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A systematic analysis of historical and modeled marine heatwaves (MHWs)

o� eastern Tasmania has been performed based on satellite observations

and a high–resolution regional ocean model simulation, over the period

from 1994–2016. Our analysis suggests that the distribution of large and

intense mesoscale warm core eddies o� northeast Tasmania contribute to the

development of MHWs further south associatedwith changes in the circulation

and transports. Importantly, we find that eddy distributions in the Tasman Sea

can act as predictors of MHWs o� eastern Tasmania. We used self-organizing

maps to distinguish sea surface height anomalies (SSHA) and MHWs into

di�erent, but connected, patterns. We found the statistical model performs

best (precision ∼ 0.75) in the southern domain o� eastern Tasmania. Oceanic

mean states and heat budget analysis for true positive and false negative

marine heatwave events revealed that the model generally captures ocean

advection dominated MHWs. Using SSHA as predictor variable, we find that

our statistical model can forecast MHWs o� southeast Tasmania up to 7 days in

advance above random chance. This study provides improved understanding

of the role of circulation anomalies associated with oceanic mesoscale eddies

on MHWs o� eastern Tasmania and highlights that individual MHWs in this

region are potentially predictable up to 7 days in advance using mesoscale

eddy-tracking methods.

KEYWORDS

marine heatwaves, self-organizing maps (SOMs), mesoscale eddies, Tasmania,

statistical modeling, forecasting

Introduction

Historically, ocean temperature extremes have received less attention compared to

other extreme events, such as sea-level extremes. However, with the increased frequency,

intensity and ecological impacts from marine heatwaves (MHWs), these discrete and

prolonged warm ocean temperature extremes are now gaining considerable attention

(Pearce and Feng, 2013; Wernberg et al., 2013; Di Lorenzo and Mantua, 2016; Holbrook

et al., 2019, 2020; Smale et al., 2019). MHWs can have substantial and even devastating

impacts on ecosystems (Smale et al., 2019), including the redistribution of marine
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species, mass mortality and increased disease occurrences (Perry

et al., 2005; Garrabou et al., 2009; Mills et al., 2013; Wernberg

et al., 2013; Oliver et al., 2017). At the front line of climate

change, marine waters off eastern Tasmania have been warming

much more rapidly than the global average rate (Hobday and

Pecl, 2014), largely due to increased transports in the East

Australian Current (EAC) Extension (Ridgway, 2007). Further,

marine ecosystems have been impacted, including through

changes in their range, by increases in sea surface temperature

(SST) under the influence of climate change (Johnson et al.,

2011; Last et al., 2011; Oliver, 2019). Research has shown that

the dominant drivers of surface MHWs are either anomalous

warm-water advection or increased net downward heat flux – in

particular, associated with atmospheric high-pressure systems,

clear sky conditions, reduced wind speed and associated low

evaporation –, or a combination (Pearce and Feng, 2013;

Benthuysen et al., 2014; Oliver et al., 2017; Holbrook et al., 2019;

Sen Gupta et al., 2020). However, it is important to also note

that mixing and diffusion may also play a role. The importance

of the individual processes to MHWs can be usefully analyzed

using temperature or heat budget analyses (Benthuysen et al.,

2014; Oliver et al., 2017; Holbrook et al., 2019).

The EAC – the western boundary current of the South

Pacific Gyre (e.g., Ganachaud et al., 2014) – and its Extension

provide the key warming source (through ocean advection) for

Tasman Sea waters off eastern Tasmania. When the southward

flowing EAC and its Extension intensifies, in themean (Ridgway,

2007; Ridgway and Hill, 2009; Oliver and Holbrook, 2014)

and eddy transports (Matear et al., 2013; Oliver et al., 2015),

the waters off eastern Tasmania can become anomalously

warm. For example, an intensification of the EAC Extension

induced an unprecedented MHW in the Tasman Sea during

the summer of 2015/16, which lasted more than 8 months

and had a peak intensity ∼3◦C above climatology (Oliver

et al., 2017). This MHW resulted in blacklip abalone mortality

off southeast Tasmania, reports of Pacific Oyster Mortality

Syndrome, and poor performance in salmon aquaculture (Oliver

et al., 2017), with significant economic losses in the region. These

impacts have motivated us to improve physical understanding

of the mechanisms that underpin MHWs in this region, their

predictability, and to develop a statistical model that can

potentially predict them.

Although a large proportion of the EAC separates from

the coast just north of Sydney (Godfrey et al., 1980), some of

the flow is also transported southward as the EAC Extension,

along the east side of Bass Strait, reaching the east coast of

Tasmania (e.g., Ridgway and Dunn, 2003). Further, it becomes

the dominant oceanic input off northeast Tasmania during

the summer season (Cresswell and Legeckis, 1986). The EAC

sheds large anticyclonic and cyclonic eddies at the separation

points, forming a typical counter–rotating eddy dipole structure

(Malan et al., 2020). The EAC–induced eddy distributions are

characterized by strong eddy kinetic energy (Li et al., 2021),

making the EAC Extension an unsteady flow, dominated by

mesoscale eddies due to its separation from the coast (Nilsson

and Cresswell, 1980; Everett et al., 2012; Van Sebille et al.,

2012), and positions the Tasman Sea as an eddy-rich region

globally (Chelton et al., 2011). The EAC transport has increased

significantly in recent decades, characterized by strong positive

ocean heat content trends in the southern extension zone, which

is linked to the formation of anticyclonic eddies (Li et al.,

2022). These eddies modify the water properties by transporting

warm or cold water anomalies southward, and thus influence

the biological and chemical characteristics of the water masses

off eastern Tasmania. In the context of the focus of this study,

it is valuable to explore how the eddy activity contributes to

the occurrences of MHWs in this region and how predictable

they might be. The importance of the eddy pathway that heads

poleward along Australia’s southeast coast, where sea surface

height anomalies are larger due to the more intense eddy

circulation, has been explicitly recognized by Everett et al. (2012)

who identified an ’Eddy Avenue’ with a high abundance of eddies

between 32◦S and 39◦S. Respectively, the present study further

acknowledges the importance of eddy distributions further

south in the Extension within the Tasman Sea as a potential

source of predictability for MHWs off eastern Tasmania.

In the present study, we examine the connection between

MHWs and dynamic sea surface height anomaly patterns in

the Tasman Sea as a source of MHW potential predictability.

Specifically, we developed a statistical model to predict MHW

likelihoods off eastern Tasmania based on self-organizing maps.

We demonstrate that the model is skilful, with lead times of up

to 7 days. The paper is structured as follows: Section Materials

andmethods describes materials andmethods used in this study,

including oceanic data, algorithms for the detection and tracking

or eddies, self–organizing maps, the detection of MHWs, and

descriptions of heat budget analysis. In Section Results, results

derived from this study are presented. A discussion is presented

in Section Discussion and conclusions, followed by major

conclusions in Section Discussion and conclusions.

Materials and methods

Oceanic data

The daily ocean temperature records used to detect MHWs

are extracted from a simulation of the high-resolution Eastern

Tasmania (ETAS) coastal ocean model covering the period

1994–2016 (Oliver et al., 2016). ETAS is a three-dimensional

regional dynamic ocean model (average grid cells ∼2 km;

Figure 1A) for the eastern Tasmanian region and is based on

the Sparse Hydrodynamic Ocean Code (SHOC) developed at

the CSIRO Marine Laboratories in Hobart, Tasmania (Herzfeld,

2006). The model is based on a curvilinear 200 × 120 grid,

with 43 layers in the vertical. ETAS has been previously used
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FIGURE 1

(A) Topography of the domain in this study, where ETAS region is surrounded by black solid line. (B) Mean ocean currents in ETAS region during

austral summer (Dec–Feb).

to analyse the mean circulation (Oliver et al., 2016) and MHWs

off eastern Tasmania, including trends and patterns of variability

(Oliver et al., 2018; OL18 hereafter). The ETAS domain is

climatologically dominated by two important transport sources,

the southward flowing EAC Extension from the north, and

the northward Zeehan Current impinging from the south

(Oliver and Holbrook, 2018). Atmospheric forcings, including

surface winds and air temperature, are extracted from the

National Center for Environmental Prediction (NCEP) Climate

Forecast System (CFS) Reanalysis (CFSR, 1994–2010; Saha et al.,

2010) and CFS Version 2 analysis (CFSV2, 2011–2015; Saha

et al., 2014). CFSR and CFSV2 are global reanalysis systems

that provide temporally high-resolution (6-h) forecasts from a

coupled atmosphere-ocean climate model, and includes sea ice

and river run-off (Wang et al., 2011).

