HYCOM). We compared the models’ daily outputs of water tempera-
ture and ocean current velocities and speed against in situ measure-
ments from locations in the Australian National Moorings Network
(ANMN). Our results show the relative ability of the two hydrodynamic
models at capturing the observed mean state and variability of these
parameters in the study region. Unlike previous studies on the perfor-
mance of these two models (e.g. Kara et al., 2008; Oke et al., 2013) our
work focused on validating the predictions of these ocean models as a
first step in larval dispersal studies. We looked at oceanographic
parameters that are most relevant to larval dispersal and the accuracy
of these two ocean models in predicting them in the near-shore domain,
on small spatial and time resolutions ecologically important to larval
dispersal.

2. Data and methods

Two hydrodynamic models were examined by comparing their
ocean state predictions against in situ observations of water tempera-
ture and u and v components of current velocity at 27 mooring stations
around the Australian coastline.

2.1. Ocean models

The hydrodynamic models used include BRAN, provided by the
Commonwealth Scientific and Industrial Research Organisation
(CSIRO), and HYCOM, provided by the Centre for Ocean-Atmospheric
Prediction Studies (COAPS). Details of each model are summarized in
Table 1.

BRAN (Bluelink ReANalysis) is a multi-year integration of the Ocean
Forecasting Australia Model (OFAM) version 2.0 – a global model based
on version 4.1d of the Modular Ocean Model (Oke et al., 2013). The
current version of the model – BRAN 3p5 – uses version 8.2 of the
Bluelink Ocean Data Assimilation System (BODAS) (Oke et al., 2013,
2008) for incorporating the observed ocean state, such as in situ tem-
perature and salinity observations, satellite sea-surface temperatures
(SSTs) and along-track sea level anomalies from altimeters and tide
gauges, into the model. The model was defined on a horizontal grid of
1191 × 968 cells with a horizontal resolution of 0.1° latitude and
longitude around Australia (90-180°E, south of 17°S) which decreases
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gradually to 0.9° across the rest of the Indian Ocean and the Pacific (to
10°E, 60°W and 40°N) and 2° in the Atlantic and far north Pacific Ocean.
The model has 47 z-levels (vertical grid), with 10 m resolution down to
200 m depth. The bathymetry is a composite of different sources in-
cluding the Naval Research Laboratory Digital Bathymetry Data Base
(DBDB2) and the General Bathymetric Chart of the Oceans (GEBCO).
The model successfully reproduces much of the observed mesoscale
variability around Australia (Oke et al., 2013) and spans circa 20 years
of data (Table 1), with daily three-dimensional gridded water tem-
perature, salinity and ocean current velocities.

HYCOM (Hybrid Coordinate Ocean Model) uses a hybrid grid that
was developed to address the shortcomings of the Miami Isopycnic-
Coordinate Ocean Model, on which it is based. HYCOM uses isopycnic
vertical coordinates in the open, stratified ocean, which smoothly
transition to z-level coordinates in the mixed upper-ocean layer or other
unstratified regions and to sigma coordinates in shallow water regions
and then back to z-level coordinates in very shallow water (Wallcraft
et al., 2003). Therefore, HYCOM combines the advantages of different
types of coordinate systems to optimally simulate both coastal and
open-ocean oceanographic features, extending the geographic range of
applicability of traditional isopycnic coordinate circulation models.

In this study we use version GLBa0.08 of the HYCOM model, which
has been run in near real time since September 2008 to the present day
(Table 1). This integration uses a native Mercator-curvilinear horizontal
grid of 0.08° cell size and 33 vertical levels, generating daily outputs of
surface water flux, mixed layer depth, mixed layer thickness, surface
heat flux, sea surface height, surface salinity trend, surface temperature
trend, salinity, water temperature and ocean current velocities. In this
study we examined the water temperature and ocean current velocity.
Data assimilation is performed using the Navy Coupled Ocean Data
Assimilation (NCODA) system (Chassignet et al., 2007) which in-
tegrates available satellite altimeter observations via the Naval Ocea-
nographic Office (NAVOCEANO) Altimeter Data Fusion Centre, satellite
and in-situ SST, as well as available in-situ vertical temperature and
salinity profiles from XBTs, Argo floats and moored buoys. MODAS
synthetics are used for downward projection of surface information.