The daily sea surface heights and oceanic currents in

the southern Tasman Sea are extracted from the Bluelink

ReANalysis version 3 (BRAN3; Oke et al., 2013), which is

an eddy-resolving ocean reanalysis including ocean currents.

BRAN3 is used in addition to ETAS to provide the larger–

scale and offshore information, including daily sea surface

height (SSH) maps at 0.1◦ × 0.1◦ horizontal spatial resolution.

The advantage of using the BRAN3 data is that they

provide an optimal eddy simulation for the circulation around

Australia and surrounding regions (Oke et al., 2013) –

representing a strong indicator of the dynamic state, including

mesoscale eddies. In this study, we define the domain

of the southern Tasman Sea as the region bounded by

145◦E−156◦E, 38.5◦S−46◦S.

Detecting and tracking mesoscale eddies

Several eddy detection and tracking algorithms have been

previously proposed. Early methods tended to use image

processing combined with other statistical techniques, such as

neural networks, to isolate the eddy fields based on SST or ocean

color imagery (Holyer and Peckinpaugh, 1989; Castellani, 2006;

Fernandes andNascimento, 2006; D’Alimonte, 2009; Dong et al.,

2011). However, these methods can be influenced by factors

other than the eddies being targeted for detection, and so

alternative methods based on satellite observations of SSH have

also been identified (Fang and Morrow, 2003; Isern-Fontanet

et al., 2003; Chaigneau et al., 2008; Faghmous et al., 2012a). A

largely accepted method, the eddy tracking algorithm proposed

by Chelton et al. (2011); hereafter, CH11, identifies eddies using
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a multi–step algorithm. CH11 is executed by firstly finding

regions where the SSH anomalies are larger than a particular

threshold and where there is a local minimum/maximum of SSH

for the cyclonic/anticyclonic eddy. Once the eddy is detected,

the eddy tracking is subsequently executed by identifying eddies

whose centroids are located within a defined region centered

on the eddy at the following time step. This method is widely

used due to its efficient detection and tracking, as well as its

applicability to a range of datasets (Faghmous et al., 2012a).

However, CH11 is amethod characterized by various parameters

and it uses filters to retain signals in a particular spatiotemporal

scale, which may filter out realistic features that occur on

specific scales.

A recently developed algorithm, EddyScan (Faghmous et al.,

2012b), assigns binary data based on whether or not the SSH

in a particular location exceeds a corresponding threshold, and

then finds connected features at each iterative step. For the

connected features, five criteria were applied to identify whether

the detected component is an eddy: (1) limitation for minimum

and (2) maximum size of eddy; (3) existence of local minimum

or maximum; (4) threshold of minimum amplitude (1 cm for

default); and (5) a predefined convex hull ratio as a function

of latitude of the center of the eddy. Distinct from CH11, this

method requires a convexity criterion (the convex hull ratio) to

avoid the potential mistake of groupingmultiple eddies together.

This alternative method to CH11 has been previously evaluated

(Faghmous et al., 2012b, 2013; Faghmous and Kumar, 2014)

and found to be advantageous because: (i) no filter is required

in this method and it can reveal characteristics in raw data, as

opposed to modified data; and (ii) the compactness of eddies

is ensured by the convexity criterion, thus there is no multiple

detection problem. Given these qualities of the technique, we use

EddyScan to detect and track eddies based on sea surface height

anomalies (SSHA) in the domain of the BRAN3 data from 1994

to 2016.

Self–organizing maps

Developed in the 1990s, the self-organizing map (SOM)

is a competitive-learning artificial neural network used for

cluster analysis to create a spatial representation, and reduction,

of data (Kohonen, 1990, 1995). The key objective of SOM

analysis is to reduce high-dimensional data into relatively

low-dimensional (typically two-dimensional) maps following

typological ordering (Vesanto et al., 2000). The algorithm self-

organizes similar data into close grids in low-dimensional maps,

and places dissimilar data into relatively distant grids. The

popularity of SOM analysis in oceanography has increased

significantly and it has been used, for example, to detect the

flavors of El Niño–Southern Oscillation (ENSO) (Johnson,

2013), analyse coastal model outputs (Williams et al., 2014;

OL18), investigate extreme climate events (Cavazos, 2000), and

obtain patterns of ocean current variability (Liu and Weisberg,

2005).

Here we use SOMs to identify the important precursor

link between SSHA in southward transporting eddies and

downstream MHWs. As an advanced clustering algorithm, the

SOM approach can generate distinct nodes of particular climate

properties, which enables us to develop it as a statistical method

for teleconnecting particular MHW events to anomalous ocean

circulation patterns, in real time or forecast leading time scale.

Details of the SOM technique and the individual nodes are

provided in the Appendix.

Marine heatwaves

A MHW has been defined as a “discrete prolonged

anomalously warmwater event at a particular location” (Hobday

et al., 2016). “Discrete” implies that a MHW exists for a finite

time-period, with a start and end date. “Prolonged” is quantified

in the Hobday et al. (2016) definition as a duration of at least

five days. “Anomalously warm” is here relative to a percentage

threshold value (the 90th percentile) above the background

mean climatology. The climatology and percentile are calculated

based on an 11-day moving average window centered on each

Julian day, where the data on Feb 29th in each non-leap

year is filled by the mean of that on Feb 28th and Mar 1st.

For a particular day in a MHW event, intensity is defined

as the difference between the daily temperature value and the

seasonally varying climatology. Two successive events with a gap

of no more than 2 days are considered a single continuous event.

Once events are detected, a set of MHW metrics can be

calculated to quantify the characteristics of each MHW: mean

and maximum intensity (◦C), duration (days), variance of

intensity, onset rate and decline rate (◦C/day). We detected

MHWs using SST in ETAS from 1994 to 2016, relative to a

climatological baseline from 1994 to 2009. Subsequently, we

could determine a binary variable ζ
(

x, y, t
)

to indicate if a

particular time t is in a MHW event at position (x, y), which

could be expressed as ζ
(

x, y, t
)

= 1 when t is in a MHW and

0 otherwise.

Heat budget

Here we use an upper ocean temperature budget to

determine the contribution from ocean current transport and

surface heat flux (Benthuysen et al., 2014; Oliver et al., 2017)

to the surface mixed layer temperature tendency, following

the expression:

d{T}
dt

= −{uH∇HT} +
Q

ρCph
+ Residual, (1)
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where h is the depth of the surface mixed layer, T is

temperature, uH is the horizontal current velocity, w is the

vertical current velocity, Q is the net surface heat flux, and

{ } = 1
h

∫ 0
−h dz. Here we choose h equal to 100m as an

average estimate for the mixed layer depth through which the

temperature budget operates in the upper ocean. We also use

ρ as the reference density (1,035 kg/m3). Cp is the specific heat

capacity of sea water (3,990 Jkg−1K−1).

The terms in the equation reveal the role of different

mechanisms to warm the upper ocean (Benthuysen et al., 2014).