2.2. In situ coastal observation stations

The empirical data used to compare the models against consisted of
time series of in situ observations from the Australian National
Moorings Network (ANMN) available through the Integrated Marine
Observing System (IMOS) portal. The ANMN is a collection of national
reference stations and regional moorings that monitor oceanographic
parameters in coastal ocean waters (Lynch et al., 2014). We used the
data series from the ANMN ADCP platforms, which are a network of 48
moorings deployed in the coastal waters all around Australia (Fig. 1;
Supplementary material Table 1). The ocean current speeds were
measured at different depths in the water column using a range of
Acoustic Doppler Current Profiler (ADCP) and Acoustic Doppler Current
Meter (single point measurement) instruments. The exact instrument
configuration, including measurement depths and frequency of mea-
surements varied from one station to another and from one deployment
to another for the same station. Water temperature, salinity and other

chemical properties are also recorded at the instrument depth. In this
model evaluation study for the purpose of larval dispersal, we used the
time-series observations of zonal and meridional components of the
current velocity – u and v respectively – and the water temperature.

2.3. Data processing

All data processing and analysis was performed in Matlab v8.3
(Mathworks). Data from the 48 mooring stations (Supplementary ma-
terial Table 1) were assessed for completeness and reliability. Stations
that had missing dimensions (e.g. depth), or where the quality control
flags in the dataset indicated some issues were excluded. A final set of
27 stations providing good coverage along the Australian coastline
(Fig. 1) was used in this study. At each mooring, the variables in-
vestigated were water temperature at the instrument depth and u and v
ocean current velocities at the various depths recorded by ADCP. The
data pooled together from all deployments per station formed almost
complete time series ranging from one to up to six years
(Supplementary material Table 1).

All data were filtered prior to analysis using the IMOS quality
control flags. The quality flags were 1 (Good data), 2 (Probably good), 3
(Bad data that are potentially correctable) and 4 (Bad data). In our
analysis we retained data with quality control flags 1 and 2. More de-
tails on the quality check toolboxes used for setting the data quality
flags are available on the IMOS portal and the project's website
(https://github.com/aodn/imos-toolbox/wiki/QCProcedures).
Whenever this was not included in the original data files, we applied a
magnetic declination correction to u and v vectors in order to compute
the components of current velocity along the geodetic East and North
directions, respectively.

Table 1
Hydrodynamic models and their properties in the region of interest. Resolution is specified in degrees latitude and longitude. Minimum depth (Min. depth)
refers to the shallowest level provided in the model output.

Model Start date End date Horizontal grid Vertical grid Frequency of outputs

Resolution Grid size Levels Min. depth

BRAN 3p5 1 Jan 1993 31 Jul 2012 0.1° 1191 × 997 51 2.5 m Daily
HYCOM GLBa0.08 18 Sep 2008 10 Dec 2014 0.08° 4500 × 3298 32 3 m/1 ma Daily

a 3 m for model runs before 2011 (experiment 90.8); 1 m for model runs since 2011 (experiment 90.9 and above).

Fig. 1. The Australian National Moorings Network (ANMN). The (27) stations used in this
study are indicated by red crosses; blue crosses indicate the (21) stations rejected from the
analysis. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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The depth of the upward-pointing ADCP sensor at each ANMN
station was derived from the mooring's pressure gauge and as such it
incorporates variations due to tides. This variability was not reflected in
the models’ output, which use fixed depth levels relative to mean sea
level. Consequently, we have assumed a constant depth computed as
the average depth of all measurements across all deployments. The
extreme depth deviations recorded during deployment or retrieval of
the equipment, identified as 5 standard deviations from the mean, have
been discarded from our analysis. Mooring coordinates of successive
deployments varied by up to 200 m horizontally from the nominal lo-
cation stored in the file metadata. Therefore, we used an average lati-
tude and longitude across all deployments at each station.

At each mooring, the ADCP instrument measured u and v current
velocities at a fixed number of regularly spaced levels above the in-
strument depth. The type of ADCP sensor and the number of levels
differed among moorings and in the case of some moorings they dif-
fered between deployments. To create a comprehensive time series of
current velocity for as many depth levels as possible, the data from each
mooring was pooled into depth classes of 0.5 m and from here on we
report the mean depth of each class as the depth of ADCP measure-
ments.