RateV =
d{T}
dt

is the time rate of change of the depth-averaged

temperature in the upper ocean, AdvV = −{uH∇HT} is the

time rate of change of the depth-averaged temperature due

to ocean current advection, QV =
Q

ρCph
is the time rate of

change of depth-averaged temperature due to the net surface

heat flux, and the Residual is the time-rate of change of other

factors (lateral diffusion, vertical temperature advection, and

entrainment), unaccounted for by the leading terms of the

surface heat flux and advection.

In the present study, the temperature budget analysis

is used to identify the dominant terms that contribute to

temperature change during MHW events, based on oceanic

data from the BRAN3 data and heat flux data from NCEP

[CFSR (1994–2010); Saha et al., 2010] and CFS Version 2

FIGURE 2

Eddy field in the southern Tasman Sea based on BRAN3 data from 1994 to 2016. Detected eddy tracks are shown with lifetimes (A) > 4 weeks,

and (B) >16 weeks. In (A,B) the red (blue) dot stands for the end point of an anticyclonic (cyclonic) eddy and the line indicates the track of this

eddy. (C) Proportion of eddy-occupied days during 1994 to 2016 in the southern Tasman Sea. (D) Proportion of anticyclonic eddies in all tracked

eddies.
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analysis (CFSV2, 2011–2016; Saha et al., 2014), bounded within

the ETAS domain. The residual term is calculated as RateV

minimized by the sum of AdvV and QV .

Results

Connections between eddies and MHWs

Mesoscale eddies from 1 January 1994–31 August 2016

were detected and tracked in the southern Tasman Sea

(145◦E−154◦E, 38.5◦S−46◦S) in the BRAN3 data. The

percentage of eddy-occupied days, which is the percentage of

total time an eddy exists in a grid cell, and the percentage

of anticyclonic eddies in all detected eddies were subsequently

calculated (Figure 2). Eddies with lifetimes of at least 4 weeks

are typical in the interior (offshore) southern Tasman Sea,

but tend to be absent across the shelf off Tasmania where

depths<200m (Figure 2A) where the detection algorithm is not

satisfied (Chaigneau et al., 2011; Chelton et al., 2011). Other

factors influencing the absence of eddies on the shelf may be

the shelf acting to smear out the eddy structure as eddies flow

onshore, or the inability of BRAN3 to resolve eddies on the

shelf. With increasing minimum eddy lifetimes, the eddy fields

tend to be inhomogeneous in their distribution and types. Long-

lived eddies, with lifetimes >16 weeks, are most prevalent in a

corridor that tracks southward alongside Tasmania’s continental

slope, and are dominated by anticyclonic eddies (Figures 2B,D).

This anticyclonic eddy pathway is a robust average feature

of the circulation, shown by the large percentage of eddy–

occupied days along this corridor (Figure 2C). It is also notable

that cyclonic eddies occupy a narrower corridor against the

Tasmanian shelf. Further, the dominance of anticyclonic eddies

along this path is not only limited to long-lived eddies, but also

those that are shorter-lived (Figure 2D).

To analyse the influence of different eddy distributions on

MHWs off eastern Tasmania in further detail, we performed a

SOM analysis to divide tracked eddies into different typologies.

After removing the seasonally varying climatology, we calculated

temporal averages of the ocean temperatures and currents

within the ETAS domain for eddy lifetimes >8 weeks (i.e.,

corresponding to 415 detected eddies, including 257 anticyclonic

eddies and 158 cyclonic eddies). These time–mean states were

then used as variables in the SOM, with map size (3, 3)

justified below. Instead of using eddy metrics (e.g., duration,

FIGURE 3

(A) WSS/TSS varying with map size and (B) corresponding first di�erence. The determined map size is indicated by dashed line.
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central location, vorticity) as covariates to force the SOM,

we obtained the oceanic patterns of SSHA and circulation off

eastern Tasmania under the existence of different types of eddies.

Before the SOM was executed, each variable was scaled by

removing its mean and dividing by its standard deviation. The

resultant composites for each SOM node were then rescaled

based on the output nodes to obtain explainable patterns.

To choose a suitable size for the SOM, we first calculated the

within sum of squares with respect to the total sum of squares

(WSS/TSS) for different map sizes (Figure 3). We detected that

the curve indicating the change ofWSS/TSS tended to be gentle

(Figure 3A) and the difference between WSS/TSS in different

map sizes (Figure 3B) tended to be constant when the number

of clusters reached (3, 3), corresponding to 9 cluster groups.

FIGURE 4

The mean oceanic states in each node. Colors (arrows) indicate the temporally averaged temperature (current) anomalies across all eddies in

this node.
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A simple t-test was performed for all couples of cluster groups

to assess their similarity, with all significant at p < 0.05, which

confirms that using the SOM with a (3, 3) map size provided

representative (eddy) circulation types off eastern Tasmania.

Figure 4 shows the mean SSTs and surface circulation

anomalies across all eddies for each node. Generally, the

oceanic states off eastern Tasmania, when eddies exist in the

southern Tasman Sea, show a large range of variability in

both SST anomalies (SSTA) and the dominant ocean currents.

The typology of the SOM nodes was organized based on the

dominant oceanic mean state present. For a particular node

(i, j), along the i direction, it was found that the dominant

ocean current off eastern Tasmania tends to change from the

northward Zeehan Current to the southward EAC Extension,

and the temperature anomalies tend to increase; along the j

direction, the ocean circulation reveals a tendency for stronger

FIGURE 5

The proportion of MHW days in each node. Colours indicate the proportion of MHW days across all eddies in this node.
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(weaker) northward (southward) currents and the temperature

anomalies tend to increase too. Nodes located in the four corners

represent the most extreme oceanic patterns.

The SOM typology of the proportion of MHW days off

eastern Tasmania is well organized with some clear features

(Figure 5). As i increases, the percentage of MHW days in Node

(i, j) tends to increase strongly; as j increases, the percentage

of MHW days also tends to increase, though much weaker

and some exceptions are observed [e.g., Node (3, 1) to Node

(3, 2)]. It should be noted that only three percentage patterns

[Nodes (3, j), where j ranges from 1 to 3] are generally

larger than the climatological proportion of MHW days, which

is approximately 10 percent due to the statistical definition,

while the proportional distributions in other nodes were either

generally lower than the climatological proportion [Nodes (1,

j) where j ranges from 1 to 3] or only show large proportions

in coastal regions off southeast Tasmania [Node (2, 3)]. These

node patterns, exhibiting a relatively low proportion of MHW

days, were accompanied by the dominance of the northward

Zeehan Current, the exception being Node (2, 1) (Figure 4).

Some nodes [e.g., Node (3, 1) and Node (3, 2)] have a relatively

low proportion of MHW days nearer to the coast across the

southern portion of Tasmania’s eastern shelf and a relatively high

proportion of MHW days in the remaining parts of the domain,

while other nodes [e.g., Node (2, 3) andNode (3, 3)] demonstrate

opposite patterns. It is notable that the southeast coastal region

off Tasmania shows generally opposite proportion patterns to

the rest of the domain [obvious inNode (2, 3), nodes (i= 3, j= 1,

2, 3)], demonstrating distinct regional responses to eddy activity

in the southern Tasman Sea compared with rest of the domain.

Figure 6 shows the distribution of tracked eddies for each

node. Here, eddies in each node are expressed as dots with dot

size indicating the mean size of each eddy during its lifetime,

color intensity indicating their mean amplitude (cm) during the

lifetime of each eddy, and the basic color indicating the type

of eddy (red for anticyclonic eddy and blue for cyclonic eddy).