The ocean model data were extracted at the model's grid cell closest
to the mooring location and depth of measurements and over a time
period common to the mooring deployments. This time series is here-
after referred to as the nearest neighbour. Linear interpolation of model
predictions to the mooring location was also considered; however, our
analysis showed that there was no systematic difference between the
two methods, consequently only the nearest neighbour method is pre-
sented here. The ANMN moorings measure all environmental para-
meters up to 4 times an hour. In contrast, model outputs are provided as
daily averages. To match these two timescales, we computed daily
averages of all variables of interest recorded by the mooring sensors.

2.4. Analysis methods

We assessed the accuracy of BRAN and HYCOM ocean models in
reproducing the real ocean state by comparing the summary univariate
statistics of model outputs to in situ mooring observations and com-
puting an index of agreement between each corresponding time series.
The raw variables analyzed were water temperature and the u and v
components of ocean current velocity. Because in hydrodynamic
models a suboptimal (i.e. coarse) representation of the coastline and
bathymetry can result in poor predictions of ocean current direction
independently of ocean current speed, we also included in our analysis
the speed and direction derived from u and v. This allowed us to in-
vestigate whether the models were better at capturing the magnitude of
the ocean current or its direction. For calculations involving directions,
we used the Circular Statistics Toolbox for directional statistics avail-
able in Matlab (Berens, 2009).

We denote the time series of in situ observations as O, the BRAN
predicted time series as PB and the HYCOM predicted time series as PH.
For each variable we investigated, each predicted value in PB and PH

corresponds to an observation in O, in regards to location, depth of
measurement and time. To ensure stable estimates of the distribution
statistics we discarded any time series of less than 100 data records at
any each station and depth. For each time series of O, PB and PH we
report the mean values and the standard deviations.

To assess each model's accuracy in matching the in situ observa-
tions, we computed two skill measures for each PB and PH: the mean
absolute error (MAEB and MAEH) and Willmott's index of agreement (d;
Willmott et al., 2012). MAE is the most natural measure of average
error (Willmott and Matsuura, 2005) and it is expressed as:
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where Pi refers to either Pi
B or Pi

H, Oi refers to the observed variables, i
= 1,2,…n are the indices of the time series, O is the observed mean,
and c = 2. In its refined form, the skill score is scaled from − 1 to 1.
While d values of or near 1 indicate that the deviations about the ob-
served mean O are well captured by the model, values of or near − 1
identifies that the model poorly captures the deviations about O or that
there is little observed variability (Willmott et al., 2012).

For water temperature we report the means, standard deviations,
MAE, and the skill metric at the sensor depth at each mooring station.
For current u and v components of velocity and current speed, which
have several time series at each mooring station according to the levels
of ADCP measurements, we pooled these values from all mooring sta-
tions and we present them in the form of averages over every 10 m
water column. For ocean current velocities and speed we also present
an average of the skill score over the top 50 m of water column, at each
mooring station.

3. Results

3.1. Distribution statistics

In comparison with the observed data, both BRAN and HYCOM
models overestimated the water temperature at almost all mooring
stations (Fig. 2a). The most notable exceptions from this were a few
mooring stations with depths between 150 and 200 m, where both
models showed an underestimation of water temperature. The bias in
predicted mean temperatures ranged from − 1.4 °C to 2.7 °C for BRAN
and from − 0.6 °C to 2.3 °C for HYCOM. BRAN had larger errors in
mean temperature than HYCOM, in particular between 60 and 200 m
depth. Both BRAN and HYCOM models showed comparable differences
between their predicted standard deviation and the observed standard
deviation, with no consistent positive or negative bias (Fig. 2f). The bias
in predicted standard deviations of temperature ranged from − 0.4 °C
to 0.5 °C for BRAN and from − 0.3 °C to 0.5 °C for HYCOM.

For u and v current velocities, neither of the models performed
better than the other throughout the water column (Fig. 2b, c). For u
velocity, the bias in predicted means ranged from − 0.02 to 0.04 m s-1

for BRAN and from − 0.05 to 0.01 m s-1 for HYCOM (Fig. 2b). The
largest deviations were observed in both models in the top 10 m of the
water column, where BRAN overestimated the mean u velocity and
HYCOM underestimated it. For v velocity, the bias in predicted means
ranged from − 0.10 to 0.04 m s-1 for BRAN and from − 0.19 to
0.04 m s-1 for HYCOM (Fig. 2c). The largest deviations were observed in
the top 10 m of the water column, where both models underestimated
the mean v velocity.