The eddies are identifiable based on their mean locations during

their lifetimes. In this typology, the structure of the nodes is

generally organized following the change of i. In nodes (i =

1, j = 1, 2, 3), a large number of small eddies with relatively

low amplitude, consisting of both anticyclonic and cyclonic

eddies with similar numbers and spatial distributions, cover

large proportions of the southern Tasman Sea. In nodes (i =

2, j = 1, 2, 3), the sea surface of the southern Tasman Sea

is characterized by rare eddies with inhomogeneous metrics,

elucidated by eddies with relatively large amplitude and large

size located off northeast Tasmania and relatively weak eddies

observed in other locations. In nodes (i = 3, j = 1, 2, 3), the

southern Tasman Sea is covered by a modest number of eddies,

consisting of both anticyclonic and cyclonic eddies, with strong

anticyclonic eddies occurring off northeast Tasmania. It should

be noted that nearly all (6 in 7) extreme anticyclonic eddies,

whose amplitudes and sizes are larger than the 95 th percentile

of all tracked anticyclonic eddies, are located in nodes (i = 3,

j = 1, 2, 3) off northeast Tasmania. The details of each node

in the SOM are summarized in Appendix. It is notable that the

strong anticyclonic eddies off northeast Tasmania and relatively

high proportion of MHW days in the southern domain reveal

that the geographical locations of strong anticyclonic eddies and

highMHWexposures do not crucially match each other in Node

(3, 3). This may be because local drivers of MHWs include

not only advection, which are related with eddies here, but

also atmospheric forcings (Holbrook et al., 2019). Eddy-induced

advection, as one potential source of advective heat transfers, can

only generate parts ofMHWs off eastern Tasmania (e.g., Behrens

et al., 2019), which could be an explanation for the mismatch. In

spite of this, the 3 × 3 SOM typology provides a visualization

of the links between MHWs off eastern Tasmania and eddies in

the Tasman Sea, and demonstrates that the distribution of strong

anticyclonic eddies off northeast Tasmania can influence MHW

generation in the ETAS domain.

We applied a heat budget analysis to quantify the

contribution to temperature increases associated with eddies

in Node (3, 1) and Node (3, 3), since an anomalously high

proportion ofMHWdays was found in the corresponding nodes

[Nodes (3, 1) and (3, 3) in Figure 5]. We calculated RateV,

AdvV and QV at each time step, and then averaged them

across all tracked eddies in these two nodes, after removing the

seasonal climate variability. Following this, the total temperature

tendency (RateV ) and substantive contributing terms (AdvV

and QV ) were quantified; these are shown in Figure 7. When

strong and large eddies exist in the southern Tasman Sea

[conditions in Nodes (3, 1) and (3, 3)], the horizontal advection

generally represents a dominant proportion of the contribution

to depth-averaged temperature change of the upper ocean. In

the two nodes, the positive part of the upper ocean temperature

tendency is mostly attributed to the horizontal advection,

especially in the southern part of the ETAS domain. Considering

significant southward current anomalies and the anomalously

high proportion of MHW days in the two nodes, it reveals that

strong eddies with large size and intensity tend to contribute

to the horizontal advection, contributing to the heat transfer

during the development of MHW events. This could also be

revealed by the strong negative effects of QV over the ETAS

domain in Node (3, 3) that is compensated by highly positive

AdvV there.

The oceanic states (Figure 4), MHW states (Figure 5) and

eddy distributions (Figure 6) in each node are tightly connected.

In nodes (i = 3, j = 1, 2, 3), the region off eastern Tasmania is

characterized by positive temperature anomalies and southward

current anomalies, corresponding to the influence of the EAC

Extension. In these nodes, the strong anticyclonic eddies off

northeast Tasmania are seen as intensified southward transports

into the ETAS region by the EAC Extension. We next endeavor

to model this eddy-MHW relationship as a mechanistic source

of potential predictability for MHWs off Tasmania.
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FIGURE 6

Eddy distribution in each node. Each eddy is indicated as a dot with colour intensity revealing its mean amplitude (cm) during its lifetime, the size

of each dot is proportional to the mean eddy size during the lifetime, and the basic color of each number indicates the intensity of this eddy,

where red (blue) stands for anticyclonic (cyclonic) eddies.

Predictive model

In the previous section, we have shown that the surface

circulation patterns, especially the eddy distribution in the

Tasman Sea, could be a significant contributor to the occurrences

of MHWs off southeast Tasmania. Here, we identify the lead-

lag relationship between SSHA in the southern Tasman Sea

(associated with themesoscale eddy field) andMHWs off eastern

Tasmania with a view to develop a statistical forecast model

of MHWs for this region. Specifically, we propose a statistical

model to predict MHWs off eastern Tasmania based on the

SOMs and classification methods. The architecture of the model

is shown in Figure 8. The model uses SSHA to train the SOMs,

which subsequently cluster each time point into multiple nodes.

With a lag time of k days, proportions of MHW exposures in a

particular season are determined in each node, as a proxy for

MHW probabilities. A classifier is trained using the clustered

SSHA, to label new input data into a particular SOM node, and

subsequently determines its corresponding MHW probability;

the existence of a MHW in a particular spatiotemporal grid is

determined if the MHW probability is larger than a specific

threshold, which is determined by the F-test. The details of this

model are presented in the Appendix.

Model implementation

Our model implementation uses the following protocol:

We present two case studies to evaluate the model. For each

case, the spatial training data Dtr and spatial validation (test)
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FIGURE 7

Outputs from the heat budget analysis. Averaged total change rate anomaly (◦C/day) in (A) Node (3, 1) and (E) Node (3, 3). Averaged change rate

anomaly (◦C/day) due to surface heat flux in (B) Node (3, 1) and (F) Node (3, 3). Averaged change rate anomaly (◦C/day) due to advection in (C)

Node (3, 1) and (G) Node (3, 3). Averaged change rate anomaly (◦C/day) due to residuals in (D) Node (3, 1) and (H) Node (3, 3).

data Dte were determined. In Case 1, we use SSHA and ζ
(

x, y, t
)

from 1994–2011 as training data and use the same properties

from 2012–2014 as testing data. In Case 2, we randomly chose

data with a length of three leap years (3 × 366 = 1098 days)

as testing data and use the remaining data as training data. It

should be noted that data during 2015–2016 are not included

in either training or testing to avoid the potential overfitting

caused by the unprecedented long–lasting MHW during this

period (Oliver et al., 2017). Case 1 is presented to show the

feasibility of this model under the condition that training

and testing data are temporally consecutive and includes an

upward trend. Case 2 demonstrates the general prediction of

this model under the assumption that training and testing data

follow similar distributions. This is confirmed by the annual

mean MHW days in each case presented in Figure 9. In Case

1, the annual mean MHW days in the south of the domain

increase significantly in the testing data compared to the training

data, while the difference between training and testing data is

relatively insignificant in Case 2. This result is consistent with

previous results evaluating the MHW simulation in the ETAS

model (Oliver et al., 2018), which shows the total MHW days

in the southern domain increasing to ∼120 days/year after

2011, while the mean remains below 40 days/year (Figure 2 in

Oliver et al., 2018). It should be noted we use MHWs detected

from raw SST data rather than detrended SST to show the

overall predictability of MHWs including for nonstationary

data. Hence, comparing results from Case 1 and Case 2 show

that the predictive model is suitable for both conditions.

For each case, a Leave-One-Out Cross-Validation (LOOCV)

approach (Wong, 2015) is applied to the training data Dtr

to determine the skill of this model. To achieve this, we

randomly split Dtr into 10 subsets, while every subset has

approximately the same size. We use 9 subsets as training

data and predict the 10th. We select each of the subsets in

turn as the predictand and train with the other 9. For each

case we get 10 model outputs, while each corresponds to a
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FIGURE 8

The architecture of the model. (1) SSHA are used to train the SOM, clustering each time point into a particular node. With a lag k days, the

probability of MHW existence in a particular spatiotemporal grid is determined using the proportion of MHW exposures in each season for a

particular SOM node. (2) A classifier (SOM/Naïve Bayes/Linear Support Vector Machine) is trained taking SSHA as inputs to (3) label new input

SSHA into a particular SOM node, and the existence of MHW is determined if its corresponding probability is above the threshold determined by

F – measure.

particular subset of testing data. Then, for each case, these

10 model outputs are collected to form a full output with

the same length as the training data. This process is repeated

with a different lag, k, ranging from 1 to 240 days, and the
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FIGURE 9

The MHW days/year in training and testing data in each case. (A–C) separately indicate the MHW days/year in training data (1994–2011), MHW

days/year in testing data (2012–2014), and the di�erence between training and testing data (A,B) in Case1. (D–F) separately indicate the MHW

days/year in training data, MHW days/year in testing data (randomly selected time points equal to 3 leap years, 1098 days), and the di�erence

between training and testing data (D,E) in Case 2.

predicted outputs are evaluated against observations through

the cross-validation.

To estimate the skilful prediction range of this model,

we compute the maximum lag k for which the model

meets a suitable forecast skill score evaluation. In this case,

the maximum acceptable lag k is determined as the lag

corresponding to the condition that the generated model

outputs have a 50 percent chance of correctly predicting aMHW

day, indicating that lags longer than k do not provide superior

prediction skill than a true – or - false guess (Chen et al., 2021;

Silini et al., 2021). The true positive rate (TPR), also known

as recall or sensitivity, is utilized to determine the prediction

range in this instance. The TPR is expressed as: TPR = TP
TP+FN ,

where TP and FN indicate the number of True Positive and False

Negative predictions respectively. The TPR has been applied

previously to examine the subseasonal forecast skill of MHWs

in a climate model (Benthuysen et al., 2021).

The prediction range is determined by finding themaximum

lead k that satisfies the TPR corresponding to the condition

that our model has 50% probability of providing a correct

positive forecast. Figure 10 depicts the estimated range for

model prediction. As expected, the TPR for the two cases tends

to decrease with increasing lead k, indicating that the model

prediction skill of MHWs declines as the lead time increases.

The TPR reaches 50% between 7 and 14 days after initiation.

Therefore, we conclude that the MHW prediction range of this

model is potentially useful at lead times of up to 7 days (1 week).

The local peak indicates that the model recovers a portion of its

forecasting skill on a monthly time scale, which corresponds to

the general eddy lifetime (10–100 days; Faghmous et al., 2015).
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FIGURE 10

Spatially averaged TPR with di�erent combinations of cases and cluster algorithms. The 50% threshold is indicated by the dashed grey line at 0.5.

It is notable that the 50% TPR is still much better than a random

guess (TPR ∼ 10%) for MHWs, which occur on average 10% of

the time.

Model hindcasts

Figure 11 shows the predicted annual number of MHW

days for each experiment. The model predictions generally

capture the proportion of MHWs, with biases varying across the

different experiments. In experiments implemented in Case 1,

the model forecast shows a general underestimation in regions

to the south of the Tasman Peninsula, ranging from 0–80

days/year, and an overestimation in regions to the north of the

Tasman Peninsula, ranging from 0–80 days/year. In experiments

implemented in Case 2, the model prediction shows general

underestimations in all domains off eastern Tasmania, ranging

from 0–20 days/year. Model predictions show similar results in

experiments with different cluster algorithms, implying that this

model adapts well to various cluster methods.

In Figure 10, we demonstrated that the model had a 50%

chance of accurately predicting MHW events in 7 leading

days. However, it is also important to determine how many

positive predictions correspond to actual MHW events in the

given forecast scale. The precision (fraction of true positive

cases among all positive predictions) of each experimental

forecast of the number of MHW days is shown in Figure 12.

We find that the model has high precision for forecasts of

the number of MHW days that occur south of the Tasman

Peninsula and low precision for forecasts of MHW days

north of the Tasman Peninsula, when they are combined with

different cluster methods. In experiments associated with Case1,

the spatial mean precision over the whole domain is ∼ 0.5,

with greatest precision located off southeast Tasmania, and in

particular closer to the coast. To the south of the Tasman

Peninsula, the spatial mean precision is ∼ 0.75, while in the

north part of the domain, it is only ∼ 0.35. In experiments

associated with Case 2, the spatial mean precision over the

whole domain is ∼ 0.6, with greatest precision near to the

coast off southeast Tasmania. In the southern region of the

domain, the spatial mean precision is ∼ 0.75, while in the

north it is ∼ 0.5. Compared to experiments associated with

Case 1, the Case 2 experiments show smaller spatial standard

deviation (indicated by ‘std’ labeled in the title of each panel in

Figure 12). It is somewhat surprising that the model performs

better in the southern domain, whereas large and intense eddies

are distributed further north in the Tasman Sea. Eventually,

the MHW predictability associated with the distribution of

eddies is established through eddy–induced advection. As a

result, the high/low precision off southeast/northeast Tasmania

reflects eddy-induced advection shifts, which may or may not

match the nearby eddy placements. Climatologically, the waters

off eastern Tasmania are dominated by the influence of two

boundary circulation systems – the EAC Extension from the

north and the Zeehan Current from the south. In summer,

the EAC Extension pushes further south, whereas in winter,
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FIGURE 11

(A–N) Model predicted annual MHW days and their di�erence between test data in each experiment. Test data are labelled as “Test”, predicted

annual MHW days are labelled by corresponding cluster method (“SOM”, “NB”, “SVM”), and the di�erences between test data and prediction are

labelled as “Test-cluster method” (“Test-SOM”, “Test-NB”, “Test-SVM”).

the Zeehan Current plays a stronger role (Oliver et al., 2016).

More MHWs can be observed when the ETAS domain is

dominated by the influence of an anomalously strong southward

flow, indicating an enhancement of the EAC Extension and its

associated eddy field.

Potential mechanisms

After verifying that the model has acceptable prediction

skill with lead times of up to 7 days, forecast results from

the six experiments were collected and the oceanic properties

(SSTA, horizontal current anomaly, SSHA) were averaged across

all true positive and false negative observations (Figure 13).

Generally, when the model correctly predicts a MHW day, the

SST off eastern Tasmania is anomalously high and the oceanic

circulation in this region is dominated by a southward current

anomaly, corresponding to an intensified EAC Extension. At

the same time, the eddy feature in the southern Tasman Sea is

relatively significant, especially off northeast Tasmania, which

is generally characterized by anticyclonic eddies (Figure 13B).

When this model incorrectly predicts a MHW day, the

ocean surface off eastern Tasmania is dominated by relatively

weak warming, accompanied by noisy, less organized oceanic

circulation (Figure 13C). In this condition, there is no clear

characteristic spatial pattern in the Tasman Sea that explains

sufficient variance of MHWs. It should be noted that the

SSTA and SSHA associated with the MHWs shown here are

typically lower than those shown in OL18, which could be due

to the different time periods examined (1994–2016 for OL18

and 1994–2014 here). In particular, the present study excludes

the extreme and unprecedented Tasman Sea MHW of 2015/16

(Oliver et al., 2017).