HYCOM and BRAN both underestimated u and v standard deviation
throughout the water column although the average bias was lower for
HYCOM (Fig. 2g, h). For u velocity, the bias in predicted standard de-
viations ranged from − 0.19 to − 0.02 m s-1 for BRAN and from −
0.25 to 0.00 m s-1 for HYCOM (Fig. 2g). The largest deviations were
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observed in the top 10 m of water column, where both models under-
estimated the variability in u velocity. For v velocity, the bias in pre-
dicted standard deviations ranged from − 0.11 to − 0.02 m s-1 for
BRAN and from − 0.17 to 0.00 m s-1 for HYCOM (Fig. 2h). The largest
deviations were observed in the top 10 m of water column, where both
models underestimated the magnitude of variability in v velocity.

Both models underestimated the mean current speed throughout the
water column. The bias in predicted mean speed ranged from − 0.34 to
− 0.08 m s-1 for BRAN and from − 0.44 to − 0.04 m s-1 for HYCOM
(Fig. 2d). The largest deviations were observed in the top 10 m of water
column, where both models underestimated the mean current speed.
With the exception of the top 20 m, HYCOM predicted means of current
speed were more accurate than BRAN predictions throughout the water
column. Both models also underestimated the variability in the current
speed, with the exception of HYCOM time series of predictions between
200 and 350 m depth, which showed a minor positive bias. The bias in
predicted standard deviations of current speed ranged from − 0.04 to
0.00 m s-1 for BRAN and from− 0.06 to 0.02 m s-1 for HYCOM (Fig. 2i).

Both HYCOM and BRAN estimations of mean current direction were
less accurate in the top 10 m of water column. The absolute bias in
predicted mean current direction ranged from 11.05 degrees to 175.98
degrees for BRAN and from 12.77 degrees to 117.74 degrees for
HYCOM (Fig. 2e). Below 200 m depth, HYCOM predicted means of
current direction were consistently more accurate than BRAN predic-
tions except between 350 and 370 m depth. The largest deviations were
observed in BRAN predictions between 200 and 300 m depth and below
400 m depth. HYCOM estimations of variability in the current direction
were more accurate than BRAN estimations throughout the water
column. The bias in predicted standard deviations of current direction
ranged from 29.59 degrees to 177.16 degrees for BRAN and from 2.84
degrees to 37.99 degrees for HYCOM (Fig. 2j).

3.2. Skill measures

The mean absolute errors of the predicted water temperatures
showed a consistent positive bias for both models, throughout the water
column (Fig. 4a). The MAE ranged from 0.2 to 2.7 °C for BRAN and
from 0.4 to 2.3 °C for HYCOM. Overall, the MAE for BRAN predictions
of water temperature was 21% larger than for HYCOM.

The mean absolute errors for u and v velocities indicate that BRAN
predictions were more accurate than HYCOM predictions, throughout
the water column (Fig. 4b, c). The MAE for u velocity ranged from 0.04
to 0.27 m s-1 for BRAN and from 0.03 to 0.99 m s-1 for HYCOM. Overall,
the MAE for HYCOM predictions of u velocity was 31% larger than for
BRAN predictions. The MAE for v velocity ranged from 0.02 to 0.24 m s-
1 for BRAN and from 0.02 to 0.85 m s-1 for HYCOM. Overall, the MAE
for HYCOM predictions of v velocity was 21% larger than for BRAN
predictions.

The mean absolute errors for current speed indicate that HYCOM
predictions were more accurate than BRAN predictions, throughout the
water column with the exception of top 25 m of water column (Fig. 4d).
The MAE for current speed ranged from 0.10 to 0.39 m s-1 for BRAN
and from 0.07 to 0.47 m s-1 for HYCOM. Overall, the MAE for BRAN
predictions of current speed was 18% larger than for HYCOM predic-
tions.

The mean absolute errors for current direction indicate that BRAN
predictions were more accurate than HYCOM predictions throughout
the water column except below 400 m depth (Fig. 4e). The MAE for
current direction ranged from 54.12 degrees to 105.42 degrees for
BRAN and from 62.00 degrees to 97.08 degrees for HYCOM. In general,
above 50 m depth the mean absolute errors in the current direction of
both models increased with decreasing depth and below 150 m depth, it
increased with increasing depth.