To determine the mechanism causing the MHW

temperature tendency in true positive and false negative

forecasts, a heat budget analysis was performed on the BRAN3

data from 1 January 1994–31 August 2016, with RateV , AdvV

and QV estimated in days during this period. After removing

the seasonally varying climatology, these three spatial change

rate anomalies were separately averaged across all true positive

and false negative forecasts collected from all six experiments

(Figure 14). Generally, when this model tends to correctly

predict a MHW day with a lead time of 7 days, the positive

part of the change rate of the upper ocean temperature in

the southern domain, where this model has relatively good

performance (Figure 14), is mostly contributed by advection,

while the northern domain shows the opposite pattern. On the

other hand, when the model tends to fail to predict a MHW day

with lead time of 7 days, the positive part of the change rate in

the northern domain is dominated by the surface heat flux, but

the role of advection in the southern domain is not as obvious

as that shown in Figure 8C. Generally, when the model tends to

correctly predict a MHW day, the southward current anomaly

in the ETAS domain is clear and significant, accompanied

by anticyclonic eddies located in the regions off northeast

Tasmania. These MHWs are generally dominated by oceanic

current advection revealed by the heat budget analysis. Overall,

the model tends to show good skill in correctly predicting

MHWs caused by intense southward advection. It should be

noted that the heat budget does not converge well in the True

Positive (TP) experiments, shown by negative anomaly residuals

over the ETAS domain (Figure 14D). However, considering the

residual patterns are clearly lower than others (RateV , AdvV and
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FIGURE 12

Spatial precision in each experiment. Each panel is labelled as “CaseN+cluster method”, in which N corresponds to 1 or 2, and cluster method

corresponds to SOM, NB, or SVM. The spatial mean and standard deviation are also labelled in the title of each panel.

QV ), this bias should not affect the main conclusion addressed

in this study.

Discussion and conclusions

Eddy contributions to MHWs o� eastern
Tasmania

This study has demonstrated that the southern Tasman

Sea eddy distribution can be a useful predictor of ocean

advective-type MHW occurrence off eastern Tasmania up to

7 days in advance. Our findings indicate that the distribution

of eddies with greater amplitude and larger size off northeast

Tasmania can influence the generation of substantive MHWs

off eastern and southeast Tasmania associated with anomalous

southward current anomalies. Specifically, we contend that the

physical connection between MHWs in the southern region and

eddies coming from the north is due to the imprint of the warm

water transport by the mesoscale eddy distribution, including

around and between the eddies, as they track into and influence

the zone. These advective-type MHWs account for about 50%

Frontiers inClimate 16 frontiersin.org

https://doi.org/10.3389/fclim.2022.907828
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Zhao et al. 10.3389/fclim.2022.907828

FIGURE 13

Mean states o� eastern Tasmania and in the southern Tasman Sea across true positive and false negative predictions collected from all six

experiments. (A) The SSTA (◦C) and horizontal current anomaly (m/s) o� eastern Tasmania averaged across all true positive forecasts. (B) The

SSHA (m) and horizontal current anomaly (m/s) in the southern Tasman Sea averaged across all true positive forecasts. (C) The SSTA (◦C) and

horizontal current anomaly (m/s) o� eastern Tasmania averaged across all false negative forecasts. (D) The SSHA (m) and horizontal current

anomaly (m/s) in the southern Tasman Sea averaged across all false negative forecasts.

of all MHWs recorded in this region (Li et al., 2020). As a

region of significant eddy activity associated with the western

boundary current extension (EAC Extension), the western

Tasman Sea region off eastern Tasmania is characterized by a

high proportion of anticyclonic eddies (Figure 2) that transport

positive temperature anomalies southward (e.g., Oliver et al.,

2015) proximal to the Eastern Tasmania (ETAS) model domain.

A self-organizing map (SOM) of size (3, 3) was applied to

the oceanic states (anomalies of SST and ocean currents)

during each tracked eddy, and the resulting oceanic mean

states (Figure 4), percent of MHW days (Figure 5), and eddy

distribution (Figure 6) were generated in each SOM node.

Our findings indicate that relatively high positive temperature

anomalies combined with southward current anomalies off

eastern Tasmania tend to be accompanied by SOM nodes

corresponding to a higher proportion of MHW days compared

to climatology, and by extremely strong (intense and wide)

eddies off northeast Tasmania. A heat budget analysis revealed

that increased southward ocean advection, which corresponds

to a more intense EAC Extension, significantly contributes to
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FIGURE 14

Results from the heat budget analysis. (A) Total change rate anomaly (◦C/day) averaged across all true positive forecasts. (B) Change rate

anomaly (◦C/day) due to surface heat flux averaged all true positive forecasts. (C) Change rate anomaly (◦C/day) due to advection averaged

across all true positive forecasts. (D) Change rate anomaly (◦C/day) due to residuals across all true positive forecasts. (E) Total change rate

anomaly (◦C/day) averaged across all false negative forecasts. (F) Change rate (◦C/day) due to surface heat flux averaged all false negative

forecasts. (G) Change rate anomaly (◦C/day) due to advection averaged across all false negative forecasts. (H) Change rate anomaly (◦C/day)

due to residuals across all false negative forecasts.

the average temperature increase in these nodes, and that this is

the primary contributor to these advective-typeMHWs captured

in these nodes – which is consistent with previous research

using other techniques. However, the present study additionally

demonstrates that the co-occurrence of a high proportion of

MHW days and the distribution of intense and substantive

mesoscale eddies off northeast Tasmania that are associated with

an overall enhancement of the southward flow can act as a source

for the development of MHWs along Tasmania’s eastern shelf

within the subsequent 7 days.

MHWs contributed by anomalously strong southward

transports in the EAC Extension have been recognized in

previous studies (Oliver et al., 2017, 2018; Li et al., 2020), and our

results suggest that intense and wide eddies could be potential

contributors. Given that recent dynamically downscaled climate

change projections indicate that eddy activity may increase in

the Tasman Sea (Matear et al., 2013), it is reasonable to deduce

that MHWs induced by eddies are likely to be more frequent

in the future. The development of eddy–resolving ocean models

provides greater potential to better model and predict eddy

activity in both climatology and variability, and as such resulting

in better representation of MHWs at the regional scales (Pilo

et al., 2019), which is likely to benefit MHW prediction in this

eastern Tasmania region.

Statistical model to predict MHWs o�
eastern Tasmania

Motivated by the eddies’ influence on the generation

of MHWs, we have developed a statistical model using
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a combination of self-organizing maps (SOMs) and other

classification methods. The model uses cluster and classification

methods to find the non-linear connection between SSH in the

southern Tasman Sea and MHWs off eastern Tasmania. We

found that not all domains of ETAS have a tight connection

with sea surface heights in the southern Tasman Sea; only

advective-type MHWs in the southern domain are likely to be

skilfully forecasted using these statistical approaches based on

sea surface heights in the southern Tasman Sea.When the model

skilfully predicts a MHW occurrence (on a particular day), the

ETAS domain tends to be dominated by a southward current

anomaly, accompanied by a configuration of eddies distributed

off northeast Tasmania. The rate of change of the mixed layer

temperature (temperature tendency) during these predicted

MHW days in the southern ETAS domain, where the MHW

events can be accurately predicted, is positively contributed by

advection, corresponding to the southward current anomalies in

the EAC Extension. This indicates that the model has practical

skill in capturing MHWs due to increased southward transports

from a more intense EAC Extension and that these MHWs are

effectively predictable from SSHA in the Tasman Sea.

How the gradients of sea surface heights in the southern

Tasman Sea dynamically induce MHWs off eastern Tasmania

is currently being explored. We have determined that eddies in

the southern Tasman Sea influence the patterns of MHWs in

the ETAS domain and strong anticyclonic eddies can potentially

develop MHWs in this region. Further, strong eddies off

northeast Tasmania can transport warm water southward into

the ETAS domain, with the potential to develop MHWs there.

This complements previous research on the importance of upper

ocean heat content and westward propagating oceanic Rossby

waves on Tasman SeaMHWs (Behrens et al., 2019; Li et al., 2020,

2022). Collectively, these studies show that MHWs off eastern

Tasmania are potentially predictable, from oceanic processes,

on multiple time scales ranging from multi–year (shown in

previous studies) to several days (as shown here).

The varying performance of the model in the southern

(good) and northern (weak) domains reveal spatial variability

of MHW responses to sea surface height distributions in the

Tasman Sea. The boundary current confluence is influenced

most strongly by the EAC Extension pushing south in summer

and the Zeehan Current pushing north in winter (Figure 1B;

Oliver et al., 2016). When MHWs occur due to advection, the

intensified EAC Extension dominates (Oliver and Holbrook,

2018; Li et al., 2020), inducing the shift of the dominant

circulation (from northward Zeehan Current to southward

EAC). This feature makes the southern ETAS domain more

responsive to the enhanced southward current anomaly in the

EAC Extension, and better prediction skill.

Limitations of this model are as follows. First, this model

is only useful to predict MHWs caused by anomalous oceanic

advection and is not designed to predict MHWs associated with

anomalous surface heat fluxes. Second, the model is configured

for Tasmania’s eastern shelf, where anomalous oceanic advection

explains about 50% of all MHW events in the region (under

the influence of poleward western boundary current transport

variations; Li et al., 2020) – the model design may well be

much less successfully applied elsewhere if other factors aremore

important. Finally, the spatial resolution of the data used may

be important since it can affect the number of covariates in the

model and subsequently influence the prediction results.

Two modifications may contribute to model improvement

in the future:

• Adding atmospheric “forcing” considerations – including

air-sea heat fluxes within the domain and/or possibly

tracking atmospheric temperature anomalies from

elsewhere into the domain; and/or

• Individually choosing covariates besides sea surface height

for each grid cell across the domain which could be done by

testing the statistical significance of the coherence between

MHW time series at each grid point (or cell) and the

particular covariates.
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Appendix

The self-organizing map (SOM) approach can be described

as a two-layer neural network, which is a combination of an n

dimensional input layer (corresponding to data with n variables)

and an m dimensional output layer. The size m of the output

layer is typically set by researchers, and the means to choose a

suitable m is then described in the following contents. In the

SOM algorithm, every output node i is connected to each input

node by a particular weighting vector ωi. When the training

of the SOM starts, every output node is randomly assigned

an initial weighting vector. Some statistical procedure could

contribute to choose a suitable initial guess, such as principal

component analysis (Williams et al., 2014; Oliver et al., 2018).

A brief introduction to the SOM algorithm is provided in

Appendix Section The SOM training algorithm.

The primary step in executing the SOM is to determine the

size of the SOM (Gibson et al., 2016). Importantly, it is not only

necessary to reduce the dimension of the data, but also to retain

the spatiotemporal variability of the raw data as completely as

possible. Several potential methods have been used in previous

research, such as determining the significantly distinct groups

(Williams et al., 2014; Oliver et al., 2018) and obtaining large

amounts of clusters based on the length of the dataset (Vesanto

et al., 2000). Here, we use the proportion of the within sum of

squares (WSS) with respect to the total sum of squares (TSS),

i.e.,WSS/TSS, which is the sum of WSS and the between sum of

squares (BSS), to determine the size of the SOM. WSS, BSS and

TSS are determined as follows:

WSS =
NC
∑

i = 1

∑

x∈Ci
d

(

x, ¯xCi

)2
(1)

BSS =
NC
∑

i = 1
‖ Ci ‖d

(

¯xCi , x̄
)

(2)

TSS = WSS+ BSS, (3)

where NC is the number of clusters, Ci is the ith cluster,

‖ Ci ‖ is the number of objects in the ith cluster, x is the object, x̄

is the sample mean and ¯xCi is the sample mean located in the ith

cluster. Generally, WSS is a measure of compactness, while BSS

is a measure of separation. Therefore, a good cluster algorithm

should have a relatively smallWSS/TSS. However, as the number

of cluster groups (map size) increases, WSS/TSS should tend to

decrease (Hartigan and Wong, 1979). Therefore, a selection of

the number of cluster groups which induce WSS/TSS to start to

decrease slowly is required (Martin and Maes, 1979). But this

approach may not ensure dissimilarity between different groups.

An acceptable way to account for this is to use an analysis of

similarity, such as a simple t-test, to ensure that different groups

are significantly distinct (Schlegel et al., 2017). Consequently,

determining the number of cluster groups is achieved by firstly

obtaining the number of clusters based on the change of the

WSS/TSS ratio, and then executing an analysis of similarity to

ensure distinction between the different groups.

The SOM training algorithm

The most computationally efficient algorithm to train the

SOM is the batch algorithm (Vesanto et al., 2000). To execute

the algorithm, each observation xk (k ranges from 1 to n) in some

input data x is compared with every weighting vectorωi (i ranges

from 1 to m) and the output node with least Euclidean distance

is chosen as the Best Matching Unit (BMU; Liu et al., 2006). The

choice of the BMU for observation k in the input data x could be

expressed as:

ck = arg
(

min ‖ xk − ωi ‖
)

(4)

where ck is the BMU for observation k in input data x.

After that, every observation in the input data is connected to

a corresponding output node, so input data x is summarized

into m groups, corresponding to m output nodes. Then, the

weighting vector ωi is updated following the rule:

ωi (t + 1) =

m
∑

j = 1
njhij(t)x̄j

m
∑

j = 1
njhij(t)

(5)

where x̄j is the mean of the nj observations located in output

node j, and hij(t) is the value of the neighborhood function

for output node j when the function is centered in the output

node i. The generally used neighborhood function is a Gaussian

function which can be described as:

hij (t) = exp

(

−
d2ji

2σ 2
t

)

(6)

where dij is the Euclidean distance between the output node

i and output node j, and σt is the neighborhood radius which

should decrease linearly with the increase of time t.

During every step of the iterative process, the weighting

vector ωi is updated following the algorithm described above

until ωi(t+1) = ωi(t). The final weighting vector ω̄i for each

output node is defined as a codebook vector, which could be used

to summarize the general pattern and variability of the input

data. The cluster result for observation xk in the input data x

is determined by:

Ck = arg
(

min ‖ xk − ω̄i ‖
)

(7)

where Ck ranges from 1 toM.
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The algorithm described above is the batch algorithm, which

is recognized as the most efficient algorithm to train the SOM

(Vesanto et al., 2000). Other algorithms are available, such as

the sequential version of the SOM algorithm. However, this

algorithm is relatively inefficient due to the fact that weighting

vectors are updated separately during every iterative process.

Typically, the batch algorithm is the most acceptable algorithm

to train the SOM.

Model details

Obtaining the seasonal probability patterns

A particular dataset of historical SSHA(x, y, t), where x,

y and t separately indicate horizontal locations and time, is

transferred to a data frame SSHA(t, v), where v indicates the

location in the domain (that is, x and y have been flattened

into a single spatial variable). Then, a SOM with map size (m,

n), where m × n = K, is applied to this data frame, dividing

the data frame into multiple groups along the t direction

based on the variable v. The map size (m, n) is determined by

finding the corresponding map size where the first difference

of WSS/TSS becomes smaller than 0.01. For a particular node

p, the SSHA located in that node is determined as SSHAp (tp,

v), where tp indicates the time points located in node p. After

that, for a particular grid (x, y) in the domain of ETAS, the

binary time series ζ (x, y, t) is firstly transformed to ζk (x, y,

t) by a suitable lag k, and then separated into K ζkp (x, y, tp)

corresponding to SSHAp (tp, v) in each node. Subsequently,

the seasonal probability patterns, i.e. the proportion of ζkp(x,

y, tp) = 1 at each grid point (x, y), is calculated for each

node. Seasons here are determined as austral Spring = SON,

Summer = DJF, Autumn = MAM, Winter = JJA (following

the definition given by the Australian Bureau of Meteorology

http://www.bom.gov.au/climate/glossary/seasons.shtml).

Finally, we obtained 4 (number of seasons) × K (number

of nodes) lagged probability patterns of MHWs in the ETAS

domain. Here, we consider the seasonal variability of MHWs,

hence the probability pattern is calculated seasonally for each

node, since monthly (corresponding to 12 × K probability

patterns) or daily (corresponding to 366 × K probability

patterns) variability may cause overfitting due to the relatively

short length of our records (about 20 years; Tetko et al., 1995;

Zhang, 2003).