We also compared the models’ predictions against the in situ ob-
servations using Willmott's skill score (Willmott et al., 2012). For water
temperature, neither of the models was consistently better throughout

Fig. 2. Difference in means (top row) and standard deviations (bottom row) between BRAN and in situ observations (in red) and HYCOM and in situ observations (in blue) at 27 ANMN
mooring stations. For u and v velocity vectors, current speed and direction the values were averaged across all stations in 10 m water column bins. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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the water column (Fig. 4f). Between 50 and 200 m depth, HYCOM was
slightly more accurate than BRAN (average difference +0.29 d), while
above 50 m and below 200 m BRAN was more accurate than HYCOM
(average difference + 0.08 and + 0.43 d, respectively). Regionally,

HYCOM has a higher accuracy in the Great Australian Bight and along
the east coast of Australia while on the south west coast of Australia
there is no considerable difference in the performance of the two
models (Fig. 5a). Off the northwest coast there are mixed results with

Fig. 3. BRAN and HYCOM Willmott's d-index of agreement with the in situ observations at 27 ANMN mooring stations, for (a, b) seawater temperature, (c, d) u current velocity, (e, f) v
current velocity, (g, h) current speed and (i, j) current direction. Water temperature was recorded at each mooring's deployment depth. For u, v, current speed and direction the values
were averaged over the top 50 m of water column.
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some stations showing better performance for BRAN and others for
HYCOM.

For u and v velocities, BRAN showed a higher accuracy (average
difference of + 0.35 d) than HYCOM throughout the water column
(Fig. 4g, h). This difference in skill scores was most significant for u
velocity and for depths below 200 m. Around 200 m depth, the two
models showed a significant drop (u: 0.31 d for BRAN and 0.21 d for
HYCOM, v- 0.43 d for BRAN and 0.31 d for HYCOM) in the accuracy of
their predictions of both u and v, and the skill score improved again
below 200 m. The average values of the skill score in the upper 50 m of
water column showed that BRAN outperformed HYCOM at almost all
stations (Fig. 5b, c). The few exceptions where HYCOM outperformed
BRAN were stations PIL050 on north west coast, NRSYON on north east
coast, and SAM2CP in the Great Australian Bight for u velocity and
station NRSESP for both u and v velocities (Fig. 1).

Throughout the water column, both models were less accurate in
predicting the current speed than predicting u and v components of
velocity (Fig. 3). Willmott's skill score and the average error measure
concurred, indicating that HYCOM had a higher accuracy (average
difference of +0.12 d and average difference of 0.02 m s-1 MAE) in
predicting current speed than BRAN (Fig. 4i). This was particularly true
for depths below 200 m where the skill score for BRAN showed a
sudden drop of 0.64. Both models however showed negative values for
the skill score at depths below 200 m, which could be explained by low
variability in the observed time series rather than poor performance of
the models. This is because the skill score is closer to − 1 if either the
spread of observations from the observed mean is very small, either the

deviations of the model predictions from the observations are much
larger compared to the spread of observations from the observed mean.
However, in the upper 50 m of water column, BRAN had a higher ac-
curacy on average than HYCOM on the southeast coast of Australian
mainland and Tasmania (Fig. 5d).

Throughout the water column, both models were more accurate in
predicting the current direction than predicting the current speed
(Fig. 3). In both models, the lowest skill scores were observed in the top
10 m of water column, at 200 m depth and at depths below 400 m
(Fig. 4j). Overall the average difference between BRAN and HYCOM
accuracy in predicting current direction was + 0.06 d and 11.50 de-
grees MAE. The skill scores of the two models were comparable down to
200 m depth; below this depth BRAN had a higher accuracy than
HYCOM. Regionally, in the top 50 m of water column, BRAN had a
higher accuracy than HYCOM on the north and southeast coast of
Australian mainland and Tasmania (Fig. 5e).

4. Discussion

Hydrodynamic models are critical for the investigation of dispersal
patterns, yet examination of their performance is often neglected,
particularly in biological studies seeking to understand larval dispersal.
Ideally, as part of every dispersal modelling study, the different can-
didate hydrodynamic models should be validated with empirical data in
the region of interest (wherever this information is not available in the
literature), leading to the choice of the most accurate ocean product for
that particular dispersal model. In this study we have illustrated a

Fig. 3. (continued)
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comprehensive validation technique that can be employed to help with
such a decision. Additionally, the hydrodynamic model's errors in es-
timating real ocean parameters should be reported together with the
results of the dispersal model, as a measure of reliability of the pre-
dictions made.

With the development of new hydrodynamic models, both global
and regional, dispersal modellers often have several ocean products to
choose from in their work. While ocean modellers seek to implement
their models with higher grid resolutions, better coastal coverage or
real-time runs, dispersal modelling puts even these models through a
rigorous test. Such improvements do not automatically imply that the
ocean product will meet the requirements for dispersal modelling. It is
therefore important for dispersal modellers to test the accuracy of
candidate hydrodynamic products against observed ocean data in the
region of their study and for the parameters of interest. Such rigorous
tests are necessary to assure the choice of the best candidate, as well as
to understand the limitations of the chosen ocean product. Because
ocean product evaluation is rarely provided for dispersal models pub-
lished so far, it is difficult to propose guidelines regarding the minimal
accuracy of ocean models needed for the purpose of dispersal studies. If
assessing the performance of hydrodynamic models is to become a
routine in dispersal modelling, standards for ocean products can be
defined, which may feedback developers of the hydrodynamic models.

This work focused on the validation of predictions of two hydro-
dynamic models - BRAN and HYCOM - on the Australian continental
shelf. The continental shelf is the main domain of interest for most
larval dispersal studies and for which global ocean models are, by de-
sign, rarely well-tuned. We investigated the seawater parameters most
relevant to larval dispersal modelling studies: water temperature, u and
v current velocities. In addition, we computed the ocean current speed
and direction derived from u and v current velocities and included them
in our analysis in order to discern whether the models were better at
capturing the magnitude of the ocean current or its direction. Our
findings showed that the performance of a hydrodynamic model studies

depends on the chosen variable(s) and the region of study.
The present study found systematic positive bias in predicted water

temperature, the two models consistently overestimating the water
temperature by up to 2.7 °C in the top and mid-water layer. BRAN had
the largest errors in temperature predictions between 70 and 170 m
depth. This warm bias of ocean model predictions of subsurface water
temperature has been reported for both BRAN (Oke et al., 2013) and
HYCOM (George et al., 2010). Kara et al. (2008) looked at the perfor-
mance of HYCOM in capturing observed sea surface temperatures in a
large area of the Pacific Ocean and found a median warm bias of 0.23 °C
over the 1990–2003 period.

Even the use of ocean data obtained through Satellite Remote
Sensing - an alternative to numerical hydrodynamic models - cannot
circumvent such biases. In a comparative study of satellite-derived
ocean data and in situ measurements of subsurface water temperature
in the coastal regions of Western Australia, Smale and Wernberg (2009)
found that the satellite data overestimated seasonal and annual
averages by 1–2 °C. The positive bias was consistent across the study
areas for both satellites investigated, with the exceptions of one loca-
tion for one of the satellites, where winter and spring averages of water
temperature were underestimated by 1 °C. A similar study found a
smaller positive bias in satellite-derived water temperature reflected in
the seasonal averages in Tasmania (0.5 °C) compared to South Australia
(1.4 °C), suggesting that at sites where consistent spatial and temporal
differences were observed, a correction could be applied (Stobart et al.,
2015). Both these studies found that satellite-derived data can capture
general patterns in subsurface water temperature variations, such as
seasonal trends, but they do not capture the ecologically and biologi-
cally relevant small-scale variations (e.g. daily peak temperatures that
may exceed the physiological limits of a species), which only in situ
measurements can capture accurately.

A warm bias on the order of 2 °C such as the one reported in this
study could be considered biologically significant. The influence of
temperature on metabolic rates and developmental times governing

Fig. 4. Mean absolute errors (top row) and Willmott's skill score (bottom row) for BRAN (in red) and HYCOM (in blue) at 27 ANMN mooring stations. For u and v velocity vectors, current
speed and direction the values were averaged across all stations in 10 m water column bins. The skill score d ranges from − 1 (poor agreement) to 1 (perfect agreement). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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larval fitness and survival and the importance of this parameter in
larval dispersal has been reported in literature numerous times (e.g.
Gillooly et al., 2001, 2002; O’Connor et al., 2007). Larval dispersal
modelling studies often estimate larval survival based on the ambient
temperature (e.g. Marta-Almeida et al., 2008; Knickle and Rose, 2010;
Tracey et al., 2012). Therefore, an ocean product that accurately re-
produces real ocean water temperature is crucial in larval dispersal
modelling and it is important to report the level of certainty associated
with temperature-based predictions wherever it is known. Dispersal
models could account for the bias in a hydrodynamic models tem-
perature predictions by including a margin of error for this water
parameter in the dispersal scenario via sensitivity analysis, or by ex-
plicit bias correction of the modelled temperature. Sensitivity tests can
be used to investigate how different values of ambient temperature
influences the model output – with sensitivity values informed by the