Training the classifier

Through the processing described in the previous section,

every time point of the SSHA in the southern Tasman Sea is

labeled into a particular node. These labeled data are collected

and used to train a classifier following a particular algorithm (see

below) to label new input data. It should be noted that the SOM

could be treated as a classification algorithm, due to the fact that

it can label new input data into different nodes directly based

on its Euclidean distance to each codebook vector. Here, we use

a fitted SOM as one of our classification methods. Additionally,

we also try two other classification which are Naive Bayes (NB;

Webb et al., 2010) and linear Support Vector Machine (SVM;

Suthaharan, 2016) to test the adaptation of this model to various

classification methods.

Predicting input data

After training the classifier, we used it to label new

input data into a particular SOM node. Then, based on the

determined node and its located season, we could determine the

corresponding lagged probability pattern of these input data.

Transferring probability patterns to binary
patterns

Considering a general predictive problem in the binary

classification algorithm, the following statements could be

determined. For input vector (mi, ni) [mi is a vector and ni is

the class (0 or 1)], a binary (true or false) classification algorithm

would return a probability φ revealing the certainty that the

input is determined as a true class. Based on a threshold µ,

φµ could be used to determine the class of the input data

mi following the rule φµ(mi) = 1 if φ(mi) > µ and φµ(mi)

= 0 otherwise. Based on this process, there are four possible

conditions for any input data (mi, ni): true positive (TP),

indicating the condition that ni = 1 and φµ(mi) = 1; false

positive (FP), indicating the condition that ni = 0 and φµ(mi)

= 1; true negative (TN), indicating the condition that ni = 0 and

φµ(mi) = 0; and false negative (FN), indicating the condition

that ni = 1 and φµ(mi) = 0. Based on these four conditions, a

set of statistics could be calculated: True Positive Rate, TPR =
TP

TP+FN , which is also known as Recall or Sensitivity; False

Positive Rate, FPR = FP
FP+TN ; Precision, Precision = TP

TP+FP ;

and Specificity, Specificity = TN
TN+ FP .

The probability patterns determined in the previous section

cannot be used directly in binary predicting problems unless

they are transferred into binary patterns based on a particular

threshold µ, as shown above. In transferring each probability

pattern to a binary pattern, the primary step is to set the

threshold for a probability time series in each grid of the

probability pattern. There are various criteria to set the

threshold, such as the F-measure . The traditional F-measure (F1

score) is the harmonic mean of Precision and Recall, which could

be expressed as:

F1 = 2Precision×Recall
Precision+Recall

(8)

F1 ranges from 0 to 1 and a larger F1 indicates a better

performance of the algorithm under the chosen threshold. F1
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is used here to determine the threshold since it could provide

the optimal prediction in the current study compared to other

methods, including Youden’s J statistics (Youden, 1950) and

its developed versions (Fawcett, 2006; Perkins and Schisterman,

2006; Robin et al., 2011).

The details of the (3,3) SOM nodes

The details of each node in the SOM (Section Connections

between eddies and MHWs) are summarized here.

Node (1, 1): Taking a relatively large proportion (17.83

%) of all tracked long-lived eddies, Node (1, 1) identifies

42 anticyclonic eddies and 32 cyclonic eddies. In this

node, the ocean off eastern Tasmania is generally dominated

by negative SSTA and relatively weak northward current

anomalies. There are less MHW days in the domain of

ETAS, which is dramatically lower than climatology (∼10%).

Eddies in this node are homogeneously distributed in the

southern Tasman Sea, surrounding the east coast of Tasmania.

Despite several strong (high amplitude and large size)

anticyclonic eddies off northeast Tasmania, this node is generally

characterized by eddies with relatively low amplitude and

small size.

Node (2, 1): takes a relatively low proportion (6.02%) of

all tracked long-lived eddies, consisting of 16 anticyclonic

eddies and 9 cyclonic eddies. The oceanic states are generally

dominated by weakly negative temperature anomalies,

accompanied by southward current anomalies. The proportion

of MHW days is significantly larger than shown in Node (1, 1),

but still lower than climatology. The distribution of eddies in

this node is relatively sparse, characterized by eddies with small

size and weak amplitude.

Node (3, 1): contains the largest proportion (18.80%) of

all tracked long-lived eddies, consisting of 45 anticyclonic

eddies and 33 cyclonic eddies. The oceanic state off eastern

Tasmania is generally characterized by positive temperature

anomalies, accompanied by the dominance of southward

current anomalies. The proportion of MHW days is generally

larger than climatology, but there is spatial variability shown

by the opposite patterns separately existing along the southeast

coast of Tasmania. Eddies surround the east coast of Tasmania,

including several significant strong anticyclonic eddies off

northeast Tasmania and a strong anticyclonic eddy off

southeast Tasmania.

Node (1, 2): takes a relatively low percentage (11.08%)

of all tracked long-lived eddies, consisting of 28 anticyclonic

eddies and 18 cyclonic eddies. In this node, the dominance of

strong southward current anomalies exists in the ETAS domain,

accompanied by negative SSTA off eastern Tasmania. There

are also less MHW days in the ETAS domain with respect to

climatology. In this node, eddies surround the east coast of

Tasmania, and most anticyclonic eddies are located off northeast

Tasmania. This node is generally characterized by eddies with

relatively low amplitude and small size, with several exceptions

off northeast Tasmania.

Node (2, 2): takes the least proportion (4.82%) of all

tracked long-lived eddies, including 11 anticyclonic eddies and

9 cyclonic eddies. The oceanic states are generally dominated

by weakly positive temperature anomalies and northward

current anomalies. The proportion of MHW days is ∼0.05,

with higher proportions off northeast Tasmania and relatively

lower proportions in the region around the southeast of

the ETAS domain. Several strong anticyclonic eddies exist

off northeast Tasmania, characterized by large size and

strong amplitude.

Node (3, 2): takes a small proportion (7.47%) of all

tracked long-lived eddies, including 22 anticyclonic eddies and

9 cyclonic eddies. The oceanic states are generally dominated

by positive temperature anomalies and southward current

anomalies. The proportion ofMHWdays is generally larger than

climatology, except regions on the southeast coast of Tasmania

show opposite patterns. Extremely strong anticyclonic eddies are

located off northeast Tasmania, accompanied by other eddies

evenly distributed across the southern Tasman Sea.

Node (1, 3): takes a relatively large proportion (15.42%) of all

tracked long-lived eddies, containing 42 anticyclonic eddies and

22 cyclonic eddies. The oceanic state is dominated by negative

temperature anomalies and southward current anomalies. The

proportion of MHW days is generally lower than climatology.

Eddies are mostly located in the open sea or off southeast

Tasmania, consisting of relatively weak eddies.

Node (2, 3): takes a small proportion (5.30%) of all tracked

long-lived eddies and consists of 12 anticyclonic eddies and

10 cyclonic eddies. Oceanic states are generally dominated by

positive temperature anomalies, accompanied with northward

current anomalies. The proportion of MHW days in this region

is generally lower than climatology, except on the southeast coast

of Tasmania. A strong anticyclonic eddy is located off northeast

Tasmania in this node.

Node (3, 3): takes a relatively large proportion (13.25%)

of tracked eddies and contains 39 anticyclonic eddies and 16

cyclonic eddies. The oceanic states are generally dominated by

strong positive temperature anomalies, accompanied by general

southward current anomalies. The proportion of MHW days is

significantly larger than climatology, especially off the southeast

coast of Tasmania. The distribution of eddies is characterized

by several extremely strong anticyclonic eddies off northeast

Tasmania, accompanied by many small eddies surrounding the

east coast of Tasmania
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