known error in the model.
The two models’ performance in reproducing water temperature

varied from one station to another, which could be explained by the
particularities of water column stratification at each station, as noted in
other in situ vs. satellite temperature studies (Smale and Wernberg,
2009; Stobart et al., 2015). Ocean models have been shown before to
have problems in reproducing a sharp thermocline (Griffies, 2010;
Wilson, 2000). It is expected that in situ ocean temperatures are best
approximated by the model at least to the depth of the thermocline,
which varied from station to station. This is because both models are
constrained by SSTs through data assimilation which helps to char-
acterize the well-mixed layer above the thermocline. Below the depth of
the thermocline, these hydrodynamic models are less accurate with
regard to water temperature, due to difficulty in representing dyna-
mical ocean processes.

Fig. 5. Difference between BRAN and HYCOM Willmott's d-index of agreement with the in situ observations at 27 ANMN mooring stations, for (a) water temperature, (b) u current
velocity, (c) v current velocity, (d) current speed and (e) current direction. Water temperature was recorded at each mooring's deployment depth. For u, v and speed the values were
averaged over the top 50 m of water column. In red are the stations where BRAN is more accurate; in blue are the stations where HYCOM is more accurate. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Both BRAN and HYCOM ocean models showed considerably higher
accuracy in predicting water temperature than in predicting ocean
current velocities. This might be expected, since the variability of ocean
currents is much higher than subsurface water temperatures, especially
in coastal waters, and concomitantly, global ocean models are not
particularly designed to resolve this high variability on small spatial
and temporal scales (Greenberg et al., 2007). Also, temperature is
dominated by the seasonal cycle, largely driven by atmospheric and
large-scale ocean variability, which models can capture well while
water velocity is relatively more influenced by tidal and non-seasonal
variability, such as day-to-day or week-to-week variability that models
do not reproduce as accurately as they do the seasonal cycle (Bernie
et al., 2005).

Passive larval dispersal is the result of the interplay between both
advective and diffusive ocean circulation processes. Between their re-
lease from spawning grounds and their settlement to adult habitat,
planktonic larvae will experience a range of circulation patterns. The
temporal and spatial scales of these patterns relevant to larval dispersal
is at the intersection of the scales of variability of the wide range of
physical transport mechanisms involved, with the larval biology of
which most important is the pelagic larval duration (Pineda et al.,
2007). Coastal regions are the main spawning grounds for a majority of
fishery species. Flows in these near-shore regions are complex: they are
driven by surface and internal tides, large-amplitude internal waves and
bores, wind-forcing, surface gravity waves, buoyancy forcing, boundary
current flows and they are influenced by topographic features like
shoals, headlands, kelp forests or coral reefs (Gawarkiewicz et al., 2007;
Pineda et al., 2007). Large-scale ocean models such as those under-
pinning BRAN and HYCOM have difficulties in reproducing these flows
in detail. Near the coastal boundary, flows are weaker, offering op-
portunities for retention of larvae adjacent to the coast. Features in-
cluding basins with narrow connections to the ocean (estuaries, en-
closed bays) can promote alongshore connectivity, increased self-
recruitment and decrease net displacement. Larvae spawned on the
open coast can also be entrained into bays, reducing their alongshore
transport. In these retention regions, the time scales of retention are
determined by the processes that govern bay-ocean exchange
(Gawarkiewicz et al., 2007). In contrast, cross-shore transport and shelf
break processes (upwelling systems, slope eddies, shelf-break jets) drive
the larval exchange between the continental shelf and offshore waters,
promoting larval dispersal over larger spatial scales and longer pelagic
larval durations (Gawarkiewicz et al., 2007). Ocean models that cap-
ture these processes better than circulation through near-shore reten-
tion features, would be more appropriate to use in modelling the larval
dispersal of species with long PLD.

Tides are an important feature of the real ocean that is not com-
monly simulated in large-scale hydrodynamic models and which can
influence the trajectories of drifting larvae particularly in the near-
shore domain. While the two ocean models we investigated do not si-
mulate tides, they do incorporate a parameterization of tidal mixing
and they are forced through assimilation of observations including tides
(Chassignet et al., 2007; Oke et al., 2013, 2008). This may have limited
the discrepancies between the modelled and the in situ measurements
of ocean current velocities, through a correct simulation of tidal-influ-
enced stratification, but could still account for some of the differences
we identified in our analysis of model performance.

For u and v current velocity, the largest errors in both models were
found in the surface layer, where the models significantly under-
estimated the means and standard deviations. This is possibly due to
underestimating the surface and near-surface wind-driven currents due
to discretization of the water column in the vertical dimension. As
shown by the skill score d, BRAN had a higher accuracy than HYCOM in
estimating observed u and v velocities, almost consistently throughout
the water column. The statistical results suggest that the higher per-
formance of BRAN in reproducing observed u and v velocities is due to
lower average errors, in spite of BRAN reproducing the observed

variability less accurately than HYCOM. While both models showed
larger deviations about the observed means of current speed than about
the observed means of u or v velocities, the bias in standard deviation
between predicted and observed current speed was much lower than for
u and v velocities time series. The errors we observed in BRAN pre-
dictions of current speed were similar in magnitude to the ones found in
the study of Oke et al. (2013) in the same study region. With regard to
the ocean current speed, as opposed to velocities, HYCOM predictions
were in closer agreement with the observations than BRAN predictions.
This was reflected in the distribution mean and standard deviation as
well as in the average error. This suggests that the magnitude of ocean
currents is better estimated in HYCOM, while BRAN reproduces the
directional component better than HYCOM, confirmed by the analysis
of ocean current direction. Although HYCOM captured the variability in
the ocean current direction much better than BRAN, it also had larger
errors as shown in the distribution means and mean absolute errors of
current direction, errors that translated into a lower skill score than
BRAN, in particular below 200 m depth.

In dispersal modelling studies, the trajectories of passive drifters are
inferred entirely on the hydrodynamic model's predictions of ocean
currents, hence the need for accurate estimations of both the current
magnitude and direction. Moreover, the ocean products this study in-
vestigated showed errors large enough to raise concerns about their
reliability, especially when used in larval dispersal studies, which may
require highly accurate predictions of ocean state close to the coast
where settlement and retention are critical processes (Warner et al.,
2000). Subsequently, the longer the dispersal model scenario, the more
probable these errors will accumulate and translate into unrealistic
results. This aspect is of even more concern for larval dispersal studies,
in which the dispersal trajectories can be used not only in connectivity
matrices but also to predict larval survival based on the distance tra-
velled (Shima and Swearer, 2010). While sensitivity testing can include
these biases for temperature estimates, this would be much more dif-
ficult in the case of ocean currents and particle tracking.

Looking at the regional performance of the models (Fig. 3), we note
some consistency in capturing the along-shore component of ocean
currents better than the across-shore component. In regions where the
dominant current flows alongshore in a meridional direction – Leeuwin
Current on the coast of West Australia (Cresswell and Golding, 1980),
East Australian Current on the coast of East Australia (Godfrey et al.,
1980), Zeehan Current on the West coast of Tasmania (Baines et al.,
1983), and East Australian Current and Zeehan Current on the East
coast of Tasmania, (Oliver et al., 2016) – both BRAN and HYCOM re-
present the v component of velocity better than the u component. This
is not the case in regions such as the North West Shelf, the coastal
waters of North Queensland and the east part of the Great Australian
Bight where the alongshore flow of major currents – the Indonesian
Throughflow, the South Equatorial Current and Leeuwin Current re-
spectively – is a mix of zonal and meridional components of velocity.
On the North West Shelf, both models are also less accurate because of a
lack of persistent mean flow that would be easier to simulate in the
ocean models.

Taking into account the distribution of the mooring stations around
the Australian coastline, the performance of one model over the other in
estimating each variable differed significantly from one geographic
region to another. This regional factor was also shown in Oke and Sakov
(2012). For water temperature, HYCOM clearly equalled or out-
performed BRAN at all stations. For u and v current velocities in the top
50 m of water column, BRAN outperformed HYCOM with the exception
of the Great Australian Bight and north east coast. For current speed in
the top 50 m of water column, HYCOM outperformed BRAN at almost
all stations except the ones on south east coast and Tasmania. In these
two regions, BRAN predictions of u and v velocities, current speed and
direction in top 50 m of water column were consistently more accurate
than HYCOM predictions. The regional performance differences listed
above should be taken into consideration when developing a larval
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dispersal study in Australian waters using BRAN or HYCOM, while
dispersal studies in other regions should be based on validated hydro-
dynamic models.
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